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c We identify competing timescales in a reduced version of the original Daisyworld model.
c It is found that the reduced model retains much of the expected behaviour.
c Homeostasis may only occur beyond a critical ratio of albedo and forcing timescales.
c Closed form expressions are found for damping of shocks, and oscillation onset.
c Spatially embedded Daisyworlds are found to exhibit identical fixed points.
a r t i c l e i n f o

Article history:

Received 2 May 2012

Received in revised form

18 July 2012

Accepted 31 July 2012
Available online 10 August 2012

Keywords:

Daisyworld

Gaia

Homeostasis
93 & 2012 Published by Elsevier Ltd.

x.doi.org/10.1016/j.jtbi.2012.07.034

esponding author. Tel.: þ44 23 8059 8703.

ail address: isw1g10@soton.ac.uk (I.S. Weave

Open a
a b s t r a c t

Models which explore the possibilities of emergent self-regulation in the Earth system often assume

the timescales associated with changes in various sub-systems to be predetermined. Given their

importance in guiding the fixed point dynamics of such models, relatively little formalism has been

established. We analyse a classic model of environmental self-regulation, Daisyworld, and interpret the

original equations for model temperature, changes in insolation, and self-organisation of the biota as an

important separation of timescales. This allows a simple analytical solution where the model is reduced

to two states while retaining important characteristics of the original model. We explore the

consequences of relaxing some key assumptions. We show that increasing the rate of change of

insolation relative to adaptation of the biota shows a sharp transition between regulating, and lifeless

states. Additionally, in slowing the rate of model temperature change relative to the adapting biota we

derive expressions for the damping rate of fluctuations, along with a threshold beyond which damped

oscillations occur. We relax the assumption that seeding occurs globally by extending this analysis to

solve a two-dimensional cellular automata Daisyworld. We conclude by reviewing a number of

previous Daisyworld models and make explicit their respective timescales, and how their behaviour

can be understood in light of our analysis.

& 2012 Published by Elsevier Ltd. Open access under CC BY license.
1. Introduction

To what extent the emergence and evolution of life on Earth
has resulted in a planetary system that is in some respects
homeostatic or self-regulating was the focus of the original Gaia
Hypothesis (Lovelock and Margulis, 1974). The antecedents of this
argument can be traced to the work of Vernadsky who popu-
larised the term biosphere and argued that one cannot understand
the surface conditions of the Earth without factoring in life’s
effects (Vernadsky, 1926). Lovelock’s initial insight was to realise
that any widespread biosphere should, in principle, be detectable
r).

ccess under CC BY license.
from space as the effects of life would be to produce atmospheres far
from equilibrium (Lovelock, 1965). A terrestrial example is the
presence of both non-negligible amounts of oxygen and methane
in the atmosphere. Is it the continual biogenic production of
methane that replaces the methane that would be rapidly lost as
it reacts with oxygen (Cicerone, 1988). Life, via unavoidable meta-
bolic by-products, affects the movement and cycling of chemical
species within the Earth system and in doing so has affected not
only the Earth’s atmosphere but also its oceans, crust and cryo-
sphere. Lovelock speculated that the evolution of life and its
interaction with different elements of the Earth system gave rise
to a system in which the surface conditions of Earth had been
regulated to within the bounds that would be required for wide-
spread surface life, i.e. maintaining surface liquid water over
appreciable fractions of the globe (Lovelock, 1979). The teleological
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implications of this were not lost on contemporary thinkers and the
original hypothesis was controversial and subject to pointed critique
(Dawkins, 1983; Doolittle, 1981). As more recent reviews show, the
Gaia Hypothesis has matured over time and rather than being
fundamentally incompatible with neo-Darwinism, geology or clima-
tology is now seen as being relevant to a range of subjects that
investigate the Earth system (Lenton, 1998; Free and Barton, 2007).
For example, the abiotic process of chemical weathering of silicate
rocks has produced a negative feedback loop that has to a certain
extent offset the increased luminosity of the sun over geological
timescales (Walker et al., 1981; Berner, 1991). It has been proposed
that land plants have an overall increasing effect on this process and
so have altered the fixed points of atmospheric CO2 (Schwartman
and Volk, 1989). Evidence for the biological amplification of chemi-
cal weathering by land plants has been traced back to the Ordovi-
cian (Lenton et al., 2012).

