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Recently it was discovered that effective approximations to P by poly- 
nomials of degree k were possible if am! onZy if k was ~lzuch larger than nlle 
(see [l]). In this note we consider this same problem with the word “poly- 
nomial” replaced by “rational function.” Interestingly there is then no 
necessary restriction on k! Effective approximation is possible as long as k 
is large-independent of n. (Score another one for rational approximation!) 

Set S(X) = Cf=, (“‘p’) (1 - x)~ (the kth partial sum of the power series 
for XY). Our result is that 

(1) 

which is the quantitative form of our assertion above (the left-hand side being 
clearly nonnegative). In fact we shall prove 

1 2 212 - 2 n-l __- 
S(.u) 

.P < 7 ( .-J,? + k ) 
for O<.u\(l. (2) 

Equation (2) indeed shows that the approximation gets better as II gets 
larger. The quantity ((2n - 2)/(2 II + k))“-l clecreases with IZ and so, although 
for IZ = 1 we obtain an error estimate of 2/k, for all n > 2 we obtain 4/ 
k(k + 4) while for n > 3 we get 32/k(k + 6)2, etc. 

We use the explicit formula for the remainder term of a power series 
expansion. In our case this gives 

C constant. 
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Next Eve change variables by writing 

so that our formula for S(X) becomes 

where c is a constant. By letting I’ - 0 we obtain c = l/I(O) and 

Using (Sj we find that (2) may be written 

which is to say 

on [0, 11, (z -+ .z) I(z) takes its maximum at 0. (6) 

We show, in fact, by direct differentiation, that (z + E) b(z) is convex on 
[O. 13~ This forces the maximum to be taken at an endpoint which mnust be 
0 as I( 1) = 0. We have: namely, 

and so we need only prove that 

(k + 211)L”r f k E _;l:+l ;> 211. (7) 

If we write il. = (219 - 2)/(/c + 2n) z-l!ri and recall the definitiori of F 
in (3): we find that (7) becomes (2~ - 2)/n, I 21~“-~ > 2n or ()I! - 1) 
(()$-1 + IV+~ f ... + 1) - II 3 0. Both factors are 2 0 if 1;’ > 1 and :c C 
if :!I < 1; and in either case, our result follows. 
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