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Abstract: Newton-like methods are commonly used to solve the nonlinear equations arising in the numerical solution 
of stiff differential equations. We show that easily calculable relaxation factors may be used to improve the 
convergence properties of such methods. The technique is also applicable when partitioning methods are used. 
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1. Introduction 

The use of certain implicit numerical methods for the solution of the autonomous differential 
equation 

Y’(X) =_Mx)), y: xc R’ + us RN, f: UCR N-+VglRN (1.1) 
leads to the need to calculate, for n = 1, 2,. . . , a solution y,* E U of a nonlinear equation of the 
form 

F,(Y) = 05 F,(Y) :=.Y - MV(r) -g, (1.2) 

where h,, &,E[W~ and g,,EIRN are given [12,13]. Equation (1.1) is autonomous only for 
convenience in the exposition; nonlinear equations of the same form also arise in the general 
case. Newton’s method for solving (1.2) generates successive approximations y: to y,* as 

y,i+‘=y;+d:,, i=O,l,... (1.3) 

where y,” is some first estimate of y,* and d: solves the linear equation 

[I-k,&J(&)]d:= -F,(Y,$ 0.4) 

where J( yi) is the ‘Jacobian matrix of f, evaluated at yi. The use of (1.4) is computationally 
expensive, so it is common practice [l-15] to replace (1.4) by an approximating linear equation 

[I-h,,,&J]d:,= -F,(y;) (1.5) 

where m < n, h,,,&,, = h,&, and .?EL?((W~) (where 9(RN) is the set of real Iv X N matrices) is 
some approximation to J(yi) which may remain unaltered for a variety of values of i and n. 
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Apart from the fact that one now requires only one approximate Jacobian evaluation and one 
matrix factorization for all such values of i and n, (1.5) provides the freedom to impose various 
structures and properties on .? which help make equation (1.5) relatively cheap to solve. Ideas of 
this sort have been exploited in the techniques of tearing [4,11,13] and partitioning [1,2,5,7,13,15]; 
a review of work in this area may be found in [13]. 

Recent numerical experience [3,9,10,14] has shown that if (1.5) is used it is worth replacing 
(1.3) by a relaxed iteration 

y;+’ =yL+R,dL, i=O,l,... (1.6) 

where R, E Iw’ is selected to improve the properties of the sequence { yi } generated by 
(1.5)-(1.6). In this paper we examine this idea and, following a proposal in [14], extend it to 
selecting R, EZ’([W~). The technique is easy to incorporate into existing software for solving 
stiff differential systems, including cases where partitioning methods are used. 

Our standpoint is that R, 
R,‘[ I - h,,$,,,J] 

compensates for h,,,& #h,,& in (1.5), so that the matrix 
implicitely used in (1.5)-(1.6) remains an acceptable approximation to the 

matrix in (1.4) even when the steplength h, and coefficient &, currently in use differ significantly 
from h, and &. Thus the aim is to reduce the number of matrix factorizations used to solve 
(1.1). Note, however, that we cannot expect the use of R, to reduce the (low) number of 
iterations usually required to solve (1.2) by (1.3)/( 1.5) while the matrix in (1.5) remains a good 
approximation to that in (1.4). 

In line with established tactics [l-4,6-11,13-15], and supported by the same arguments, our 
analysis is restricted to the constant coefficient linear differential equation y’(x) = Jy( x), with 
the understanding that this analysis serves to guide us in the solution of general nonlinear 
differential equations. 

For brevity in what follows we write a and b for h,& and h,& respectively, and drop the 
subscript n throughout. We assume a, b E [w’; a > 0, b > 0. The eigenvalues of J have the 
generic form X = yeiW with y 2 0 and w E [&r,$r], so Re(X) G 0. The individual eigenvalues of J 

are denoted Xj and ordered as y1 >, y2 >, . . . 2 yN. We suppose that ay, z+= 1 and ay, -=x 1, i.e., 
we assume that the problem is stiff. 

2. The scalar case 

We set R := r E Iw’ throughout this section. Then the modified Newton method (1.5)-(1.6) is 
linea_rly convergent with rate equal to the spectral radius p( E( r)) of the matrix E(r) := I - r[ I 
- bJ]-‘[I - aJ]. Viewing the introduction of r as an attempt to compensate for b # a, we isolate 
this effect by assuming, throughout Section 2, that J = J. Then the eigenvalues of E(r) are 0( r, 
Ai), j = 1,. . . , N, where 

e(r, X) := 1 - r[l - bX]-‘[l -ah]. 