In terms of quantitative models and simulations, much of the
investigation into the plausibility of Gaian self-regulation has been
progressed via developments and extension of the Daisyworld
model (Watson and Lovelock, 1983). Daisyworld was originally
intended as a mathematical proof of concept for planetary home-
ostasis that emerged from the interactions between simple life
forms and their environment. Daisyworld is a grey, Earth sized
planet that orbits a sun-like star. Much like our own sun, this star
has increased in luminosity over geological timescales. On a
lifeless planet, this increase in luminosity would produce a
proportional increase in global temperature. However, Daisyworld
is seeded with black and white daisies which prove to be
important components in a planetary self-regulating system that
leads to global temperature not increasing but remaining within
comparatively narrow bands for a wide range of luminosity. It is
assumed that there are sufficient nutrients and water for daisies to
grow and the only environmental factor that determines their
growth is the local temperature. As well as being affected by
temperature, the changing coverage of black and white daisies
affects the albedo of the planet and so the amount of energy from
the star that is reflected back out into space and consequently
global temperature. As luminosity increases, it is the proportional
coverage of black and white daisies that changes while the global
temperature remains relatively stable. The original model has
since been significantly extended, developed and applied to new
domains (see Wood et al., 2008 for a review).

An initial and ongoing criticism of Daisyworld was that the
model is too simple and too contrived to give us any useful
information and insights into the actual Earth (Kirchner, 2002).
While some of these criticisms were addressed at the time by
Lenton and Wilkinson (2003) there has been relatively little
concentration on the respective timescales of the different pro-
cesses operating in Daisyworld before or since. In particular, while
the luminosity of the star, which increases over geological time-
scales, can be approximated as remaining constant while daisy
coverage changes, many perturbations of the Earth system occur
over much faster timescales. The response of organisms and
ecosystems to an impact of a sizeable meteorite into the Earth
would not be adaptation but obliteration and less dramatic
perturbations will occur over short timescales relative to biologi-
cal organisms and ecosystems. Some of these may be related to
geological processes such as earthquakes and vulcanism (Zielinski
et al., 1994). With regards to anthropogenic climate change, it is
not simply the total amount of CO2 that humans have emitted into
the Earth’s atmosphere but rather the rate at which this has
happened and consequently the speed of the change in radiative
forcing (Solomon et al., 2007). Other anthropogenic perturbations
can occur over even faster timescales and affect different elements
of the Earth system. For example humans’ impacts on the nitrogen
cycle have, post industrialisation, led to dramatic changes in the
global nitrogen cycle (Vitousek et al., 1997) and such effects need
to be considered alongside other processes such as land use change
and deforestation. Models of self-regulating mechanisms need to
be able to incorporate these processes or alternatively tell us when
regulation will fail. They also need to consider how the different
timescales operating within the Earth system interact to function
as a coherent self-regulating mechanism and what are the bounds
and limits for such interacting processes. As well as being sub-
jected to different timescales of perturbation, the Earth system is
composed of a multitude of interacting sub-systems that operate
over a wide range of temporal and spatial scales. The Earth’s oceans
have profound effects on climate and given that liquid water has
approximately four times the mass heat capacity of air, interactions
between oceans and atmosphere will feature lags, delays and other
behaviour associated with the interactions of processes interacting
over different timescales. This represents a fundamental challenge
in understanding processes such as the El Niño/La Niña-Southern
Oscillation (Battisti and Hirst, 1989).

It is appreciated that the biota will not only respond to changed
climate, but that such changes could attenuate or amplify initial
forcing. The development of a new generation of coupled general
circulation and dynamic vegetation models predict land ecosystems
and oceans act as net sinks for increased CO2 until critical thresh-
olds are reached at which point they will start to behave as net
sources (Cox et al., 2000). Consequently, rather than environmental
conditions remaining fixed while life adapts to a perturbation, the
relaxation to a steady state is instead a moving target with biotic
effects continually moving environmental conditions. Depending on
the particular elements of the Earth system of interest, the oscilla-
tions and progress towards the steady-state values may be more
important than the steady-state values themselves.

Time dependencies have been examined in Daisyworld pre-
viously (Zeng et al., 1990; De Gregorio et al., 1992; Wood et al.,
2006). However these have all proceeded on the basis that the
timescales of certain processes have already been determined. In
particular the increase in luminosity occurs over the very longest
timescales. Other timescales such as the rates of daisy removal
and establishment and the response of environmental variables
(such as temperature) to changes insolation and albedo can
remain implicit.

In this study we make explicit these timescales and explore
the self-regulating mechanism as they are relaxed. Our motiva-
tion in doing so is to assess the robustness of self-regulation and
consequently how it may be applied to the analysis of elements of
the Earth system. To begin, we reintroduce Watson and Lovelock’s
(1983) Daisyworld model in Section 2, and identify the model
timescales in Section 2.1. Here we show that by making the
relevant timescales explicit and make comparisons with time-
scales of similar processes on Earth. We are able to eliminate the
time dependance of global temperature and daisy coverage by
instead solving for their steady-state values. Following Hankin
and Mitchell (2011), we eliminate the need to explicitly include
bare habitable ground. However, rather than parametrising infil-
tration between daisy species, we further separate the timescales
associated with changes in daisy coverage and begin analysis
when the daisy growth process occurs on much shorter time-
scales than daisy removal. Solutions to this model in Section 2.2
highlight some aspects of the original Daisyworld model such as
the decrease in temperature with increased solar forcing and
hysteresis loops. These solutions represent limiting cases, and are
exploited in Section 2.3 to relax the previous assumption of
separated timescales and produce illuminating analysis of the
model response to increased rates of external forcing and instan-
taneous shocks. The onset of temperature oscillations due to
increased heat capacity and the impact of seed diffusion rates,
and effects of local seeding are also explored.
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2. Daisyworld

