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1. INTRODUCTION

Let By be a semigroup ring over a fixed algebraically closed field % of charac-
teristic 0, i.e., By = k[t" | n € H] where ¢ is transcendental over £. The following
work is devoted to the smoothing question for By and related problems. We say
By can be smoothed if there exists a deformation of By over R:

A———>BH

o]

R—k

s.t. R is a Noetherian k-algebra without zero divisors and the special fiber A/m A4
is isomorphic to By for some maximal ideal my of R while the generic fiber is
smooth over the fraction field of R.

Severi conjectured that every variety is the “limit” of nonsingular varieties.
Latter day geometers took this to mean every variety can be obtained as the
specialization of a nonsingular variety. Doubt was shed on this conjecture by an
anonymous correspondent [18] who provided an example of a five-dimensional
projective variety which cannot be smoothed in a fixed embedding. Grauert and
Kerner [5] have constructed a series of nonsmoothable varieties in dimension »,
provided that #» >> 4 while Rim [15] constructs a rigid isolated singularity on
an irreducible rational surface. At that time the question was still open for curves.
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Mumford [11] has recently given a nonconstructive proof that shows most curves
cannot be smoothed. Pinkham [12] has given the example of m lines through the
origin in general linear position in d space which is not smoothable provided
that m > d.

The smoothability of monomial curves (i.e., irreducible affine curves with G,,
action) including the semigroup ring subcase remains an open question. In
Section 4 of the following work we classify those numerical semigroups H for
which By is negatively graded (see Section 4.0 for definition and details). In
Section 5 we describe a method which allows us to smooth a class of semigroup
rings including those which are negatively graded. Thus by the work by Pinkham
[12], given a negatively graded semigroup H there exists a smooth projective
curve X with base point x s.t. H occurs as the order of poles at x of rational func-
tions on X, regular on X — {x}. Then if X is nonordinary (i.e., H is not of the
form {0,¢g + 1,g + 2, g + 3,...}), the point x is a Weierstrass point for X with
gap sequence specified by H. In the final section we improve a formula by
Rauch [13] on the dimension of a subspace of the coarse moduli space .#, ; .

2. PRELIMINARIES AND THE STANDARD Basis For H

Let H be a subsemigroup of the additive group N of nonnegative integers.
H is called a numerical semigroup if the greatest common divisor of the elements
of H is 1, so that only finitely many positive integers are missing from H. Such
elements are called the gaps of H and the number of gaps is called the genus of H,
denoted by g(H). The least positive integer ¢ such that ¢ + N C H is called the
conductor of H, denoted by ¢(H). The least positive integer m in H is called the
multiplicity (or the transversal generator) of H. Throughout this paper H will
denote a numerical semigroup, % an algebraically closed field of characteristic 0.

DerinrrioN 2.0.  Let By be the subring of the polynomial ring %[f] generated
by the monomials t*, 4 € H. By, is called the semigroup ring of H.

Where no possible confusion can arise we write B for By . Let m denote the
maximal ideal of B generated by t*, he H — {0}. We make the following
observations.

ProposiTioN 2.1. Let H be of multiplicity m.

(i) B = k[t] where A denotes the integral closure of A in its total ring of
ractions and g(H) = dim B/B.
&

(1) B s smooth over k if and only if H =N. If not, B has anisolated singularity
at m and m = e(B,,) (the multiplicity of the local ring).

Let H* denote the positive integers of H. We construct a generating set called
the standard basis for H, noted Sy , inductively as follows:

481/48/2-16
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Let ny = m. If my << -+ < n; have been chosen and i <m — 1 let n;; =
min{n € H* |ne H — |);¢; {n; + mN}}, i.e., n,, is the least integer in H having
m-residue distinct from those of n, ,..., n; . Unless otherwise stated the residues
throughout are assumed to be modulo m.

ProposITION 2.2. Let Sy ={m =ny <m < - < n, 4} be the standard
basis for H. Then

() e(H) =ty — mo + 1. ()
(i) g(H) = El [n;/n] where [x] denotes the greatest integer < x. 2)
(i) Let I(H) = [H: c(H) + N]. Then I(H) — mf [y — mijng] + 1. (3)

Proof. (i) Suppose n >=n, ; — ny + 1. Since the elements of Sy form a
complete residue system modulo m, we can write 7 = n; + am where 0 < j <
m—1, aeZ. If a <0, n <n; —m <m,_; —ny,+ 1, a contradiction. So
a > 0and ne H. Now n,,_, — ny ¢ H since n,,_, is the least integer in H having
given m-residue. Hence

oH) =nmy_y —ny + 1.

(if) Since Sy is a complete residue system modulo m,
m—1

) =Y, #neN—Hin=n)

m—1
= Z [m/m,)-
i=1
(iif) Similarly, if /(H) denotes the number of elements in H < the con-
ductor of H,

(H) =Y #neH—(c +N)|n=n}

=#a=0lam<c— 1} + Y #a=0|n +am<c—1}

izl

_—_1+[_”m—_llﬂ_]+zl+[nm_1——no—m]

n() x>l nO
m—1
M1 — W5
14 [,
=0 Mo

Remark. We have defined the standard basis relative to m, the multiplicity
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of H. The same results (as in 2.2) hold if we similarly construct a complete
residue system modulo p, for any positive integer p of H. In applications, if it
is more convenient to consider a standard basis relative to p we shall do so.

(2.3) A semigroup H is called symmetric if there is an integer ¢ s.t. ne H
if and only if ¢ — 1 — n ¢ H, equivalently if in the set {0, 1,..., ¢ — 1} there are
precisely as many elements of H as gaps so that ¢(H) = 2g(H). It is well known
that H is symmetric if and only if By, is Gorenstein (e.g., see [7]). We obtain the
following interesting characterization of the symmetric semigroup.

ProrosITION 2.4. The following statements are equivalent:
(1) By is Gorenstein;
(1) #yq = n; + Ny Whenever 1 <1 < m —2;
(ii) [End(H):H] = 1 whereEnd(H) = {ne N |n + H+ C H},i.e., trans-
lations of H.

Proof. (i) = (ii) Assume By is Gorenstein so that H is symmetric. The ¢
in the definition of symmetric must necessarily be the conductor of H. Then
neH if and only if n,, , —m —n¢H For 1 <i<m—2, ny—m¢H
entails #,,_, — n,€ H. Since #n,,_; is the least integer in H of given residue,
Ny = N; + n; for some n; of the standard basis. We see that n < <
o <my <My sothat j =m —i—1,ie, n,, =mn; + n, ,; whenever
1<i<m—2.

