JOURNAL OF APPROXIMATION THEORY 27, 236-238 (1979)

Approximation to x" by Lower Degree Rational Functions

DONALD J. NEWMAN*

Department of Mathematics, Temple University, Philadelphia, Pennsylvania 19122 Communicated by Oved Shisha Received April 28, 1977

Recently it was discovered that effective approximations to x^n by polynomials of degree k were possible if and only if k was much larger than $n^{1/2}$ (see [l]). In this note we consider this same problem with the word "polynomial" replaced by "rational function." Interestingly there is then no necessary restriction on $k!$ Effective approximation is possible as long as k is large—independent of n . (Score another one for rational approximation!) Set $S(x) = \sum_{i=0}^{k} {n+i-1 \choose i} (1-x)^i$ (the kth partial sum of the power series for x^{-n}). Our result is that

$$
\frac{1}{S(x)} - x^n \leqslant \frac{2}{k} \qquad \text{for } 0 \leqslant x \leqslant 1,
$$
 (1)

which is the quantitative form of our assertion above (the left-hand side being clearly nonnegative). In fact we shall prove

$$
\frac{1}{S(x)}-x^n\leqslant \frac{2}{k}\left(\frac{2n-2}{2n+k}\right)^{n-1} \qquad \text{for} \quad 0\leqslant x\leqslant 1. \tag{2}
$$

Equation (2) indeed shows that the approximation gets better as n gets larger. The quantity $((2n - 2)/(2n + k))^{n-1}$ decreases with n and so, although for $n = 1$ we obtain an error estimate of $2/k$, for all $n \ge 2$ we obtain 4/ $k(k + 4)$ while for $n \ge 3$ we get $32/k(k + 6)^2$, etc.

We use the explicit formula for the remainder term of a power series expansion. In our case this gives

$$
S(x) = x^{-n} - \int_{x}^{1} \frac{(t-x)^{k}}{k!} \left(\frac{d}{dt}\right)^{k+1} t^{-n} dt
$$

= $x^{-n} \left(1 - C \int_{x}^{1} \left(1 - \frac{x}{t}\right)^{k} \left(\frac{x}{t}\right)^{n} \frac{dt}{t}\right)$, C constant.

* Supported by National Science Foundation, Grant MPS.08090.

236

0021-9045/79/110236-03\$02.00/0 Copyright $\circled{}$ 1979 by Academic Press, Inc. All rights of reproduction in any form reserved. Next we change variables by writing

$$
u = \left(\frac{x}{t}\right)^n, z = x^n,
$$
 and $\epsilon = \frac{2}{k} \left(\frac{2n-2}{2n+k}\right)^{n-1},$ (3)

so that our formula for $S(x)$ becomes

$$
S(x) = z^{-1}(1 - cI(z)), \qquad I(z) = \int_{z}^{1} (1 - u^{1/n})^{k} du,
$$
 (4)

where c is a constant. By letting $z \to 0$ we obtain $c = 1/I(0)$ and

$$
S(x) = \frac{1}{z} \left(1 - \frac{I(z)}{I(0)} \right).
$$
 (5)

Using (5) we find that (2) may be written

$$
\frac{z}{1-I(z)/I(0)}-z\leqslant\epsilon,\qquad\text{or}\qquad (z-\epsilon)\,I(z)\leqslant\epsilon I(0)
$$

which is to say

on [0, 1],
$$
(z + \epsilon) I(z)
$$
 takes its maximum at 0. (6)

We show, in fact, by direct differentiation, that $(z + \epsilon) I(z)$ is convex on [0, 1]. This forces the maximum to be taken at an endpoint which must be 0 as $I(1) = 0$. We have, namely,

$$
((z + \epsilon) I(z))'' = 2I(z) + (z + \epsilon) I''(z)
$$

= $- 2(1 - z^{1/n})^k + (z + \epsilon) k(1 - z^{1/n})^{k-1} \frac{1}{n} z^{1/n-1}$
= $\frac{(1 - z^{1/n})^{k-1}}{n} [(k + 2n) z^{1/n} + k \epsilon z^{1/n-1} - 2n]$

and so we need only prove that

$$
(k+2n)^{1/n}+k\in z^{1/n-1}\geq 2n.\tag{7}
$$

If we write $w = (2n - 2)/(k + 2n) z^{-1/n}$ and recall the definition of ϵ in (3), we find that (7) becomes $(2n - 2)/w + 2w^{n-1} \ge 2n$ or $(w - 1)$ $((w^{n-1} + w^{n-2} + \cdots + 1) - n \ge 0$. Both factors are ≥ 0 if $w \ge 1$ and ≤ 0 . if $w \le 1$, and in either case, our result follows.

238 DONALD J. NEWMAN

REFERENCE

1. D. J. NEWMAN AND T. J. RIVLIN, Approximation of monomials by polynomials of lower degree, Aequariones Math. 14 (1976), 451-455.