The original equations governing Daisyworld allow sites to be
bare with albedo Ae or to have one of two occupied states; b or w

denoting the presence of a black or white daisy with albedo Ab

and Aw, respectively. Using a as the fractional coverage of black
and white daisies, and x for bare ground, we can write the
normalisation condition

abþawþx¼ 1: ð1Þ

Daisies proliferate by seeding sites in state x at a temperature
dependant rate bðTÞ, and sites revert to being empty at a rate g,
the constant death rate. We first consider a zero-dimensional

model in which spatial distributions and non-uniformities are
not explicitly resolved; seeding therefore occurs globally. The
change over time in the coverage of the daisies is written as a pair
of differential equations

dab

dt
¼ abðxbðTbÞ�gÞ, ð2aÞ

daw

dt
¼ awðxbðTwÞ�gÞ, ð2bÞ

where Tb and Tw are the local temperatures of the black and white
daisies, respectively, the importance of which is discussed shortly.
Next, we describe the time evolution of the mean global tem-
perature, T, as that of a black body with heat capacity C, heated by
insolation L

C
dT

dt
¼ Lð1�AÞ�sT4, ð3Þ

where A is the mean albedo abAbþawAwþxAe. The heat capacity
term is of interest in investigating the co-evolution of environ-
ment and biota in time, which may lead to oscillations (Nevison
et al., 1999; Fernando and Poveda, 2009). The exact form of this
heating is commonly found to be unimportant to the fixed point
dynamics of the model (Wood et al., 2006). As such, this expres-
sion is commonly replaced by the linearised Stefan–Boltzmann
equation to assist analysis

C
dT

dt
¼ Lð1�AÞ�sT3

eq T , ð4Þ

where Teq is the steady-state temperature of a bare planet (x¼1).
For simplicity, we replace T, C and L with their dimensionless
counterparts, normalised by the factor sT3

eq.
Finally, the minimal ingredient for self-regulation to emerge

from this model is that the black and white daisies must be
differentiated by their local temperatures. For finite diffusion
rates, this property will emerge due to gradients in the absorption
of heat between black and white daisies. Watson and Lovelock
(1983) assume that all daisies in the black or white populations
experience the same local temperature, given by

Ti ¼ TþqðA�AiÞ, ð5Þ

which ensures the mean global temperature T ¼ abTbþawTwþxTe,
where q parametrises the departure of local temperatures from the
global mean. Given finite rates of diffusion of heat, the black daisies
are slightly hotter and the white daisies are slightly colder than the
global temperature. As q increases, the amount of insulation
between the daisy fields increases and so the temperature difference
between black and white daisy populations increases. Negative
values for q, as well as being thermodynamically implausible,
destroy homeostasis as we will show later.

2.1. Separation of timescales

Thus far this description of the Daisyworld model has not yet
made any assumptions about the timescales over which these
competing processes take place. In terms of the parameters
introduced so far, we have four distinct timescales;
tg ¼
1

g

Daisy removal
tb ¼
1

bðTÞ

Daisy establishment
tH ¼ C
 Mean temperature change
tL ¼
dL

dt

� ��1
 Insolation change
Watson and Lovelock (1983) assume zero heat capacity in
Daisyworld. For a fixed luminosity, any change in the albedo of
the planet produced an instantaneous change in temperature. For
greater clarity, we refer to this convention as being in the limit
tH 5tg,L. Changes in global temperature happen faster than any
other element. Consequently, changes in the albedo due to g
and changes in insolation L occur sufficiently slowly that the
model is always in a state of radiative equilibrium, and the
global mean temperature, T, can be defined as the steady-state
temperature

T ¼ Lð1�AÞ, ð6Þ

where we have substituted our dimensionless T and L. At the
other end of the spectrum, Watson and Lovelock assumed that
changes to insolation occur so slowly that it may remain fixed
while all other variables are numerically integrated to steady
state. Therefore, tLbtg,H . Now as well as reaching radiative
equilibrium, the daisy turnover processes are also able to
achieve a steady state between adjustments in L. In this section
we determine the nature of the steady state with these
assumptions.