Thus one may improve the rate of convergence by selecting r to minimize maxi1 8 (r, hj) I. 

Defining s E IR’ through the equation 

b(ra)-’ = 1 + (a-’ - b-‘)s-’ (2.1) 

it is easy to confirm that, given Xi, 1 d( r, hi) 1 is minimized if [9] 

s = b-’ - Re(Xj) + [Im(xj)]*[a-’ - Re(hj)]-‘. (2.2) 
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Since this differs for different h,, some compromise is required. In the absence of knowledge of 
the values hi, a realistic goal is to minimize the supremum, over all h in the negative halfplane, 
of (O( Y, A) I. The appropriate value of r is generally the Butcher factor [3,9] r, := 2b( a + b)-‘. 
In [9] it is shown that when either of the two conditions ( ayl)(hyl) < 1 or (a~,,)( byN) > 1 are 
satisfied then the choices 

1 + bY,>@YJ 
I-= or r= 1+ bYN!@YN) 

1 + (ayd2 1 + (~Y,i)’ ’ 

respectively, are appropriate in the present context. These conditions are both of interest, the 
first in the initial transient region when the integration is in the process of making the transition 
from being nonstiff to being stiff, and the second when the system has decayed except for the 
effect of a forcing function. However, during most of the stiff phase both very small and very 
large eigenvalues typically occur (see, for example, [5]), and then these conditions are not 
satisfied. Accordingly the above two choices are not considered further in Section 2, though we 
return to them in section 3. 

The choice r, is optimal only in the sense that it minimizes the supremum of /8( r, A) lover all 
h in the negative halfplane. However, various other objectives could be used to select a value of 
r; we consider the following ideas suggested by [12,14]. Since (1.2) produces Y* = af( Y*) + g, it 
follows from (1 S-( 1.6) that 

Y 
i+1 -y*=yi-y*_ Q-bJl-‘(Y’-Y* -a[f(y’) -f(Y*)l) 

= (I-r[r-bJ]-‘[I-d])(y’-y*), i=o, l,... . 

Assuming that the eigenvectors uj E Q= N of J form a basis for [w N, and writing 

for the appropriate constants a/,, this leads to 

cX/+* = (l-r[l-bXj]-‘[1-ah,])a~=t9(r,h,)~~, j=l,..., N. (2.3) 

Expression (2.3) describes the damping effect of iteration (1.5)-(1.6) on the components of the 
error corresponding to various eigenvalues of J [12,14]. Clearly errors corresponding to very 
large eigenvalues will be heavily damped if we select r as the Tischer factor [14] rl := a-lb, while 
for small eigenvalues choosing r to be r3 := 1 [14] is appropriate. The value r2 is a compromise 
between these extremes. In this context, selecting r entails deciding which error components to 
damp out most rapidly. 

Since “the aim of the corrector step is to attempt to gain stability by eliminating the 
components of the error vector, corresponding to the large eigenvalues of the Jacobian, that have 
been amplified by the predictor” [8], either r1 or r, should be used. 

To examine the effect of choosing r, we investigate 8, := 113( r,, A) (, I = 1, 2, 3; where h = yeio 
with y > 0, w E [#T , $IT]. Regions of nonconvergence correspond to 8,a 1. Firstly, 19~ 2 1 iff 

by < (1 - (ay)2)/2(cos w - ay); (2.4) 

the limits on by for the cases w = &T, T are shown in Fig. 1. Clearly using rj = 1 leads to 
convergence difficulties if b < ia and ay is at all large, particularly if A is near the imaginary 
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b-Y 

0 

Fig. 1. Bounds on by defined by inequalities (2.4)-(2.7). 