(ii) = (i) Assume the equalities of (ii). Since End(H) is itself a semigroup,
it suffices to see that n; — m ¢ End(H)for 1 <j < m — 2. (Note thatn,,_, —m =
¢ —1eEnd(H)since (¢ — 1) + H+ Cc 4+ N C H. Also (n,,_, —2m) +m¢ H
entails 7, —2m¢End(H).) But (m; —m) +n, ;_, =n,, —mé¢H for
1 <j<m—2 Hence End(H) = HuU {c —1}.

(iii) = (i) Assume [End(H): H] = 1. So see that B = By is Gorenstein
it suffices to show that the length of the B-module m~'/B is one where m =
(t" | ke H*). Now B is a graded k-subalgebra of &[] entails m™! is generated
by monomials #? s.t. p 4- H+ C H. Hence /(m~/B) = [End(H) : H] =1 and
By is Gorenstein.

3. MonomiaL Curves: THE COHOMOLOGICAL FuNcTor T

(3.1) Let G, denote the algebraic group over k& where the group law is
multiplication. Then an affine scheme V" = Spec(A4) has G,,-action if and only
if A is a graded k-algebra where the indexing set is Z, i.e., 4 = P wenco Ay -

DerFINITION 3.2. A monomial curve is an irreducible affine curve with G,,-
action.
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If H is a numerical semigroup the associated semigroup ring By is clearly
a monomial curve and since By = @,y k" is indexed by nonnegative integers,
By, is the affine cone over Proj(By). Once we fix a semigroup H we write B for
By and S for Sy .

Let S ={m=mny, < <mn,,}

fiy = X X; — Xg(i'j)Xr(i.g') C))
for 1 <7< j<m— 1 where

n; +n; = e("])m + Rr(;,5) - (5)
Set I equal to the ideal of P = k[X ..., X,,_;] generated by {f;}i<icicm_1 -

We define a k-algebra map ¢: kX, ,..., X, ;] = B by ¢(X;) = thifor 0 <{i <
m— 1.

Prorosition 3.3. The sequence
0—I1—->P->B—0

is exact. Furthermore, if we assign the weight n; to X, in P, then ¢ is a (degree 0)
homomorphism of graded k-algebras and I is homogeneous.

The proof is obvious since B is free over the principal ideal domain 4 = &[f]
and multiplication of the 4A-module generators {t*} is defined by (5).

(3.4) We will not attempt to give a precise definition of T* here. For
definition and details of 7% 7" one can consult Lichtenbaum and Schlessinger
[8]; for the full cohomological properties of T™* one should consult Rim’s
article “Formal Deformation Theory” [14] (note that our T plays the role of
Rim’s D?). We state here several important properties of T* that we will need
in later sections; see [14] for proofs of these assertions.

Taeorem 3.5. (1) If0—> M'— M — M" — 0 is an exact sequence of A-
modules, then

0— TYA|R,M')—~ TYA| R, M)— T%A | R, M")
— TYA|R,M'y— TA | R, M)~ TYA4 | R, M")
—> o> TA| R, M) —> T™(A| R, M)—> T"(A| R, M") — -

1s exact.
(2) Let S— R — A be ring homomorphisms. Then for any A-module M
we have the long exact sequence
0> TYA|R M)—TYA1S, M)~ TYR| S, M)
—TYA| R, M)—TYA}|S, M)— TR | S, M)
—> o> T™A| R, M) —> T™A| S, M)— TR | S, M) — ---.
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(3) Let P be a polynomial algebra over R and let 0 —1— P — A — 0 be
exact. Then

T4 | R, M) = Derg(4, M), (6)
TYA | R, M) = Coker(Derg(P, M) — Hom (I/I%, M)) (7
= the set of isomorphism classes of

R-algebra extensions of A by M.

CoRrOLLARY 3.6. (a) An R-algebra A is formally smooth over R if and only
if T(A | R, M) = 0 for every A-module M.

(b) Let R be Noetherian and A a local R-algebra of essentially finite type.
We denote by A the m-adic completion of A where m = the maximal ideal of A.
Then for any A-module E of finite type we have a canonical isomorphism

T4 |R AR4E)~>A4®, T(A|R,E).

CoRrOLLARY 3.7. Let R be Noetherian and A an R-algebra of finite type. Then
(a) Supp T4A4 | R, A) CSing(A4 | R) for all i > 0 where Sing(A | R) =
{x € Spec(A) | A is nonsmooth over R at the point x}.

(b) Suppose that A is smooth (over R) everywhere except at one closed point
x € Spec(A). We then have isomorphisms

TYA | R, A) ~ TYA, | R, A,) ~ TY(4, | R, 4,).

Remarks 3.8. We see (by 3.5(1)) that 7*( ): (4-mod) — (A-mod) defined
by T{M) = THA4 | R, M) is a cohomological functor; i.e., given a short exact
sequence of A-modules we get a long exact sequence on T

Similarly (by 3.5(2)) if we fix a target 4 and an A-module M, given a triple of
rings S — R -> 4 we get a long exact sequence on T%. We will often use these
results.

4. A CoMPLETE CHARACTERIZATION OF THE NEGATIVELY GRADED SEMIGROUPS

(4.0) Now suppose that we have a graded k-algebra 4 (indexed by Z) of .
finite type where we recall that & is an algebraically closed field of characteristic 0.
We can then find an exact sequence

0O——I-—P>24—0

where P = k[ X ,..., X,,] and weights n; € Z s.t. if we assign deg(X;) = », then
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@ becomes a (degree 0) homomorphism of graded k-algebras. In turn 7Y4) =
TYA | k, A) becomes a graded k-vector space via

TA) = D TY4),

= (B Coker(Dery(P, 4), — Homy(I/I?, 4),),

~ o< PO
so that

TYA), ~ the set of isomorphism classes of degree 0
graded k-algebra extensions of 4 by A( p),

where A( p) is the graded k-module obtained from A4 by shifting the degree by p;
le., A( P)n = Am—n .

We are interested in characterizing those monomial curves By for which
TYH), = TYBy), = 0. These are the so called negatively graded semigroups of
Pinkham [12]. For this purpose we describe another characterization of T(H).

ProposiTioN 4.1. Let k be an algebraically closed field, A a reduced k-algebra
of finite type. Then
TYA) = Coker(Der,(4, K) — Der, (4, K/A)), (8)
where K denotes the total ring of fractions for A.

Proof. The exact sequence 0 > 4 —~ K — K/4 — 0 gives us the exact
sequence

0> TYA |k, A) —~ TYA |k, K)— T4 | k, K|A)
> TYA |k, A) — THA | k, K).