On Earth, the separation between abiotic forcing timescale tL

and abiotic relaxation tH is reasonable. While there are a number
of processes which may contribute to this abiotic relaxation,
operating over a range of timescales, they are rapid compared
to changes in external forcing. Due to it’s mass, ocean tempera-
ture lags behind changes in external forcing by � 103 years
(Battisti and Hirst, 1989), while the response of the cryosphere
range from decadal variance in glacier extent to millennial
changes in ice sheets (Goodison et al., 1999). In contrast, abiotic
forcing processes which influence the surface temperature can be
shown to occur on the very longest timescales; fluctuations in the
luminosity of the sun are sufficiently small to be neglected except
over � 109 years, and the effects of secular cooling of the Earth is
only felt over comparable timescales (Anderson, 1989).

On the other hand, the timescales associated with changes in
the biota are less clear, and the extent to which the separation of
timescales described here can be justified is a limitation of the
Daisyworld model. The response of the biosphere to changes in its
abiotic environment range over ecological time, from tens to
hundreds of years for different stages of ecological succession to
evolutionary processes that can occur over geological timescales.
As well as the distribution and abundance of species changing in
response to environmental change, the frequency of alleles in
biological population can also change and so evolution can be an
important process. The original Daisyworld featured life forms
with fixed traits and no capacity for evolution. Subsequent studies
relaxed this assumption and explored evolutionary dynamics
with the conclusion that the behaviour of the model and its
homeostatic behaviour is largely preserved (Lovelock, 1992;
Lenton, 1998). Our analysis is limited to the original DW and so
we do not include adaptation in our model.

In the following sections we examine the effects of relaxing
these assumptions.



Fig. 1. For q40, we can see the trivial fixed points are unstable. Initial conditions

in their vicinity instead approach the attractive central fixed point leading to self-

regulation. Here, we have set L¼1 and intuition tells us this should correspond to

ab ¼ aw ¼
1
2. For qo0, the picture is inverted and the only attractive fixed points

are those corresponding to extinction of one species.

Fig. 2. The geometry of self-regulation in Daisyworld for a growth function which

always satisfies bðTÞ40, allowing the separation of timescales g=bðTÞ-0. The

onset, and width of the regulating region is determined by the limits of the effect

of Daisies on the global temperature, L� and Lþ , given in Eqs. (11a) and (11b).

Beyond these, no further changes can occur to planetary albedo. Outside the

regulating range, bðTbÞabðTwÞ, leading only to trivial fixed points corresponding

to extinction of one daisy type.
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2.2. Fixed points and regulation

The following is a brief derivation of the model fixed points,
following a similar approach to (Saunders, 1994; Wood et al.,
2008). Inspecting Eqs. (2a) and (2b) reveals the condition for a
fixed point to be where both differential equations return zero

abðxbðTbÞ�gÞ ¼ 0, ð7aÞ

awðxbðTwÞ�gÞ ¼ 0, ð7bÞ

which leads to a number of trivial fixed points such as both
species b and w extinct, ab ¼ aw ¼ 0 or a single extinction such as
ab ¼ 0 and aw ¼ 1�g=bðTÞ. Initially, we are interested in solutions
with ab40 and aw40 which clearly only occur together for
bðTbÞ ¼ bðTwÞ. Here, our exact choice of b becomes relevant,
although we may make some generalisations. If b is chosen to
be a symmetric function with a single maximum at T ¼ Topt, or q

is sufficiently small that it can be approximated parabolic in the
vicinity of Topt, we can write this condition as

Topt�Tw ¼ Tb�Topt: ð8Þ

At this point, we replace the albedos Ab,Ae and Aw by their
commonly chosen values of 1=4,1=2 and 3=4, and specify
Topt ¼ 1=2. Substituting expressions for the local temperatures
gives the black daisy population at this fixed point to be

ab ¼
1

2
�

L�1

L�q
�

g
bðTb,wÞ

: ð9Þ

This fixed point is of great interest as it corresponds to a
temperature T � Topt. As we will show, this model shares the
essential features of previous Daisyworld models in which this is
an attractive fixed point. Consequently the model will self-
regulate in that the temperature is maintained approximately
constant over a range of insolation L.

Watson and Lovelock employ a fixed death rate which pro-
duces a steady turnover of daisies. We further simplify the model
by assuming this turnover to occur on sufficiently long timescales
compared to growth such that no significant fraction of bare
ground exists at any time. This corresponds to the limit of rapid
daisy colonisation compared to removal, tb5tg or g=bðTbÞ-0
and ensures x-0. The model is then reduced to a two-state model
in which the surface of the planet is covered by a mixture of only
black and white daisies with no bare ground. This limit is only
sensible providing bðTb,wÞ40 (which is surely the case where
T � Topt). It is important to note that in doing so, we constrain our
analysis away from some population effects which hinge on the
relationship between establishment and removal. However, this
reduction will be found to facilitate very simple, yet highly
general analysis of a number of other effects. We have now
identified and separated all four relevant timescales according to

fastest
tH,b ��� tg ��� tL

slowest:

The basin of attraction for this point must assume 0oabo1
which we denote with:

