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1. Ideals of infinite order operators

Let H be a separable Hilbert space. For a compact linear operator A in H , A∗ is the adjoint, λ j(A) are the eigen-
values and sk(A) = √

λk(A∗ A) (k = 1,2, . . .) are the singular values taken with their multiplicities and ordered in the
decreasing way. In addition, S p (1 < p < ∞) is the Schatten–von Neumann ideal of operators A with the finite norm
N p(A) := [Trace(A∗ A)p/2]1/p . We will say that a compact operator in H is of infinite order if it does not belong to any
Schatten–von Neumann ideal. Such operators arise in various applications. Many fundamental results on infinite order com-
pact linear operators can be found in the well-known book [9, Section 3.1]. Literature on determinants of compact operators
and their applications is very rich, cf. the very interesting recent papers [3,4,10,17,18] and references cited therein, about
the classical results see [2,7,8]. At the same time to the best of our knowledge, bounds for the determinants of infinite order
operators were not investigated in the available literature. The motivation of this paper is to extend some useful results on
determinants of Schatten–von Neumann operators to infinite order operators.

For a non-decreasing sequence of positive integers π = {p j}∞j=1 (p1 � 1), assume that

∞∑
j=1

(
ts j(A)

)p j
< ∞ (1.1)

for all t > 0. We denote the set of all compact operators A satisfying (1.1) by Γπ .
Put

γπ (A) :=
∞∑
j=1

s
p j

j (A).
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The regularized determinant detπ (I − A) for an operator A with γπ (A) < ∞ is defined as

detπ (I − A) :=
∞∏
j=1

(
1 − λ j(A)

)
exp

[ p j−1∑
m=1

λm
j (A)

m

]
.

Here we put

0∑
m=1

λm
j (A)

m
= 0.

Lemma 1.1. Let A be a compact operator such that γπ (A) < ∞. Then

∣∣detπ (I − A)
∣∣ � exp

[ ∞∑
j=1

∣∣λ j(A)
∣∣p j

]
� eγπ (A).

Proof. Thanks to Lemma 3.1 from the paper [12], for any integer p � 3 we have∣∣∣∣∣(1 − w)exp

[ p−1∑
m=1

wm

m

]∣∣∣∣∣ � exp

[
(p − 1)|w|p

p

]
(w ∈ C). (1.2)

But, |1 − w| � e|w|. In addition,∣∣(1 − w)ew
∣∣2 = (

1 − 2r cos t + r2)e2r cos t � er2 (
r = |w|, t = arg w

)
,

since 1 + x � ex, x ∈ R. Thus∣∣∣∣∣(1 − w)exp

[ p−1∑
m=1

wm

m

]∣∣∣∣∣ � exp
[|w|p]

(p = 1,2,3, . . . ; w ∈ C). (1.3)

Hence,

∣∣detπ (I − A)
∣∣ �

∞∏
j=1

exp
[∣∣λ j(A)

∣∣p j
] = exp

[ ∞∑
j=1

∣∣λ j(A)
∣∣p j

]
.

Let us check that
∞∑
j=1

∣∣λ j(A)
∣∣p j �

∞∑
j=1

s
p j

j (A).

Indeed, let N be an arbitrary positive integer number and A be an arbitrary compact operator. Weyl’s inequality (see e.g.
[15, Theorem 1.15]) implies that

N∑
j=1

∣∣λ j(A)
∣∣ �

N∑
j=1

s j(A).

Taking into account that |λ j(A)| and s j(A) are non-increasing sequences and the function

f (x1, . . . , xN ) =
N∑

j=1

|x j |p j

is a convex function of (x1, . . . , xN ) ∈ C
N , by Markus’ theorem (see e.g. [15, Theorem 1.9]),

N∑
j=1

∣∣λ j(A)
∣∣p j �

N∑
j=1

s
p j

j (A).

Passing to the limits, we get the required inequality, and thus we prove the lemma. �
Lemma 1.2. Let A and B be compact operators such that γπ (A) < ∞. Then

γπ

(
(A + B)/2

)
� 1

2

(
γπ (A) + γπ (B)

)
(A, B ∈ Γπ).
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Proof. By the Hölder inequality, we have

(a + b)p � 2p/p′(
ap + bp) = 2p−1(ap + bp)

(p > 1; 1/p + 1/p′ = 1; a,b > 0).