Since £ is algebraically closed and A4 is reduced, 4 is generically smooth over &
(i-e., for any generic point p € Spec(4), A(p) = 4,/pA, is smooth over k).
Hence TY(A4 |k, K) = 0. Thus

TYA |k, A) =~ Coker(T¥A4 | k, K) — T°(4 | k, K/ A4))
=~ Coker(Der (A4, K) — Der(4, K/A)).

Unless otherwise stated m shall denote the maximal ideal of B generated by
{t* | h ¢ H*}, B the m-adic completion of B and K = k((t)) the fraction field of B.

COROLLARY 4.2. Let B = By and 0 — 1 — P — B — 0 be exact where P
is a polynomial algebra over k. Then

TYB), = Coker(Der (B, K), — Dery(B, K/B)), leZ. C)]
Hence dim,, TY(B);, = max{0, dim,(Der,(B, K/B), — 1)}.
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The proof is as above as we note that P is formally smooth over % and
Der,(B, K);, ~ Der,(k[t], K), is 1-dimensional.

(4.3) Before we state the main theorem of this section we need some nota-
tion and definitions. For a numerical semigroup H, let A(H) = [End(H) : H].
We say that H is an ordinary semigroup of genus g (denoted by H,) if \(H) = g;
equivalently if H = {0, g + 1, g + 2, g + 3,...}. We say that H is hyperordinary
if H = mN 4 H,where H,isordinaryand 0 < m < g.

Let X be a smooth projective curve of genus g, xe X and V = X — {x}.
Then we have an ascending chain of finite-dimensional k-vector spaces k =
I'(X, 0{x}) C I'(X, 1{x}) C --- C I'(x, n{x}) C --- where I'(X, n{x}) = {f € R(X) | f
is regular on V having a pole of order at most 7 at x}. By Riemann-Roch, we
know dim, I'(X, 2g — 1{x}) = gand dim; I'(X, n + 1{x}) — dim, I'(X, n{x}) < 1.
Hence between 0 and 2g — 1 there are precisely g integers s; << --+ <C s, called
the gap sequence for X at x for which there exists no rational function £, regular
on V, having a pole of order precisely s; at .

Let Hy , = {ne N | 3fek(X) regular on V, having a pole of order # at x}.
Thus n e Hy ,, if and only if I'(X, n — I{x}) C I'(X, n{x}).

Then x is an ordinary point if H\(X, g{x}) = 0,1i.e., Hy , ={0,g + 1,g + 2,..}.
So x is an ordinary point of X if and only if Hy , is ordinary. Otherwise x is
called a Weierstrass point of X.

(4.4) Throughout the rest of this section let Sy ={m =n; < n <
-+ < f,,_;} denote the standard basis for H where m = m(H), ¢ = ¢(H), and
B = By . Let B denote the m-adic completion of B where m = (¢* | he H)
and K = &((2)). Set E; = Dery(B, K/B), for each leZ. By dim(-) we mean
dimension as a k-vector space unless otherwise stated.

Lemma 4.5. For each lcZ, let G, ={ncSy|n--I1¢H} and R, =
{fisel|n; +n; + 1 ¢ H}. Associate each element f;; of R, with the vector V&9 =
(VEN,..., Vi) € k™ where m —= m(H) and

Vi = —efi, f) if & = 0and r(3, ) # 0
= —(e(i,j) + 1) ifk =0andr@f) =0
=2 ifh=1i=j
=1 ifk=iork —jandi #j
= —1 if k= 7(i,j) # 0
=0 otherwise.

Associate R, with the vector subspace of k™ spanned by {V -1}, Then dim TY(H), =
max{0, #G, — dim R, — 1}.

Proof. A typical element of E, = Der(B, k((2))/B), is defined by a vector
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(@9 sy @p_y) €k 5.t @; = O whenever n;¢ G, and a; + a; = €(3,]) ay + 4,4,
whenever f;; € R;. Thus dim, E;, = #G, — dim R, and the statement follows
from (4.2).

Lemma 4.6. (a) If H is negatively graded, then ¢ < n, + m. Consequently,
H is negatively graded if and only if #G, < 1 for all 1 > 0.
(b) If H is negatively graded, then n,_, < n, 4+ m. For the negatively
graded semigroup there is at most one gap between ny and n, + m.

Proof. (a) Suppose that ¢ >>mn, +m so that ¢ >n 4+ m -1 (since
ny +me H). Then setting p =¢—1 — (n, +m) we obtain p > 0. Now
c—1—(m+m)+ 2 =c— 14 (n, —m) > centails R, % &. Since G,
contains m and n, we have TY(H), +# 0, a contradiction. Hence ¢ < n, +m so
that R, = @ whenever p > 0 (since #; +n; +p > n +m + p > ¢). Thus
dim E, = #G, and our assertion follows.

(b) This is clearly the case for m < 3 so assume m > 3. Suppose n,, , =>
n, +msothatn, , >n +m Setp =mn, , — (n, +m) > 0. Then p +n, ¢
H entails p +me H, ie., n, 5 =n, + n; for some n;€Sy . Set ¢ =n,,_; —
n, > m. If ge H, then n,_; = n, + n, for some n, € Sy . In that case G"rm
contains both #; and n;,, contradicting (2). Hence ¢ ¢ H. Then G,_,, contains
both m and #, , again a contradiction. Hence n,,_, << n, -+ m. Therefore n, ...,
#im-o and an m-multiple must occur between », and n;, -- m so that there can be
at most one gap for H in this interval.

TueoreM 4.7. Let H, g = g(H), A = AH) be as above. H is negatively
graded if and only if H is of one of the following types:

(1) H is ordinary;
(1) H is hyperordinary;
(iii) excluding the ordinary and hyperordinary cases, given g and \ with

2 < A < g — 2 there exists a unique negatively graded semigroup (denoted by H,, ,)
of given g and X. Namely,

T T —
Hy,={0,g.,20—A—1,2g— X2 —A+1,2g —A+2,.).

If A = 1 we have two possibilities; by abuse of notation we write:

—

H,;=1{0,g,g+1,.,2¢—2,2¢g—1,2g,2¢ + 1,..}

or

T —
H,, ={0,g—1,8g+1,.,2¢8—2,2g—1,2g,2g +1,..}.

Proof. By 4.6 we have two cases to consider, namely, when there is no gap
between n;, and n; + m and when there is one gap.
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The former case entails that H is ordinary or hyperordinary and clearly
TYH), =0.

So assume the latter (so H is neither ordinary nor hyperordinary). Let n; + 7
denote that gap so that #, + r — 1 is either an element of Sy or an m-multiple.
If n, +r — 1Sy, then TY(H), = 0 entails m» + 1 € H. In this case n;, =
m-+1,n, , =2m-+r-+41,and

n, =m + i, 1 <igr
=m-+1i-+ 1, r+l<i<m—2.