L�rLrLþ , ð10Þ

L� ¼
2þq

3
, ð11aÞ

Lþ ¼ 2�q: ð11bÞ

In this range, the behaviour of Eq. (2a) is sketched for typical
parameter values in Fig. 1. Having determined the black daisy
population as a function of L in Eq. (9), this result can be
substituted into the definition of T in Eq. (6) along with the
normalisation condition to yield the global mean temperature

T ¼

3

4
L LrL�,

Lð1�qÞ

2ðL�qÞ
L�rLrLþ ,

1

4
L LZLþ :

8>>>>>>><
>>>>>>>:

ð12Þ

The change in global temperature for a range of luminosity is
shown in Fig. 2. Note how the decrease in temperature between
L� and Lþ is parametrised by q.

The limit tb5tg is useful in providing a transparent analysis,
but requires a different treatment if the function chosen for bðTÞ is
allowed to be zero. Indeed, the original Daisyworld model uses a
parabola, cut off at the axis to ensure bZ0. For greater generality,
let bðTÞ be a function which is positive in the range T�oToT þ

but zero everywhere else. Following Ashby (1960) we call this the
essential range as it is the range of environmental conditions that
are essential for life. Outside this range, we have a lifeless planet
with T ¼ AeL, while within the allowed temperature range, the
model behaves exactly as discussed. This leads to some interest-
ing consequences, such as hysteresis loops shown in Fig. 3.



Fig. 3. Global temperature, T, with increasing (solid) and decreasing (dashed)

insolation, L. In contrast with Fig. 2, the growth function bðTÞ is only non-zero in

the range T�oToT þ . Self-regulation can only emerge in this range, resulting in

hysteresis. Once in a regulating state, the system is subject to the limits of

regulation as before.

Fig. 4. The onset of regulation is abrupt, and occurs at a critical value of tg=tL .

Above this limit, no regulation may occur while below this limit, regulating

solutions are found in the shaded region, down to the limit where tg and tL are

fully separated. Dashed lines indicate the region where bðTÞ40, outside which

only fixed points corresponding to extinction exist.

I.S. Weaver, J.G. Dyke / Journal of Theoretical Biology 313 (2012) 172–180176
2.3. Relaxing assumptions

In this section we examine the impacts of relaxing three
important assumptions. These are very slow driving (changes to
luminosity occur so slowly that it remains fixed while Daisyworld
relaxes to a steady state), zero heat capacity (any change in the
radiative balance of Daisyworld produces an instantaneous
change in global temperature) and maximum seed diffusion
(daisy seeds can establish themselves anywhere on the surface
of the planet and consequently there are no spatial factors in how
daisy coverage changes).

2.3.1. Slow driving

So far we have assumed that changes to insolation occur over
the very longest timescale in the system. i.e. tL is so large that
insolation is fixed while daisy coverage and temperature change
towards their stead states values. This is the same assumption as
in Watson and Lovelock’s original model and many subsequent
studies. In this section we relax this assumption, represented
schematically below.

fastest
tH,b ��� tg2tL

slowest:

tH,b are the timescales for rates of heating and daisy establish-
ment, respectively. It is assumed that these occur so fast as to be
instantaneous processes when compared to tg, the rate of change
of daisy removal and tL, the rate of change of insolation. While
previously tg and tL were taken to be separated, we explore the
model’s behaviour as the external driving on the system
increases. We do this by keeping tH and tb fixed as the fastest
timescales (they are sufficiently small that the model exists in a
state of constant radiative equilibrium, and colonisation of bare
ground is rapid) and evaluate the model’s stability as the separa-
tion between tg and tL decreases. We have already introduced
changes in insolation and secular cooling as examples of driving
forces, and observed that they occur only on the very longest
timescales. However, it is simple to imagine planets where this is
not the case, for example where the orbital period is sufficiently
long and elliptical.

The first step in reducing the problem is to assume that the
time evolution of the daisy coverage can be represented by a
linear relaxation (or equivalently a Newtonian relaxation)
towards the insolation dependant fixed point value, an

b,wðLÞ, found
with Eq. (9). This allows us to avoid making assumptions
about the form of b and in particular sidestep issues arising from
non-linearity in the daisies’ response to temperature. We then
introduce the daisy removal timescale, tg, in order to examine
how the evolution towards the fixed point changes as tg increases
and so daisy removal becomes slower with respect to the change
in insolation

dab

dt
¼

1

tg
½an

bðLÞ�ab�, ð13aÞ

daw

dt
¼�

dab

dt
: ð13bÞ

As shown in Fig. 4, the behaviour of this linearised system is
barely distinguishable from the solutions given in Eqs. (2a) and
(2b). We are only able to formalise the evolution of this system in
terms of functions that are quite unwieldy, and no analytic
solution exists. However, we find that the onset of homoeostasis
is abrupt and occurs at the critical point tg=tL ¼ Rcrit, where Rcrit is
some function of q, and the essential range. This threshold
confines the system to either extinction, or self-regulation. With
a fixed and very fast establishment rate, increasing tg slows down
the daisies’ responses to changing insolation. This is equivalent to
insolation continuing to increase while the daisies are moving
towards a fixed point. The rate of change of insolation can be so
great as for the system to be driven out of the essential range. The
system is most sensitive to changes in tL (Rcrit-0) at the limits of
regulation where fixed point temperatures are close to the
maximum of the growth function. As white daisy coverage
approaches the maximum, there is less ‘head room’ to accom-
modate faster changes in insolation and so any increase away
from the very longest of timescales for tL results in the collapse of
homeostasis and extinction.