I 3 aY 
3 

axis. This shows that the undamped iteration (1.3)/(1.5) may fail if doubling of the steplength, 
which leads to a > 2b, occurs. Similarly, 8i >, 1 iff ay < 1 and 

by >, 241 - ay cos w)/(l - (a~)~): (2.5) 

the limits on by for the cases w = $r, IT are also shown on Fig. 1. The use of ri = a-‘6 thus leads 
to convergence difficulties if 2a -C b and ay is small, especially if X is near the real axis. In this 
case halving the steplength may lead to failure of the iteration. By contrast, 8, < 1 for all h. 
Since many practical methods for solving (1.1) involve either doubling or halving of steplengths 
(see e.g. [lo]) the use of pi or r3 cannot generally be recommended. 
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We briefly examine the relative damping effects of using r,. We find 8, < & iff 

by > (1 - (uY)2)/2(aY - COS w), 

the ratio B,B;’ tending to b( a + b)-’ for large y; while 8i G 8, iff ay > 1 and 

(2.6) 

by >, 2ay(l - ay cos bJ)/((ay)z - l), (2.7) 

the ratio (~$8; 1 tending to 0 for large y. The limiting cases u = $T, IT of (2.6) and (2.7) are also 
shown on Fig. 1. So for all stiff eigenvalues (ay > lj rl and r, are preferable to r3, while for the 
larger eigenvalues rl is preferable to rl from the point of view of damping, and hence of stability. 

Since the rate of convergence depends on the spectral radius p, of the matrix E(r,), we 

compare p1 to p2, examining the case least favourable to r2. The maximum value 

I( a - b)( a + b)-‘1 of p2 is attained if J has a purely imaginary eigenvalue, so we assume this is 

the case. The value of p1 is determined by the eigenvalue X which minimizes 11 - bX 1, and it is 
plausible to assume that this h satisfies j ah 1 < 1 (in fact, 1 h I= /A, 1 is to be expected). With this 
assumption we see that pzpll < 1, and expect pzp;’ = a(a + b)-‘. 

Finally, we quantify the advantage of using r, rather than r,, by comparing the size of the 
relative error I(b-- a)a-‘1 for which p2 = (Y to the value for which p3 = (Y (given CY E (0, 1)). 
Again we take the case least favourable to r,, hence assume J has a purely imaginary_eiigenvalue, 
^x. The value of p3 is determined by the eigenvalue X which maxi_Tzes i,bX ) 11 -Px_l, , and this 
maximum is minimized if this X is real and satisfies 1 bh 111 - bX I = 1 bh 111 - bh I (we expect 
IX] = Ih, I). If using r, with ba-’ = t, leads to the same spectral radius as the use of r3 with 
ba-’ = t,, then with the above assumptions together with (t, - l)( t, - 1) > 0, we obtain by 
substituting for h in terms of t,a and t,a in the relevant expressions in pz = p: the equation 

(t2 - I>/+, + I> = (t3 - l)au/(l + ‘say), 

and hence after some manipulation 

Thus even in this worst case the relative error I( b - a) a-l 1 we can tolerate and still get a 
particular rate of convergence is essentially twice as large when using r2 as for r3, under the 
plausible assumption ay x=- 1. 

We briefly summarize the advantages of using‘ r,. Firstly, we have convergence for every 
eigenvalue, no matter how much b differs from a. The stiff eigenvalues are better damped using 
r, rather than r,, thus improving the stability characteristics of the method when b z a. The rate 
of convergence when b f a is also improved when r, is used, with the range of relative errors 
I( b - a) a- ’ 1 permitted to get a specific rate of convergence being essentially doubled when r, is 
used instead of r,. This explains the success noted in practice when r2 is used, as in [3,9,10,14]. 
However, from the point of view of damping the largest eigenvalues the most, the choice of rl is 
better than r, although this may result in a decrease in the overall rate of convergence. 

3. Partitioning 

We adopt as the model partitioning method that outlined in Section 2 of [l]. Suppose that for 
some k the eigenvalues of J are partitioned as 

la&+1 I < 17 (ah,\ > 1. (34 
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Let KE~(IW N, be such that the similarity transformation K-‘JK= G reduces J to block upper 
triangular form, with K, K-’ and G partitioned conformally with (3.1) as 

and suppose that A,, . . . , A, are the eigenvalues of G,,. Such a transformation of J to G will in 

practice only be calculated approximately; for example, the block QR iteration of [2] might be 
used, with the undesired elements set to 0 when they have become sufficiently small. Set 
J:= KGK-’ and R := KDK-*, where G and the diagonal matrix D EZ?([W N, are given by 