Here we have g = g(H) =m and A = AH) =m —r — 1 so that 1 <A
g—2.

It ny +r—1 = gmsome q > 2, then n; +r —2€ Sy entails m + 2 H,
ie, ny=m-+2,..,n,,=2m—1 and n, ; =3m + 1. Since #G;, <1
whenever [ >0, TY{H), = 0.Inthiscaseg =g(H) =m + land A = XH) = 1.

Remark 4.8. Let g = g(H). Just as M(H) = g if and only if H is ordinary,
we can characterize those H for which A(H) = g — 1. Indeed, A(H) =g — 1
entails End(H) is elliptic, ie., End(H) ={0,2,3,4,..} and hence H =
{0,686 +2,g+3,..}. If (\H)=g —2, then End(H) ={0,3,4,5,...} or
{0,2,4,5,..} and hence H ={0,¢g — 1,g + 2,8+ 3,2 +4,..} or {0,g —1,
g+Lg+3g+4.Jor{lgeg+1g+3¢+4.}

We will now present the proofs of some well-known results (e.g., see [12])
which will be used repeatedly in Sections 5 and 6.

THEOREM 4.9. Any configuration of m lines through the origin in general linear
position in d-space is negatively graded provided that (m — 1)(d — 1) < 2.

Proof. Let B denote the (homogeneous) coordinate ring of the m-lines in
d-space and B the integral closure of B in its total ring of fractions. If m < d, by
suitable homogeneous change of coordinates, we can assume that the m-lines are
given by the X, .., X,, axes in d-space. Then B = k[X,,..., X]/{X,X;,
Xp |1 <i<j<<mm <k} ie, B=kX,,., X, JiX;X;|i #j}and B ~
A[X] @ - @ K[X,;]. Thus B is a graded k-subalgebra of B s.t. (B/B), =0
whenever / > 0 so that T%(B), = 0 by 4.1.

So suppose d << m <C 2d — 1. As does Saint-Donat [16] we choose homo-
geneous coordinates so that L, ,..., L, represent the X, ,..., X; axes and L; =
{tv|tek, v =1_(ay,;,.,a.;} for d-+1<j<m Then L,,...,L,, are in
general linear position entails any & x & minor of 4 = (a; ;)1cicq,ar1<icm 1S
nonzero whenever 1 <<k <<m —d. So if B=k[X,,.,X /I and B =
Y] @ - @ k[Y,], then ¢: B -> B is given by

Xi - (0""’ Yz Ity 0! Qi,a+1 5 Did+2 -0y ai,mYm) 1 Sg i < d.
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Then for each I > 2, the images of Xj/,..., X}, X!'X,,..., X\"1X, span B,
(since the dimension of the subspace spanned by these is given by
rank{X',..., X;} + rank{X\X, ..., X\ 'x,}
= d + rank{X} X, ,..., X} 1X,;} = d + rank{X, ..., X}
=d+m—d=m).
Hence (B/B), = 0 whenever / > 2 and TYB), = 0 by 4.1.

(4.10) There is a natural correspondence between k-algebras B with
descending filtration and T(gr B), . Let B be a k-algebra with descending
filtration -+ B ,DB_, ;DD ByD B, D - with B,B, C B,,,and J,z B, = B
(i.e., # C B, and each B, is a & vector space). Set 4 = gr B == @z By/Byyy -
Let B* be that graded k-algebra whose nth homogeneous part is B, (and multi-
plication is defined as in B) so that B* = P,z B,, .

Let € denote the image of 15 in B*, . Then

B*/eB* ~ (P B,.*/(<B*),,

meZ

~ @ B.."IBnia
meZ

~ @ Bm/Bm+1
meZ

=grB = 4.

If A(1) denotes the graded k-module obtained from A by shifting the degree by
1 (ie., A(l),, = Ap.y), then 0 — A(1) > B*/2B* — B*[eB* — 0 defines a
graded k-algebra extension of A by A(1), i.e., an element of T4 | k, A(1))y ~
TYA |k, 4), = TYgr B), .

The relation between k-algebras B with ascending filtration and T(gr B)_
is analogous.

THEOREM 4.11. Let A be a graded k-algebra of finite type s.t. T(A), = 0.IfB
15 a k-algebra with descending filtration -+ B_, D B_,, 2 D B;D B, D
as above s.t. gr B ~ A, then B is formally isomorphic to A; i.e., if B denotes the
completion of B with respect to the given filtration and A denotes the completion of A
w.r.t. the filtration induced by the gradation, then B ~

Proof. Let B* and € be as above. Then since T%(4), = 0, the k-algebra
extension
0 —> A(l) — B/B? —= A—>0

4
~ e

admits a section s,: 4 — B*#/2B” in the category of graded k-algebras.
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Continuing in this fashion, consider the commutative diagram:

0 —— A(n) LN B#|eniB* L, B#jenBr 5 ()

L i

0 ——> A(n) —> B#[eviB# /x 4 2> A4 ——0.
B” /e"B

!
L\ Y,

~ td

~ -

Since T4 A4),, = 0, p, admits a section g, so that if s,,, = p; o ¢, then s,,:
A — B#[e"t1B* is a degree 0 homomorphism of graded k-algebras
St Pyt ©Spiy1 = (Pri1°P1) G = Su°P2°Gn = Sn -
Thus we obtain a graded map
s — lim(s,): A — lim B#/e"B* — B7,
where B* denotes the eB*-adic completion of B*. Now

PaN
B* = lim B#/c"B*

~ le @ Bm/Bm+n

n meZ

~ @ lim B,y/Byn.n

mezZ "

~® B,

melZ

where B,, denotes the completion of B,, by the induced filtration B,, D B,,,; D
BoisD
Let p: B* — B be the canonical map,

o) =Xb, and BB

N\ Y
denote the extension of p to B#. Then B is filtered by {B,,},,cz as above and the
composition
s 4N P

A5>B* 5B >grB~grB=4

is the identity on A4.
Hence the induced map 4 — B is an isomorphism [1, p. 112].

CoroLLARY 4.12. (i) Let A be a geometric local domain s.t. gr A is isomorphic
to the coordinate ring of m lines through the origin in d-space in general linear



466 RIM AND VITULLI

position. If (m — 1)/(d — 1) < 2, then A ~ the k-subalgebra of k[[Y,]] @ - D
K[[Y,.]] generated by the tangent vectors where A denotes the completion of A at
the origin.

(ii) Let H be a negatively graded semigroup. The one-dimensional unibranch
geometric local domain A (over k) with value group H is unique up to formal iso-
morphism.

Proof. (1) Itis clear in lieu of 4.9 and 4.11.