Adjustment of the timescales of certain processes, and its
effects on the Daisyworld self-regulating mechanism, has been
considered implicitly in a number of previous studies. Luminosity
timescales were relaxed in Dyke et al. (2007) and McDonald-
Gibson et al. (2008) who developed zero-dimensional agent based
versions of Daisyworld in which the population of daisies change
during changes to external perturbations. self-regulation was
observed under such conditions. Our analysis has shown that
while it is not necessary for luminosity to remain fixed as the
system evolves to a steady state, relaxing this assumption will
inevitably reduce the region of luminosity over which the system
will be stable. As De Gregorio et al. (1992) and Wood et al. (2006)
previously noted, the size of the basin of attractor will change as
luminosity changes. Such sensitivity is most pronounced at the



Fig. 5. The decay of fluctuations in T over time is shown for the limiting cases of

very large, and very small tg . For tgbtH , the decay time is minimised tdamp: ¼ tH ,

while in the other extreme, it is maximum at tdamp: ¼ 2tH . All intermediate

timescales lie in the shaded region.

Fig. 6. For sufficiently small tg=tH , oscillations occur along with the exponential

damping. Here they are shown for tH¼1, tg¼0.1 for the case of L¼1.
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limits of self-regulation, regions that are characterised by large
hysteresis loops.

2.3.2. Zero heat capacity

In the previous section, we explored the effects of relaxing the
assumption that changes to insolation were very slow and
consequently how robust the self-regulation in the model was
to greater rates of external driving. In this section we examine
how the model responds to sudden perturbations or shocks.
A shock can be thought of as a fluctuation, driving a system away
from its current state on timescales much shorter than any
dissipation can occur. Such fluctuations may originate within, or
outside the system under consideration, and are not necessarily
small. Planet Earth has been subjected to numerous such events
of wildly differing magnitudes; events such as comet impacts, or
changes in atmospheric composition by volcanic out-gassing or
anthropogenic emission of greenhouse gasses occur on dramati-
cally shorter timescales than any dissipation, resulting in an
instantaneous perturbation to abiotic factors (Solomon et al.,
2007). Similarly, life may be subject to similar perturbations,
whereby the composition of the biota undergoes rapid change;
forest fires and anthropogenic land use change for example occur
on shorter timescales than reorganisation of the biosphere may
otherwise occur.

In this section, we examine the role of timescales tH and tg in
dissipating such shocks, while assuming tL is sufficiently large
that L may be held constant, and tb is small such that colonisation
is rapid, as before. This can be represented schematically by
evaluating the model’s behaviour as the separation between tH

and tg changes

fastest

tb ��� tH2tg ��� tL

slowest:

As in the previous section, we approximate the time evolution of
ab,w by a linear approach to the respective temperature-
dependant fixed point values, but now we perturb the model
temperature by a temperature fluctuation of size DT away from
it’s steady-state value. By further approximating the parameter q

to be small, and departures of T from it’s fixed point value,
Tn given by Eq. (12) to be small, we find the time evolution of a
and T can be found in closed form, although the exact result is
somewhat unwieldy. Fortunately we can gain useful insights into
the behaviour of the model simply by studying the leading
exponential

TðtÞ � Tn
þDTe�t=tdamp : ð14Þ

where tdamp: is the characteristic decay time of fluctuations in T,
given by

tdamp: ¼
2tH

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2L

tH

tg

r , ð15Þ

which may also be extracted very easily by way of linear-stability
analysis about the known fixed points. Eq. (14) results in an
asymptotic approach to the fixed point in T. This expression gives
us two important insights; first, we have the exponent for
exponential decay of fluctuations in T. The rate of decay of
fluctuations is maximised by our original separation of time-
scales, where heating occurs on the shortest timescales, and
tgbtH . In this case, we have tdamp: ¼ tH and the system relaxes
back to the steady-state value as quickly as possible. In the
opposite limiting case of slow heating, the decay rate is mini-
mised, and tdamp: ¼ 2tH . These results are illustrated in Fig. 5. Our
second observation is that the sum of terms under the square root
may be negative, resulting in a complex exponent and therefore
oscillations. We can determine the limit of timescales which
marks the onset of oscillations in T to be