G=(;’ ;2), D=(“d i2), 

with D also partitioned conformally with (3.1). The matrix E is usually taken as 0 [1,2,7,13], but 
more generally we shall allow E to be any upper triangular matrix such that Z - bE is 
nonsingular. One might, for example, let E be the diagonal or upper triangular portion of Gz2; 
we shall show that this is useful provided that E is sufficiently close to G22 that the eigenvalues 
of [I - bE]-‘[I - UGLY] are in some sense close to those of [I - bG22]-1[1 - aG,,]. Then 
(1.5)-(1.6) becomes 

Y ifl=yi_R[~-b~]-l~(y')~yi_KD[~_b~]-lK-'~(y'), 

and we obtain as in Section 2 

Y ‘+‘-y*=[K(I-D[I-bG]-‘[I-aG])K-‘](y’-y*). 

Substituting for D, G and G we find 

Z-D[Z-bG]-'[I-aG]= 
I-D,[Z-bG,,]-'[I-aG,,] -D,[Z-bG,,]'Y 

(3.4) 
0 I-D,[Z-E-‘[I-aG,,] 

where Y = - aG12 + bG12[l - bE]-‘[I - aG,,]. Thus the eigenvalues of the iteration matrix in 
(3.3) are the eigenvalues of I - D,[I - bG,,]-‘[I - aG,,] and Z - D2[ I - bE]-‘[I - aG,,], and 

D, and D, may be chosen to modify these eigenvalues as desired. 
For any form of G,r, G,, and E, and any choice of D, and D,, we have from (3.2) the 

following technique for calculating y,+ 1 [2]: 

(9 compute d = K-‘F( yi) and partition d = 

(ii) solve [I-bE]c,=d,, 

(3.5) 

(iii) solve [I - bG,,] cl = d, + bG12c2, 

(iv) set y 
DlCl i+tzyi-K Dc 

i i 
. 

2 2 
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To make (ii) cheap to solve the choices E = 0 or E upper triangular are adopted; thus producing 

Y ‘+’ requires only the full solution of one relatively small (k x k) system of linear equations, and 
the effort of calculating the similarity transformation is exploited both in reducing the size of the 
system of linear equations to be solved and selecting the relaxation factors D, and D,, as we 
shall show. Our method is identical to those proposed in [1,2,7,11,13,15] except for our use of the 
diagonal relaxation matrices D, and D, and the possibility that E # 0; thus the technique 
requires only a trivial modification of existing software for solving stiff differential equations by 
partitioning, while the extra computational effort is small. Beware that the partitioning desired 
will change as the integration proceeds, since for most stiff problems the step size increases as 
various transients die out. Thus initially G,, might be empty, but as the integration proceeds G,, 
will grow in size, so that eventually the cost of partitioning escalates to the extent that 
partitioning is no longer worthwhile. One must then revert to the full matrix method and the 
ideas of Section 2. 

We now examine the choice of the relaxation matrix D. Let D = diag( d,, . . . , dN). If G,, is 
upper triangular then A,, . . . , 
!A,), j= l)...) 

A, are known and real, so the optimal choice dj = (1 - ahi)-‘(1 - 
k is obvious and calculable. If G,, is upper triangular then an obvious choice is 

E = G,,, in which case the choice d, = (1 - aXi)-‘(1 - bh,), j = k + 1,. . . , N is again at hand. 
In both of these cases the eigenvalues of the relevant matrices on the diagonal of (3.4) become 0. 
In the second case the identical effect on (3.4) could have been obtained by setting E = 0 and 
dj = (1 - aXi)-i, j = k + 1,. . . , N; this also reduces the expense of (3.5) by eliminating (3.5) (ii) 
but produces different values of yi+i. 

Generally it is impractical to transform G to upper triangular form, and G,, and G,, have 
some other (e.g. upper Hessenberg) form. In this case we let D, and D, be of the form rl and, in 
analogy with Section 2, we select suitable values of r depending on the objectives we wish to 
attain. 

We first consider the upper left-hand corner of (3.4); the eigenvalues of this matrix are 0(r, 
A,), j= l,..., k so the situation is precisely that of Section 2, with N replaced by k, except that 
we here have the additional assumption ayj > 1, j = 1,. . . , k. In particular we may expect 
(a~,)( byk) > 1, and to improve the rate of convergence we therefore apply the appropriate factor 
of [9] mentioned in Section 2, namely 

r4 = [l + hWvJl/[l + hJ2]. 