(ii) Since (4, m) is a unibranch geometric local domain, 4 ~ 4 is a
one-dimensional complete, normal, local domain where (4, n) denotes the

normalization of 4, 4 its n-adic completion, 4 the m-adic completion of 4 and

4 its normalization. Hence 4 ~ k[[t]]- Now A C A~ k[[t]] and ©(4) = H
(where v is the valuation on A4 induced by ¢) entails 4 is equipped with a natural
descending filtration s.t. the associated graded ring gr 4 ~ k[By]. Since H is

. PR
negatively graded 4 ~ gr A ~ k[[B,]] by 4.11; i.e., 4 is unique up to formal

isomorphism.

5. DEFORMING BY THE QUADRATIC TRANSFORM OF H

In this section we show that a large class of monomial curves can be negatively
smoothed. By the work of Pinkham [12] the existence of a negative smoothing
for the semigroup ring By (H nonordinary) is equivalent to the existence of a
Weierstrass point x on a smooth projective curve X s.t. Hy , = H (recall the
notation of 4.3). The general idea is to split the unibranch singularity at the
origin into a unibranch singularity of the same type but of smaller genus and a
multibranch point.

Definitions and remarks (5.0). Let A, be a reduced k-algebra of finite type.
A deformation (4, R) of A4, over R is said to be a smoothing of 4, if R is a
Noetherian k-algebra without zero divisors and A is generically smooth over R
(i.e., the generic fiber is smooth over the fraction field of R).

Now let 4, = By be a semigroup ring. Then Pinkham showed that if (B, S)
represents the formal versal deformation of 4, (B, S) can be provided with a

compatible G, -action.
Let

S = K[t ..., .11/ ],
B = S[[Xy ey Xu]JI(F=),
where #; has weight —e; and X has weight 7, . Set S’, B’ equal to the quotients

of S and B, respectively, by the ideals generated by the #;’s s.t. the weight —e;
is negative (so the corresponding element in TY(H) ~ Homy(mg/mg:, k) is of
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positive degree). Since the generators of the defining ideals for S" and B’ in
k[[t.]] and k[[¢; , X;]] are polynomials we may and shall replace S’ and B’ by the
corresponding quotient rings of k[t,] and A[¢; , X;] which we continue to call S’
and B'.

We say A, can be smoothed negatively if there exists a point x € Spec(S’) s.t.
the fiber B'(x) is smooth over S’(x). Thus if H is negatively graded, §* = S and
B’ = Bso A, == By can be smoothed if and only if 4, can be smoothed negatively.

(5.1) Let H be a numerical semigroup of multiplicity =, and let Sy ==
{m = ny << ny < ' < n,_4} be the standard basis for H. Let H' denote the
quadratic transform of H, i.e., H' is the semigroup generated by {m,n, — m,
Ny — M,y Hyy_y —m}. Setny = min{fne H' | n=n;(modm), ] <j<m—1}.
Then n/ = n;, — a;m, for some a; > 1 and {m, n/, ny,...,m,_,} defines the
standard basis for H' relative to m.
If A is a reduced one-dimensional algebra over &, we let 4 denote its normaliza-
tion and 8(4) = dim 4/4.
We introduce some notation to use in the following sequence of propositions.

(5.2) Set f = t™ — « and define S to be the k{«a]-subalgebra of &[«, t]
generated by {f, t™'f*,..., t*n-1 fon}, Further set 77 = T[y] where T = k[o],
and y satisfies y™ = « (y in the algebraic closure of k(«)). Finally, let C denote the
k-subalgebra of k[z] generated by {z™ — 1, 2™'(2™ — 1)%,..., 2Pm-1(z™ — 1)@m-1},

LemMa 53. (a) S, ®r T"~C®, T
(b) S defines a deformation of B = By, over k[o] if and only if one of the

Jollowing equivalent conditions holds:

(1) S/aS €— E[t] is an inclusion.

(1 S/aS contains no nilpotents.

(i) Let 0 — S — k[a, ] — E — 0 be exact. Then E is k[o]-projective
of constant rank.

(i) Let C,., denote the k-subalgebra of K[t] generated by t™ — a,
Mt — a)n,..., tPe-(t™ — a)®n1 where ac k. Then 8(C,_,) = 8(By) for all
a €k (i.e., it is a 3-constant family).

Proof. (a) The proof is clear since

.
ng a

e e (T

(b) We show (i) = (i) = (ii) <> (i) = (iy.
(iy = (i) Suppose S/xS contains no nilpotents so that S/aS is the

affine coordinate ring of a one-dimensional variety over k. Thus the map
S/aS — Ek[t] is an injection if and only if Spec(k[t]) — Spec(S/aS) is a surjection.
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The latter is clearly the case since S = [a, #] entails that every maximal ideal
of S containing « is of the form («, t — 8) N S some be k.

(i) = (i) Assume that S/aS ©— k[f] so that if E = R[«, t]/S = S/S,
then Torfl*}(E, k[«]/(«)) = 0. Then if m, corresponds to the maximal ideal
(o — a) of k[a], Ep, is k[a]m -free of rank 8(S/aS) = 8(By), and hence E is k[o]-
free in some open set of Spec(k[a]) containing the maximal ideal m,, .

In lieu of the isomorphism S, ®; 7" >~ C &, T" of (a) we have E, &y 1" ~
K[2]/C ®, T'. Hence E, ®r T" is T'-free of rank 8(C). But 7" is a finite T-free
module so that E, is T-free of rank 8(C). Hence for any maximal ideal m, with
a # O we have [E(m,) : k] = §(C)and E, is k[o]y, -free so that S/(« — a)S — k[t]
is isomorphic to C,_, . Thus E is k[a]-projective, hence k[a]-free. In particular,
8(C) = 8(By) and E is k[«]-projective of constant rank.

(i) = (ii)’ Assume E is k[a]-projective of constant rank. For any a € &,
we have the exact commutative diagram:

0 —> Tor"™(E, K[o]/(c — ®)) = S/(ax — a)S — k[t] — E[(x — a)E — 0

0 —— Cog— Kt] — A[t]/Coces — 0.

Hence Ej(a — a)E ~ k[t]/C,_, so that [E(m,): k] = §(C,_,). Hence E is
k[o]-projective of constant rank if and only if [E(m,,) : £] is constant if and only
if §(C,_,) is independent of a.

(ii) = (i) Assume 8(C,_,) is constant. We saw that 3(C,.,) is inde-
pendent of a entails E is k[a]-projective of constant rank. Hence

Tor*"Y(E, R«]/(«)) = 0

and S/aS ©— k[t] is an inclusion.
We are now in a position to state the main result of this section.