So

γπ

(
(A + B)/2

) =
∞∑

k=1

spk
k

(
(A + B)/2

)
�

∞∑
k=1

2−pk
(
sk(A) + sk(B)

)pk

�
∞∑

k=1

2−pk 2pk−1(spk
k (A) + spk

k (B)
) = 1

2

(
γπ (A) + γπ (B)

)
,

as claimed. �
Obviously, A ∈ Γπ if and only if γπ (t A) < ∞ for all t � 0.

Lemma 1.3. Γπ is a linear space.

Proof. Let A, B ∈ Γπ . Then for any c ∈ C and all t > 0,

γπ (ct A) :=
∞∑
j=1

s
p j

j (ct A) =
∞∑
j=1

s
p j

j (A)
(|c|t)p j

< ∞.

Moreover, by the previous lemma

γπ (t A + t B) � 1

2

(
γπ (2t A) + γπ (2t B)

)
< ∞.

This proves the lemma. �
Notice that Γπ can be smaller than the set of all compact operators A satisfying γπ (A) < ∞. Besides, the set of all A

such that γπ (A) < ∞ is convex. However, this set is not linear in general. Now we are going to introduce a norm in Γπ . Let
f = { f j}∞j=1 be a sequence of complex numbers. Put

ρ( f ) =
∞∑
j=1

| f j |p j .

The Nakano space [14] �p j is the set of all sequences f such that ρ( f /λ) < ∞ for some λ > 0. Consider also the set �
p j

0 of
all sequences f such that ρ( f ) < ∞ and the set hp j of all sequences f such that ρ( f /λ) < ∞ for all λ > 0. It is clear that
hp j ⊂ �

p j

0 ⊂ �p j . It is well known that �p j is a Banach space under the norm

‖ f ‖�
p j := inf

λ>0
ρ( f /λ)

and hp j is its closed subspace. Moreover, �
p j

0 is not a linear space in general. Nakano spaces are a particular case of
Musielak–Orlicz spaces (see Lindenstrauss and Tzafriri [11] and Musielak [13]). From Proposition 4.d.3 of [11] it follows that
�p j = hp j if and only if {p j}∞j=1 is a bounded sequence.

Denote by Γ̃π the set of all compact operators A on a separable Hilbert space such that {s j(A)}∞j=1 ∈ �p j . Γπ is its subset,

since Γπ is the set of all compact operators A satisfying {s j(A)}∞j=1 ∈ hp j . It is now clear that Γ̃π is a Banach space under
the norm

‖A‖π := ∥∥{
s j(A)

}∞
j=1

∥∥
�

p j

and Γπ is its closed subspace. It is obvious that if p j = p ∈ [1,∞) for all j, then both spaces Γ̃π and Γπ coincide with the
Schatten–von Neumann class S p .

So the following result is true.

Lemma 1.4. The set Γ̃π is a closed normed two-sided ideal of the algebra of all bounded linear operators on H. That is, if A ∈ Γ̃π and
T is a bounded linear operator, then

‖AT ‖π � ‖A‖π‖T ‖, ‖T A‖π � ‖T ‖‖A‖π . (1.4)
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Proof. It is well known that s j(AT ) � s j(A)‖T ‖ for all j (see e.g. [8, Chap. II, Section 2]). Assume that ‖A‖π > 0 and
‖T ‖ > 0 (otherwise the proof is obvious). Then from the above inequality and the definition of the norm ‖ · ‖π it follows
that

∞∑
j=1

(
s j(AT )

‖A‖π‖T ‖
)p j

�
∞∑
j=1

(
s j(A)

‖A‖π

)p j

� 1.

Then ‖AT ‖π � ‖A‖π‖T ‖. The second inequality is proved similarly. �
From Lemmas 1.3 and 1.4 and the fact that Γπ is a closed subspace of Γ̃π it follows that Γπ is also a closed normed

two-sided ideal of the Banach algebra of all bounded linear operators and inequalities (1.4) hold.

2. The main result

Suppose that for a number c0 > 1, the condition

w(c0) :=
∞∑
j=1

1

c
p j

0

< ∞ (2.1)

holds. For example, let c0 = e and p j = 2[ln j + 1] where [x] means the integer part of x. Then

w(c0) �
∞∑
j=1

1

j2
= ζ(2) < ∞

where ζ(.) is the Riemann Zeta function.
Now we are in a position to formulate the main result of the paper.

Theorem 2.1. Under condition (2.1), let A, B ∈ Γπ . Then∣∣detπ (I − A) − detπ (I − B)
∣∣ � 2c0ew0(c0)‖A − B‖exp

[
γπ

(
2(A + B)

) + γπ

(
2(A − B)

)]
.