The value yk can be cheaply estimated by applying an inverse power method to Gii, a partial 
factorization of which may be available from the work done in solving (3.5) (iii) [6,7]. Notice r, 
varies continuously with yk, r4 = r, if (ay,)( byk) = 1, and r, tends to ri as yk increases. Note, 
however, that although one aims to partition the eigenvalues so that ay, > 1, in practice ay, -C 1 
often occurs [1,2,7]; if ( ayk)( byk) < 1 then the arguments of [9] show that r, is preferable to r, 
for improving the rate of convergence. To achieve the latter objective our recommendation is 
therefore exactly that of [9] adapted to partitioning: estimate yk, use r, if (ay,)( byk) > 1, else use 
r,. If one wishes to avoid the expense of estimating yk then use r2 which, although possibly not 
optimal, is safe and better than using r = 1, i.e. not relaxing at all. 

We have noted that r, tends to r, as yk increases. Now ayl,. . . , ay, are all at least moderately 
large, Section 2 shows that ri is a desirable choice from the point of view of damping the larger 
eigenvalues rapidly, while Fig. 1 shows that the arguments of Section 2 against the use of rl, 
namely for nonconvergence if 2a < b (see (2.5)) fall away provided ay, is not much less than 1. 
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Thus ri is now also a safe choice, its use does not require that any eigenvalues be estimated, and 
it is better than r, or r, from the point of view of damping the largest eigenvalues although it 
may decrease the overall rate of convergence. 

We now consider the choice of r in D, = r1. If E = 0 then the eigenvalues of I - D,[I - 
bE]-‘[ I - aG,,] are 1 - r(l - ail,), j = k + 1,. . . , N. The technique of [9] may be used to show 
that the value of r which minimizes the maximum of { 11 - r(1 - ahj) I: j = k + 1,. . . , N} is 
r, = (1 + LZ*~,‘+,)-‘. The value yk+i is easily estimated by direct power iteration on G2*, hence r, 
is cheaply calculable and is the optimal choice for rapid convergence. If the expense of 

. . 
estimatmg yk+i is to be avoided, the pessimistic estimate ayk+, = 1 may be used, resulting in the 
choice r = $. 

If E # b, suppose E is so close to G,, that the eigenvalues of [I - bE]-‘[I - aG,,] are 
essentially the same as those of [I - bG,i]-‘[I - aG,,]. Then r may be chosen to minimize 
max]B(r, A,)], j=k+l,..., N, as in Section 2, noting that now (a~,+~)( b~~+~) < 1 is 
expected. To improve the rate of convergence we therefore use the appropriate factor of [9] 
mentioned in Section 2, namely 

r6 = [l + h+l )@Yk+lw(l+ (ay,+J2) 

where yk+l is estimated as above. If the expense of estimating yk+i is to be avoided then r, or r, 
may be used; rl should be avoided since Fig. 1 (2.5) shows it is dangerous in the region ay < 1, 
while there are no large eigenvalues to be damped here. We prefer r, to r, since it is obtained 
from r, under the pessimistic estimate ( LZY~+~ )( byk+l) = 1 and damps those eigenvalues with ay 
near 1 better than does r,, as shown by Fig. 1 (2.6). 

We note that in [1,2,6,7,11,13] it is usually assumed that b = a, implying that the matrix in 
(3.5) (iii) is refactored whenever a changes. This assumption is partly justified by the fact that the 
reduced matrix [I - aG,,] may be relatively cheaply refactored if G,, has some desirable (e.g. 
upper Hessenberg) form [1,2,6,7]. Although such refactorization is fairly cheap, it is obviously 
still cheaper not to refactor at all, thus many implementations use b # a, only refactoring when 
convergence has become unacceptably slow or, pre-empting this, when the relative change 
lb-ala-’ becomes large. The introduction of relaxation matrices D, and D, improves the 
convergence when b # a and thus permits the use of a larger range of values b # a before 
refactoring becomes necessary, consequently reducing the overall computational expense. More- 
over, as pointed out in Section 2, relaxation improves the stability characteristics of the method 
when b # a, since the larger eigenvalue terms are more rapidly damped out. Since the introduc- 
tion of relaxation is so cheap and simple it is worth doing even though the benefits may be 
relatively minor in the present context of partitioning. 
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