TreOREM 5.4. Consider the family of rational curves parameterized by o:

" — o
£ (m — )™

C:t—
t”r’nq(tm _ a)am—l
C, defines a deformation of B = By over k[«] if and only if the following condition
(*) is valid:
n; +n; = n, (mod m) = a; + a; = a; *
all 4,7, k: 1 <4, ,k<m— 1.
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Proof. The family of curves C, defines a deformation of B = By over k[«]
if and only if the special fiber is B (since S is defined to be a k[«]-subalgebra of
k[w, t] and is a fortiori k[a]-flat). Then by 5.3 C, defines a deformation if and
only if 8(B) = 8(C,y)-

Now 8(B) = g(H) = 22':11 [n;/m] (see 2.2(ii)). As in the proof of 5.3, if
0 —> S — k[o, 1] —> E — 0 is exact then E,, is K[a],-free of rank 8(C) for all
maximal ideals m s.t. a¢ m. In particular C,_; ~ S/(a — 1)S S k[a, 2]/
(¢ — Dk[o,t] sothat C,_; ~ C = k[z™ — 1, 2™/(2™ — 1)%,..., "m-1(3™ — 1)m-1].

Now set f = 2™ — 1. Then Spec(C) = Spec(C;) U Spec(C,») and Spec(Cy) N
Spec(C,m) =~ Spec(k[z],ns) is smooth over & so that §(C) = §(Cy) + 8(C,m). But
Cpn ~ D,m where D = K[f, sn1fo,..., g"m-1fom1], 7, =mn, (modm) with
0 <7, <m. Setry =0, ay = 1. Consequently, 8(C,») = 8(D,n).

We have {2"f %}yc;cm—1.0¢<q fOrms a k-basis for k[z].

Now A € D, if and only if 2%h € D some d > 0. Hence 27if¢ € D, if and only
if revimfe & Dsomed > Oifand onlyife =35 c,a;and 7, -+ dm = Yooy c575.
Thus if b, = rnin(Z;'L_l1 ca;|¢; 20,3 ¢n; = n; (mod m)) we have 27if% € Dy
but z"ifb+1¢ D, . Now by our choice of k-basis for k[2], #[2],» is a graded
k-alglebra and D,. is 2 graded subalgebra, Hence 8(D,») = dim(k[],n/D.m) =
i b

On the other hand, consider C; ~ k[z™, 2™,..., 2"=-1];. Since B’ = By is
nonsingular except (possibly) at the origin,

(C) = o8 —atit) = %, [] =% [
:Ej[:;] — @ = gH) — mZ:a = §(B) — gai.

Thus §(C) = 8(C,) + 8(Cym) = 8(B) + iy (b; — a;).

Now 1 - n; = n; (mod m) implies b; < 1 - @; = a; . Thus b; < a, each 7 and
3(C) = 8(B) if and only if b; = a, all 7 if and only if 27if %1 ¢ D, (1 <7 <
m — 1) if and only if (*) whenever #; + n, = »n, (mod m) we have a; - a;, > a;
1 <, ,k<m—1.

Hence the family C, of rational curves is a deformation of B = By if and only
if (*) is valid for H. '

Remarks 5.5. (a) Recall that @, was defined by am = n, — n; so that
a; = max{a|n, —ame H = {m, n, —m,n, —m,..,n, , —m}}. So another
characterization of g, is given by

a; = max{a [n; — am = c(ny — m) + " + Cppy (B — M)}
m—1 m—1
=max la|n,—am =Y c¢n;— Y cm.
i=1 i=1
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—1 ’ ’ r .
Now 2;11 ey =n; + cymsome ¢y = 0,anda = —¢; + 2;111 ¢; . Thus
m—1 m—1
a;=max{Y ¢l <0,6=20(0<j<m—1),n =Y cny.
J=0 =0

So (*) is valid for H if and only if

m—1 m—1

max z Gleg<0,=20(1<j<m—1),n =Y cn =
i=0
m—1 m-1
min {3 ¢ |¢; > 0(1 <j<m—1),ni::Zc,-njsomec(,éO%.
i=1 i=0

(b) Say (*) is valid for H so that the family C, defines a deformation of
B = By, over R = k[«]. The fibers C,_, ~ C for 0 5 a € k have a unibranch
singularity at m = (2™, 2™'f%,..., g"m-1 f 1) where f == 2™ — 1 corresponding
to the semigroup H’ (unless of course H' = N in which case C is smooth at m).

The only other possible singularity occurs at n = (f, 2"’f%,..., gm-1 f9m-1)
whxch is an m-fold multibranch point. At m we have lowered the genus of H by
Z‘l 1 a;.

We wish to examine the properties of the a;’s in order to determine which
semigroup rings may be deformed via this quadratic tranform.

Notation 5.6. Let My be that subset of Sy, the standard basis for H, which
is the minimal generating set for H (i.e., if My ={m =n; <m; < - <m}
then for each j = 1,..., [ m; is notin the semigroup generated by n; ,...,n; ).

ProposITION 5.7. If #(Sy — My) < 1, then the condition (*) of 5.4 is valid
for H.

The proof of this proposition is an immediate consequence of the following
lemma.

LemMma 5.8. If #(Sy — My) = Lthena;, <1+ 1forl <:<m—1.
Proof. Using the characterization of a; given in (5.5) it suffices to see that if
n +om=mn; + - +n;, n;, € Sy — {m}, x>0,

then p —a <[+ 1.

We proceed by induction on p noticing that for p <{ I -+ 1 the statement is
obvious. So assume p > 11 and the statement holds for all ¢ < p. Set
n; +am = n A o If any n;, = n;, then

am = n; + (g, —ng) + Aoy
> (p— m + (ny, — n;)
=a>p—1=>p—a<<l
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So assumen; < m;allk = 1,..., p. Consider the partial sums
S(r)y=mn;, + - +mn;, for 2<7r<p.
Notice that if S(r) = bm for some 7 (so b > r), then

n; +oam=bm+mn;_  + - +n,
>n+(e—bm=n; A+ +mn, and p—r<p

so that

p—r—(a—0b <I+1
>p—a<p—at(d—r)<I+L

Similarly if S(r,) = S(r,) (mod m) the statement follows by induction. So it
suffices to assume all the partial sums represent distinct nonzero residues
modulo m. Since Sy — M), contains [ elements and we assumed p > [ -+ 1 the
list of partial sums must contain at least p — | — [ residues of elements of My, .

Say S(rki) =n,, + bm with 2 < Thy < << Tr, v M, € My . Since
S(rk‘) involves at least two summands and ns, € My we have b, > 0. Since
S(r,c”l) — S(rkj) =n,  —n + (b;11 — b;)m represents an element of H and
ns, , € My we have b;;y > b; . In particular, b,_,,) = p — (I + 1). But

n; + om = S(rp_qsp) + (S(P) — Srp-in))
=Ny, i) + bp—(l+1)m + n.