tg
tH

o2L: ð16Þ

Beyond this, damped oscillations occur with period tosc

tosc: ¼
4ptHffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L
tH

tg
�1

r : ð17Þ

This is illustrated by Fig. 6, along with oscillations in daisy
fractions in Fig. 7. This formulation of oscillations is consistent
with Nevison et al.’s (1999) observation that oscillation period
increases roughly linearly with the heating timescale, or equiva-
lently the model heat capacity. Such oscillations have been
examined numerically before (De Gregorio et al., 1992; Wood
et al., 2006). Oscillations and chaotic behaviour in Daisyworld
were reported by Zeng et al. (1990), a study that has since been
shown to be fundamentally flawed (Jascourt and Raymond, 1992).
Oscillations in environmental variables was reported in
(McDonald-Gibson et al., 2008). These emerged from population
dynamics whereby selective sweeps moved through the popula-
tion as environmental conditions changes. This is equivalent to
increasing the timescale associated with daisy establishment and
so slowing down the speed of response of the biological compo-
nent in the control system.



Fig. 7. Oscillations occur not only in temperature, but also in the daisy coverage,

and therefore mean albedo. Oscillations are shown here in T and A, with arrows

indicating the advancement of time. The white dot indicates the initial conditions,

while the solid dot shows the long time fixed point solution. Relative timescales

used are tH=tg ¼ 10 for the case of L¼2, identical to values used in Fig. 6.

Fig. 8. Comparison of numerical simulation of the simplified two-dimensional CA

with the corresponding mean-field prediction finds near-perfect agreement for all

q, shown here for q¼0.3. Errors are no greater than the size of plot points.
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2.3.3. Maximum seed diffusion

Zero-dimensional Daisyworld assumes that diffusion of seeds is
sufficiently rapid that the species are well mixed and only the
abundance of a daisy type limits its rate of growth. However, the
biosphere is not well mixed, and local seeding clearly plays a
significant role in the distribution of the biota. Ecological succession
of newly habitable, or recently vacated ground occurs across a broad
range of timescales, from r-selected pioneering grasses over decades,
to K-selected plants and trees (MacArthur and Wilson, 1967).
Introducing spatial factors such that daisies can only reproduce by
seeding into neighbouring empty bare areas seeding begins to relax
this assumption. The first spatially explicit Daisyworld was formu-
lated by von Bloh et al. (1997) in which the original zero-dimensional
model was translated onto a two-dimensional lattice in which each
square or cell could be in an empty, black daisy or white daisy state.
The update rules for each cell in this cellular automaton are
probabilistic; an occupied cell will turn into an empty cell, with
probability gDt, while occupied cells may seed empty cells in their
seeding neighbourhood with probability bðTÞDt. In this cellular
automata Daisyworld the diffusion of seeds from daisies to bare
ground for establishment was limited to local interactions; a bare cell
would be seeded by one of its occupied immediate neighbours.

Heat diffusion was modelled explicitly with the relevant
transport equations, allowing the non-uniform temperature field
to emerge, parametrised by the diffusion coefficient rather than
the choice of q. von Bloh et al. (1997) make some progress in
reconciling this model with the original Daisyworld model; a
Taylor expansion is used to illustrate that the discretised Daisy-
world shares key behaviour with the zero-dimensional model
under the homogeneous (or mean field) approximation. Similarly,
the behaviour of our simplified model can be recovered from a
two-state cellular automata iteration of the model, where cells
occupy either state b or w having albedo Ab or Aw, respectively. An
updating rule which can be used to recover Eq. (9) under the
mean field approximation is to randomly select, and update site i

according to

PðbÞi ¼
nb,ibðTbÞ

nb,ibðTbÞþnw,ibðTwÞ
, ð18aÞ
PðwÞi ¼ 1�PðbÞi, ð18bÞ

where PðbÞi and PðwÞi are the local probabilities of a site being
replaced by a black or white daisy, respectively, and nb,i and nw,i

are the numbers of black and white daisies in the neighbourhood
of i, typically chosen to comprise only the four nearest adjacent
cells. The separation of tg and tb is satisfied as removal occurs
sufficiently slowly that only one site is ever removed in an
iteration, and is always occupied before the next removal.

It is simple to see that regulation emerges from this cellular
automaton under the mean field approximation. Here, we approx-
imate the neighbourhood of individual sites to be that of the
global average; rather than local effects, sites are influenced only
be a mean field (the classic example of an application of mean
field theory is to the Ising model. For an example see Bar-Yam,
2003). In this instance we set the local populations, n, to the
global mean populations, a, multiplied by the number of neigh-
bouring lattice sites, z. Steady states then exist where we have no
net change in the populations of black and white daisies, a
condition which is expressed by

PðbÞzaw ¼ PðwÞzab: ð19Þ

Substituting in the normalisation condition gives

abð1�abÞbðTbÞ ¼ abð1�abÞbðTwÞ, ð20Þ

which only has non-trivial roots for bðTbÞ ¼ bðTwÞ, a familiar
observation made earlier in Eqs. (7a) and (7b), and can be solved
under the same assumptions as previously. Lenton and Van Oijen
(2002) implement such a cellular automaton with highly non-
linear versions of Eqs. (18a) and (18b). This alternative formula-
tion does not yield regulating steady states of this nature,
highlighting the importance of our choice of updating rules. A
comparison of the mean field solution with the numerical result is
shown in Fig. 8.