To prove this result we need a scalar complex-valued function f defined on Γπ , such that f (A +λB) (λ ∈ C) is an entire
function for all A, B ∈ Γπ and there is a non-decreasing function G : [0,∞) → [0,∞) satisfying the inequality∣∣ f (A)

∣∣ � G
(
γπ (A)

)
(A ∈ Γπ). (2.2)

Lemma 2.2. Let a function f (A + λB) (λ ∈ C) be entire for all A, B ∈ Γπ and conditions (2.1), (2.2) hold. Then∣∣ f (A) − f (B)
∣∣ � 2c0‖A − B‖G

(
w(c0) + γπ

(
2(A + B)

) + γπ

(
2(A − B)

))
.

Proof. For the brevity put γπ (.) = γ (.). Introduce the function

g(λ) = f

(
1

2
(A + B) + λ(A − B)

)
.

Then g(λ) is an entire function and thanks to the Cauchy integral,

f (A) − f (B) = g(1/2) − g(−1/2) = 1

2π i

∮
|z|=1/2+r

g(z)dz

(z − 1/2)(z + 1/2)
(r > 0).

So ∣∣g(1/2) − g(−1/2)
∣∣ � (1/2 + r) sup

|z|=1/2+r

|g(z)|
|z2 − 1/4| .

But ∣∣z2 − 1/4
∣∣ = ∣∣(r + 1/2)2ei2t − 1/4

∣∣ � (r + 1/2)2 − 1/4 = r2 + r
(
z = (

1/2 + r
)
eit, 0 � t < 2π

)
. (2.3)

In addition, by (2.2),∣∣g(z)
∣∣ =

∣∣∣∣ f

(
1

2
(A + B) + z(A − B)

)∣∣∣∣ =
∣∣∣∣ f

(
1

2
(A + B) +

(
r + 1

2

)
eit(A − B)

)∣∣∣∣
� G

[
γ

(
1
(A + B) +

(
r + 1

)
eit(A − B)

)]
.

2 2
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Consequently,∣∣ f (A) − f (B)
∣∣ � 1

r
G

[
γ

(
1

2
(A + B) +

(
r + 1

2

)
eit(A − B)

)]
. (2.4)

Take into account that γ is a convex function. So

γ

(
1

2
(A + B) +

(
1

2
+ r

)
eit(A − B)

)
� γ

(
2(A + B)

) + γ
(
2(A − B)

) + γ
(
2r(A − B)

)
and

γ
(
2r(A − B)

) =
∞∑
j=1

(2r)p j s
p j

j (A − B).

Take

r = 1

2c0‖A − B‖ .

Since sk(A) � ‖A‖, we get

γ
(
2r(A − B)

) =
∞∑
j=1

s
p j

j (A − B)

(c0‖A − B‖)p j
� w(c0).

Now (2.4) implies the required result. �
The assertion of Theorem 2.1 directly follows from the previous lemma and Lemma 1.1, since detπ (I − A − λB) is an entire

function.

3. Lower bounds

In this section for the brevity we put λ j(A) = λ j . Denote by L a Jordan contour connecting 0 and 1, lying in the disc
{z ∈ C: |z| � 1} and does not containing the points 1/λ j for any eigenvalue λ j , such that

φ(A) := inf
s∈L;k=1,2,...

|1 − sλk| > 0. (3.1)

Theorem 3.1. Under condition (3.1), let A ∈ Γπ and 1 /∈ σ(A). Then

∣∣detπ (I − A)
∣∣ � exp

[
− 1

φ(A)

∞∑
k=1

spk
k (A) J pk

]
where

J p :=
∫
L

|s|p−1 |ds|.

Proof. Put

D(z) = detπ (I − z A) (z ∈ L).

We have

D(z) =
∞∏
j=1

E j(z) where E j(z) := (1 − zλ j)exp

[ p j−1∑
m=1

zmλm
j

m

]
.

Clearly,

D ′(z) =
∞∑

k=1

E ′
k(z)

∞∏
j=1, j 
=k

E j(z)

and

E ′
k(z) =

[
−λk + (1 − zλk)

pk−2∑
zmλm+1

k

]
exp

[ pk−1∑ zsλs
k

s

]
.

m=0 s=1
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But

−λ j + (1 − zλ j)

p j−2∑
m=0

zmλm+1
j = −zp j−1λ

p j

j ,

since

p j−2∑
m=0

zmλm
j = 1 − (zλ j)

p j−1

1 − zλ j
.

So

E ′
j(z) = −zp j−1λ

p j

j exp

[ p j−1∑
m=1

zmλm
j

m

]
= − zp j−1λ

p j

j

1 − zλ j
E j(z).