ProPoSITION 5.9. Let H be ordinary or hyperordinary. Then (*) is valid
for H and By can be negatively smoothed.

Proof. 1f H is hyperordinary of ordinary, the standard basis for H is also the
minimal generating set. Hence (*) is valid for H (by 5.7) and C, of 5.4 is a flat
family with special fiber C,.y = By . The fiber C,., ~ C for 0 52 a€k has
two possible singularities as in the proof of 5.4. The first occurs at n = (f, 2™f,...,
3"n-1f), where f = 2™ — 1. Now 2™ is a unit in C, so that C, ~k[f, zf...., 2" f |y
where n’ = (f, 2f,..., 2™7If).

Then consider the maximal ideals n; = (2 — w;) £[2] in %[2], where w, are the
mth roots of unity in k. Then

KLf, 2y, 2" ] =k @0y Ny N - Ay, C A2

AN AN
and hence C, = the subalgebra of &[], ~...nn, = E[[21]] X *** X &[[2,]] having

AN\
the same constant term, ie., C, ~ k[[2]] Xz == Xy R[[Zn]] =2 k[21 s0es Zml)/
(2:2; | i # j). Thus it is smoothable (cf. 5.15). Consequently By is smoothable.

481/48/2-17
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The other possible singularity occurs at m = (2™, 2™f,..., 2"n-1f) and corre-
sponds to H’ which is again hyperordinary or ordinary. Since (*) is again valid
for H' and g(H') < g(H), B’ may be smoothed inductively. Then since C is a
curve there is no obstruction to gluing local deformations of C to give a global
deformation, so that C may be smoothed. Thus By may be smoothed.

ProposiTION 5.10. Suppose that H is negatively graded of the third type listed
in4.7. Then B = By can be (negatively) smoothed.

Proof. If H is of the third type, then Sy — My = {n,,_,} where m is the
multiplicity of H so that (*) is valid for H by 5.7. We note that a; == 1 for
1<i<m—2anda,_, =2 (by5.7and 5.8).

Set n,,_, = 2m -} r where 2 << r < m + 1. Then C ~ C,_, of 5.4 has two
possible singularities occurring at m = (2™, 2f,..., ;’\f,, 2™ 1f) and at n =
(f, =0y ;"\f,, 2"71f) where f = 2™ — | and with the obvious modification zf
is missing in case r = m -+ 1.

Now since f is a unit in C,, we have C,, isomorphic to a localization of &[z]
if ¥ 52 m 4 1 and k[2? 2%, otherwise, where m’ = (2% 2%). In either case
C, is smoothable.

To treat the other case, consider n; = (¥ — w;) k[2¢] where w; are the mth
roots of unity in k. Then C, C k[z]y A...n, and G, is negatlvely graded. Con-
sequently (by 4.12) C, is the k- subalgebra of k[[zl]] - X R[[2,]] generated by
its tangent vectors T; (1 <i< m) where T; = mwﬁ"‘l(l, W 5oy w510,
wit.., oY), Thus €, C E[[2]] X - X k[[2]] represents m lines in general
linear position in (m — 1)-space and is smoothable (see [12]). Hence B = By is
smoothable.

Summarizing the results of 5.9 and 5.10 we have the following.

CoROLLARY 5.11. Every negatively graded semigroup ring By can be negatively
smoothed. In turn, there exists a smooth projective curve X with base point x s.t.
H consists of the orders of poles at x of rational functions on X, regular on X — {x}.

COROLLARY 5.12. There is no rigid semigroup, i.e., T(H) = 0 if and only
if H=N.

It would be interesting to know in exactly what generality 5.4 can be used to
inductively smooth the semigroup ring By . In concluding this section we give
an example for which we actually obtain a smoothing. We do not know the full
implications of the following remark, but will take it up at a later date.

Remark 5.13. If H is any numerical semigroup with standard basis Sy =
{m = ny < ny << ==+ << ny_y}, m the multiplicity of H, let H* denote the semi-
group generated by {n + m|ne H} (ie., H* is obtained from H via right
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translation by m). Then we note that the standard basis for H* is given by
{m = ny* <m* < - <nk_,} where n;* = n; + m and that this is also the
minimal generating set for H*. In particular (*) is valid for H* and the family
C, defines a deformation of B* = By.. We note that in taking the quadratic
transform of H* we again obtain H.

The fiber C == C,_, has two singularities occurring at m == (™, 2%1f,..., g"=-1f)
and at n = (f, 2"Y,..., 2™»-1f) where f =2z — 1. Now C, ~ B,  where
B =By and m' = (t™, tm,.. "), Also C, ~ k[, 2f,..., 2" 'f ], where
n' = (f, 2f,..., 3™If) and hence is smoothable. Thus if H can be smoothed so
can H*. This is precisely the situation we encountered in smoothing the ordinary
and hyperordinary cases. We draw one immediate conclusion and hope to develop
more in the future.

CoroLLARY 5.14. Suppose H = H,, , + qm where H, , is negatively graded
(of the third type) of multiplicity m and q >> 1. Then B = By can be smoothed.

ProrosrtioN 5.15. Let S,, be the coordinate ring of m lines in general linear
position in m space. Then S, can be (negatively) smoothed.

Proof. The result is well known for m < 2; so we assume m > 3 and
proceed by induction.

By homogeneous change of coordinates we can assumethat .S, isthe coordinate
ring of the coordinate axes in m space, i.e.,

S = R[X,] X5+ X R X
o~ k[ Xy ooy Xl {X X s -

Thus S,y ~ S, Xy k[ X,,,,] where the k-algebra map S,, — k is defined by
X, —>0(1 <1< m)and k[X,,,,] — % is defined by X,,,;, — 0.

Now S; ~k[X, Y, Z)/(XZ, XY, YZ). Let R = k[t] and set B =R[X, Y, Z]/
(X —t)Z, XY, YZ). Then B is R-flat (since if B denotes the integral closure
of B in its total ring of fractions, B ~ k[t] ®; (k[ X;] @ k[X,] @ k[X,]) is &[1]-
free and B/B is a finitely generated k[¢]-module of constant rank 2, hence [t]
projective. Hence B is R-flat). Hence (B, R) is a deformation of S; whose fiber
away from ¢ = 0 is two ordinary double points, and hence is smoothable.
Thus S; is smoothable. We define an R-algebra map g: B— R via X — ¢,
Y >0, Z— 0 and note that it extends our mapping S, > k. Therefore
(B X R[X,], R) is a deformation of S, ~ S; x; kK[X,] whose fiber away from
t = 0 is an ordinary triple point and an ordinary double point, and hence is
smoothable. Thus S, is smoothable. Inductively, we see that S, is smoothable
whenever m > 3.
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6. A DiMmeNsioN Formura FOR THE COARSE MODULI SPACE %/, ,

(6.1) #,, will denote the coarse moduli space of smooth projective
curves of genus g with a section (i.e., curves of genus g together with a base
point). Consult [10] for precise definition and details.