Relaxing the assumption of maximum seed diffusion intro-
duced spatial variations into our model. Applying mean field
theory we were able to produce very accurate approximations of
numerical results. The mean field approximation becomes exact
in the limit of very high-dimensional, or highly connected
systems. In these cases, each site genuinely does experience the
mean field of all other sites. However, the approach enjoys much
success in even two-dimensional and three-dimensional systems.
It correctly predicts the geometry of regulation shown in Fig. 8.
The precise agreement is surprising. Mean fields commonly
extract the gist from spatially embedded systems, though fail
in the details. The implication of this result is that either the
long-range correlations reported by Wood et al. (2006) which
would break the mean-field assumptions do not exist, or that



Fig. 9. Comparison of the mean field picture where spatial correlations are

minimised (a), and a simulated local seeding where strong spatial correlations

are evident (b). Black and white daisies are regions representing the two daisy

types and x and y are spatial dimensions. While Fig. 8 illustrates exact agreement

between the mean field approximation and simulation of homeostasis, it would

fail in predicting spatial correlations.
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while long-ranged correlations exist, they are irrelevant to the
ability of the model to exhibit homeostasis. As Fig. 9 shows our
mean field approximations do not capture the spatial correlations,
which may be important for observing some strong spatial effects,
such as desert formation, where the local temperature departs the
essential range (Ackland et al., 2003). This point may only be
addressed by the development of an exact solution to the
spatially embedded Daisyworld, incorporating the possibility of
spatial correlations. Doing so may shed light on the role of local
seeding and the resulting correlations in dissipative systems, such
as the latent heat exchange field investigated by Baldocchi et al.
(2005).
3. Conclusion

Our analysis of a simplified version of the original Daisyworld
model has demonstrated that some of the original assumptions
relating to timescales can be relaxed and self-regulation is still
observed. From Watson and Lovelock’s (1983) original mathema-
tical formulation of the zero-dimensional Daisyworld model, we
have identified the four competing timescales. They are asso-
ciated with changes in external forcing or insolation, equilibration
of global temperature, and daisy turnover that includes establish-
ment and removal. By making explicit a separation of timescales
between external forcing, and internal processes, and further
assuming establishment to occur much more rapidly than
removal, the long time behaviour of the model can be expressed
very simply. In this reduced model, it is simple to see that self-
regulation may emerge, as well as to identify the limits over
which self-regulation can occur. Indeed, the essence of the
original model remains entirely intact. Of course, in applying this
significant reduction, we constrain ourselves from investigating a
number of population effects which may be introduced by slower
rates of population establishment. However, this simplified model
gave us keen insights as we depart from other simplifying
assumptions. First, we relaxed the assumption of a separation
between the external forcing and daisy turnover timescales. This
is equivalent to increasing the rate of change of luminosity.
Regulation is found to occur providing these timescales are
related by a critical ratio, beyond which the self-organisation of
daisy coverage is slow, and the population is driven to extinction
before significant regulation occurs.

Next, the assumption that the global temperature equilibrates
on much shorter timescales than daisy turnover was relaxed. This
is equivalent to introducing heat capacity such that global
temperatures evolve towards a steady state in response to
changes in radiative forcing. Despite this generalisation, we found
a closed form expression for the time evolution of global tem-
perature when perturbed from its steady-state value. As expected,
the perturbation decays exponentially, though surprisingly, a
more rapid response by the daisy population enables fluctuations
to persist for significantly longer. At the threshold where decay
time is exactly doubled, we find the onset of temperature
oscillations.

Finally, we addressed Watson and Lovelock’s (1983) assump-
tion that there are no spatial effects in the daisy seeding process
by introducing local seeding in a cellular automata version of the
model. Through appropriate choice of probabilistic updating
rules, we can recover the exact same fixed points as in the
previous case through a mean field approximation. While local
seeding clearly results in very strong correlations which are not
accounted for in a mean field approach, near perfect agreement
with simulation indicates such correlations have no impact on the
regulatory fixed points. Given that mean field approximations
typically perform better with increasing dimensions, these results
along with the rest of our analysis of timescales are promising in
that they suggest how important dimensions of interaction of the
very complex Earth system can be captured in relatively simple
models that will be mathematically reducible and so able to
provide important insights into the real world.
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