Hence, D ′(z) = h(z)D(z), where

h(z) := −
∞∑

k=1

zpk−1λ
pk
k

1 − zλk
.

Consequently,

D(1) = detπ (I − A) = exp

[∫
L

h(s)ds

]
.

Thus ∣∣∣∣ ∫
L

h(s)ds

∣∣∣∣ �
∞∑

k=1

|λk|pk

∫
L

|s|pk−1 |ds|
|1 − sλk| �

∞∑
k=1

spk
k (A)φ−1(A) J pk

and therefore

∣∣detπ (I − A)
∣∣ =

∣∣∣∣exp

[∫
L

h(s)ds

]∣∣∣∣ � exp

[
−

∣∣∣∣ ∫
L

h(s)ds

∣∣∣∣] � exp

[
−φ−1(A)

∞∑
k=1

spk
k (A) J pk

]
,

as claimed. �
The latter theorem generalizes a previous result by the author [6, Theorem 2.1] for Schatten–von Neumann classes S p .

The proof is essentially the same.
Let l = |L| be the length of L. Then J pk � l since |s| � 1 for any s ∈ L. Now the previous theorem implies

Corollary 3.2. Under condition (3.1) let A ∈ Γπ and 1 /∈ σ(A). Then∣∣detπ (I − A)
∣∣ � exp

[
− lγπ (A)

φ(A)

]
.

Furthermore, if A does not have the eigenvalues on [1,∞), then one can take L = [0,1]. In this case l = 1 and therefore

J pk � 1

pk
.

Let σ(A) be the spectrum of A. Now the previous theorem implies

Corollary 3.3. Under condition (3.1), let A ∈ Γπ and [1,∞) ∩ σ(A) = 0. Then

∣∣detπ (I − A)
∣∣ � exp

[
− 1

φ(A)

∞∑
k=1

spk
k (A)

pk

]
.

If, in addition, the spectral radius rs(A) of A is less than one, then

∣∣detπ (I − A)
∣∣ � exp

[
− 1

1 − rs(A)

∞∑
k=1

spk
k (A)

pk

]
.
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4. Schatten–von Neumann ideals

In this section we improve Theorem 2.1 in the case of the Schatten–von Neumann operators S p , i.e. p j ≡ p for an integer
p � 3, and

N p(A) :=
[ ∞∑

k=1

sp
k (A)

]1/p

< ∞, and detp(I − A) :=
∞∏
j=1

(
1 − λ j(A)

)
exp

[ p−1∑
m=1

λm
j (A)

m

]
.

Let X and Y be complex normed spaces with norms ‖.‖X and ‖.‖Y , respectively and F a Y -valued function defined on X .
Assume that F (C + λC̃) (λ ∈ C) is an entire function for all C, C̃ ∈ X . That is, for any φ ∈ Y ∗ , the functional 〈φ, F (C + λC̃)〉
defined on Y is an entire scalar-valued function. Let us prove the following technical lemma.

Lemma 4.1. Let F (C + λC̃) (λ ∈ C) be an entire function for all C, C̃ ∈ X and there be a monotone non-decreasing function
G : [0,∞) → [0,∞), such that∥∥F (C)

∥∥
Y � G

(‖C‖X
)

(C ∈ X). (4.1)

Then ∥∥F (C) − F (C̃)
∥∥

Y � ‖C − C̃‖X G

(
1 + 1

2
‖C + C̃‖X + 1

2
‖C − C̃‖X

)
(C, C̃ ∈ X).

Proof. Put g1(λ) = F ( 1
2 (C + C̃)+λ(C − C̃)). Then g1(λ) is an entire function and F (C)− F (C̃) = g1(1/2)− g1(−1/2). Thanks

to the Cauchy integral,

g1(1/2) − g1(−1/2) = 1

2π i

∮
|z|=1/2+r

g1(z)dz

(z − 1/2)(z + 1/2)
(r > 0).

Hence, by (2.3),∥∥g1(1/2) − g1(−1/2)
∥∥

Y � (1/2 + r) sup
|z|=1/2+r

‖g1(z)‖Y

|z2 − 1/4| � 1

r
sup

|z|=1/2+r

∥∥g1(z)
∥∥

Y .

In addition,∥∥g1(z)
∥∥

Y =
∥∥∥∥F

(
1

2
(C + C̃) + z(C − C̃)

)∥∥∥∥
Y

=
∥∥∥∥F

(
1

2
(C + C̃) +

(
r + 1

2

)
eit(C − C̃)

)∥∥∥∥
Y

� G

(
1

2
‖C + C̃‖X +

(
1

2
+ r

)
‖C − C̃‖X

) (
|z| = 1

2
+ r

)
.