If H (+ N)is a numerical semigroup of genus g, let .#; denote the subscheme
of 4, defined by

My ={(X,x)e My, | Hy , = H}.

(Recall the notation of 4.3.) Then .#, ; = Uy, # 5 where the union indicated
is disjoint. If A(H) = [End(H) : H] (so that 1 <{ A < g), then we define .#\") by

)
%9,1 = U g%H ’
g{H)=g
A(H)=A

where the union indicated is again disjoint. Thus

dim 4%, = max {dim ./}
9(H)=g
ACH)=
We recall the situation described in Section 5.0. For a fixed semigroup H
let (B, S) denote the versal deformation of By where

S = k[[tl ey tr]]/]’
B - S[[Xl yerey Xm]]/(FOO)y

and ¢, has weight —e, and X has weight », . Let N denote the ideal of S generated
by the images of those 2, s.t. the corresponding weight —e, is negative. Set S’ =
SINS and B = B/NB so that (B, S’) is a deformation of B .

Set U = {x € Spec(S") | the fiber above x in B’ is smooth}. Then Pinkham [12]
has shown that U is invariant under the G,, action on S’ and if U denotes the
quotient of U by the G,, action, then U ~ .#;, . Thus dim # 5 = dim U — 1.

By the work of Deligne [4] we know dim U < 38 + d — ¢ where we recall
8 = dim(k[t]/By) = g(H) = g; ¢ = dim(k[t]/C) = ¢(H); and C = the con-
ductor ideal of By, d = dim(Coker(Homy (2,1, C) — Homy (2p, , By))).
Now ¢==[N:c+N]=[N:H]+[H:c+ N] =g +1 where g=g(H),
I=IH)=[H:c+N]

In our case the formula above can be simplified. Set B = By, B = By =
R[f], and K = the fraction field of By = the fraction field of k[t]. Since C is
torsion free we have Homy(Q25, C) C Homy(R25, C) ®p K ~ Homg(Qy , K).
Similarly, Homz(Q5, C) C Homg(2 , K). By viewing each as a submodule of
Homg(Rx, K) we see that Homy(2z, C) ~ Homg(R2p, C) ~ Dery(B, C).
Setting D(B) = Der,(B, B) and D(B) = Dery(B, B) we have D(B) C D(B)
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(since k is of characteristic 0) and each contains Dery(B, C). Now
dim Dery(B, C) = cand d = dim(Coker(Der,(B, C) — D(B))) entails ¢ — d =
[D(B) : D(B)] so that 38 + d — ¢ can be replaced by 35 — [D(B) : D(B)] =
3¢ — [D(B) : D(B)].

Now D(B),, is one dimensional for all # >> —1 entails

[D(B) : D(B)] = #{n > —1| D(B), = 0}
=1+{n>0|n+H"CH}
=1 4 [N : End(H)]
=1-4+g—A

Thus 3g — [D(B) : D(B)] = 2g +A — 1.

COROLLARY 6.3. dim 4] = 2¢ + X — 2.

Proof. We saw (in 6.1) that if H is a semigroup s.t. g(H) = g and MH) =},
then dim A4y = dim U — 1 << 2g + A — 2. By 4.7 and 4.9 given any A and g
with 1 <{ A <{ g we can find a negatively graded semigroup of given g and A.
By 5.11 the corresponding monomial curve By can be negatively smoothed.
Hence for that H, dim U =3¢ +d — ¢ = 2¢ + A — 1 so that dim .#y =
2g + A — 2. Thus

dim A% = max {dim M) =2g + 1 — 2.

A(H)=A

REFERENCES

1. M. Ativan anp I. G. MacDonaLp, “Introduction to Commutative Algebra,”
Addison-Wesley, London, 1969.

2. D. A. BucusBaum aND D. S. Rim, A generalized Koszul complex II, Trans. Amer.
Math. Soc. 111 (1964), 197-224.

3. D. A. BucusBauM aND D. S. RiM, A generalized Koszul complex I1I, Proc. Amer.
Math. Soc. 16 (1965), 555-558.

4. P. DEeLIGNE, “Quadriques (SGA 7.1I), Séminaire de Géométrie Algébrique du
Bois-Marie 1967-1969,” Lecture Notes in Mathematics, No. 340, Springer-Verlag,
Berlin, 1973.

5. H. Grauert AND H. KrrRNER, Deformations von Singularititen komplexer Riume,
Math. Ann. 153 (1964), 236-260.

6. J. HErzog, Generators and relations of Abelian semigroups and semigroup rings,
Man. Math. 3 (1970), 175-193.

7. E. Kunz, The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer.
Math. Soc. 25 (1970), 748-751.

8. S. LicureNBauM AND M. ScHLESSINGER, The cotangent complex of a morphism,
Trans. Amer. Math. Soc. 128 (1967), 41-70.

9. H. MaTsuMURa, “Commutative Algebra,” Benjamin, New York, 1970.

10. D. Mumrorp, “Geometric Invariant Theory,” Ergebnisse der Math., Vol. 34,
Springer—Verlag, New York, 1965.



476 RIM AND VITULLI

11
12

13.

14.

15.

16.

17.

18.

. D. MumroRD, Pathologies IV, Amer. J. Math. 97 (1975), 847-849.

. H. PingkuamM, “Deformations of Algebraic Varieties with G,, Action,” Astérique 20,
Soc. Math. France, 1974.

H. E. RaucH, Weierstrass points, branch points and moduli of Riemann surfaces,
Comm. Pure Appl. Math. 12 (1959), 543-560.

D. S. Riv, “Formal Deformation Theory (SGA 7-I),” Séminaire de Géométrie
Algébrique du Bois-Marie, 1967-1969, Lecture Notes in Mathematics, No. 288,
Springer—Verlag, Berlin, 1972.

D. S. RiM, Torsion differentials and deformation, Trans. Amer. Math. Soc. 169
(1972), 257-278. .

M. B. SainT-Donar, Sur les Equations Définissant une Courbe Algébrique, C. R.
Acad. Sci. Paris 274 (1972), 324-327.

M. ScHLESSINGER, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968),
208-222.

Anonymous, Correspondence, Amer. J. Math. 719 (1957), 951-952.