Therefore according to (4.1),

∥∥F (C) − F (C̃)
∥∥

Y = ∥∥g1(1/2) − g1(−1/2)
∥∥

Y � 1

r
G

(
1

2
‖C + C̃‖X +

(
1

2
+ r

)
‖C − C̃‖X

)
.

Taking r = 1/‖C − C̃‖X , we get the required result. �
Corollary 4.2. Let A, B ∈ S p (p = 2,3, . . .). Then

∣∣detp(I − A) − detp(I − B)
∣∣ � N p(A − B)exp

[
p − 1

p

(
1 + 1

2

(
N p(A + B) + N p(A − B)

))p]
.

Indeed, by (1.2) we easily have

∣∣detp(I − A)
∣∣ � exp

[
p − 1

p
N p

p(A)

]
(p � 2). (4.2)

Take in Y = R, X = S p,‖.‖X = N p(.). Besides, detp(I − A − Bλ) (λ ∈ C; A, B ∈ S p) is an entire function of λ. Now the
required result follows from the previous lemma.

The latter corollary improves the well-known Theorem 11.2.2 [7].
Clearly, Theorem 3.1 and Corollary 3.2 are true for operators from S p . Corollary 3.3 takes the form
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Corollary 4.3. Under condition (3.1), let A ∈ S p (p = 1,2, . . .) and [1,∞) ∩ σ(A) = 0. Then

∣∣detp(I − A)
∣∣ � exp

[
− 1

φ(A)p
N p

p(A)

]
.

If, in addition, the spectral radius rs(A) of A is less than one, then

∣∣detp(I − A)
∣∣ � exp

[
− N p

p(A)

(1 − rs(A))p

]
.

One can easily see that conditions of Theorem 2.1 hold only for unbounded sequences p j (because of (2.1)). Let us prove
also some unconditional result (without (2.1)) which includes also the classical case of constant p. It is formulated in terms
of the norm ‖A − B‖π instead of ‖A − B‖. That result is based on the following.

Lemma 4.4. Let a function f (A + λB) be an entire function of λ ∈ C for all A, B ∈ Γπ and G : [0,∞) → [0,∞) be a non-decreasing
function satisfying | f (A)| � G(γπ (A)) for all A ∈ Γπ . Then

∣∣ f (A) − f (B)
∣∣ � 2‖A − B‖π G

(
1

2
+ 1

4
γπ

(
2(A + B)

) + 1

4
γπ

(
2(A − B)

))
. (4.3)

Proof. As in the proof of Lemma 2.2 one can get

∣∣ f (A) − f (B)
∣∣ � 1

r
G

(
γπ

(
1

2
(A + B) +

(
1

2
+ r

)
eit(A − B)

))
(4.4)

for every r > 0 and t ∈ [0,2π). Notice that the operator inside γπ (·) belongs to Γπ because Γπ is a linear space, hence
γπ (·) is well defined for this operator. Applying Lemma 1.2 two times, one can get

γπ

(
1

2
(A + B) +

(
1

2
+ r

)
eit(A − B)

)
� 1

2
γπ

(
A + B + eit(A − B)

) + 1

2
γπ

(
2reit(A − B)

)
� 1

4
γπ

(
2(A + B)

) + 1

4
γπ

(
2eit(A − B)

) + 1

2
γπ

(
2reit(A − B)

)
= 1

4
γπ

(
2(A + B)

) + 1

4
γπ

(
2(A − B)

) + 1

2
γπ

(
2r(A − B)

)
. (4.5)

Note that the last step is justified because s j(eit(C)) = |eit |s j(C) = s j(C) for every compact operator C and every j, hence
γπ (eit C) = γπ (C).

Take

r = (
2‖A − B‖π

)−1
.

From the definition of ‖ · ‖π it follows that

γπ

(
2r(A − B)

) =
∞∑
j=1

(
s j(A − B)

‖A − B‖π

)p j

� 1. (4.6)

Combining (4.4)–(4.6), we arrive at (4.3). �
Thanks to the previous lemma, an analogue of Theorem 2.1 reads as follows.

Theorem 4.5. If A, B ∈ Γπ , then

∣∣detπ (I − A) − detπ (I − B)
∣∣ � 2‖A − B‖π exp

(
1

2
+ 1

4
γπ

(
2(A + B)

) + 1

4
γπ

(
2(A − B)

))
.

The results of this section supplement the recent very interesting investigations of ideals S p , cf. [1,5,16,19,20].
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