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1. INTRODUCTION 

Let BH be a semigroup ring over a fixed algebraically closed field K of charac- 
teristic 0, i.e., BH = k[t” 1 12 E H] where t is transcendental over K. The following 
work is devoted to the smoothing question for BH and related problems. We say 
BH can be smoothed if there exists a deformation of BH over R: 

flat 

t t 
R-k 

s.t. R is a Noetherian k-algebra without zero divisors and the special fiber A/m,A 
is isomorphic to BH for some maximal ideal mR of R while the generic fiber is 
smooth over the fraction field of R. 

Severi conjectured that every variety is the “limit” of nonsingular varieties. 
Latter day geometers took this to mean every variety can be obtained as the 
specialization of a nonsingular variety. Doubt was shed on this conjecture by an 
anonymous correspondent [18] who provided an example of a five-dimensional 
projective variety which cannot be smoothed in a fixed embedding. Grauert and 
Kerner [5] have constructed a series of nonsmoothable varieties in dimension n, 
provided that n > 4 while Rim [ 151 constructs a rigid isolated singularity on 
an irreducible rational surface. At that time the question was still open for curves. 
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Mumford [l l] has recently given a nonconstructive proof that shows most curves 
cannot be smoothed. Pinkham [12] h as g iven the example of m lines through the 
origin in general linear position in d space which is not smoothable provided 
that m > d. 

The smoothability of monomial curves (i.e., irreducible affine curves with 6, 
action) including the semigroup ring subcase remains an open question. In 
Section 4 of the following work we classify those numerical semigroups H for 
which BH is negatively graded (see Section 4.0 for definition and details). In 
Section 5 we describe a method which allows us to smooth a class of semigroup 
rings including those which are negatively graded. Thus by the work by Pinkham 
[12], given a negatively graded semigroup H there exists a smooth projective 
curve X with base point x s.t. H occurs as the order of poles at .r: of rational func- 
tions on X, regular on X - {x}. Then if X is nonordinary (i.e., H is not of the 
form (0, g + 1, g + 2, g + 3,...}), the point x is a Weierstrass point for X with 
gap sequence specified by H. In the final section we improve a formula by 
Rauch [13] on the dimension of a subspace of the coarse moduli space Jz’~,, . 

2. PRELIMINARIES AND THE STANDARD BASIS FOR H 

Let H be a subsemigroup of the additive group IV of nonnegative integers. 
H is called a numerical semigroup if the greatest common divisor of the elements 
of H is 1, so that only finitely many positive integers are missing from H. Such 
elements are called the gaps of H and the number of gaps is called the genus of H, 
denoted by g(H). The least positive integer c such that c + N C H is called the 
conductor of H, denoted by c(H). The least positive integer m in H is called the 
multiplicity (or the transversal generator) of H. Throughout this paper H will 
denote a numerical semigroup, K an algebraically closed field of characteristic 0. 

DEFINITION 2.0. Let BH be the subring of the polynomial ring k[t] generated 
by the monomials th, h E H. BH is called the semigroup ring of H. 

Where no possible confusion can arise we write B for BH . Let m denote the 
maximal ideal of B generated by t h, h E H - (0). We make the following 
observations. 

PROPOSITION 2.1. Let H be of multiplicity m. 

(i) B = k[t] where 2 denotes the integral closure of A in its total ring of 
fractions andg(H) = dim B/B. 

(ii) B is smooth over k if and only ;f H = N . If not, B has anisolated singularity 
at m and m = e(B,,,) (the multiplicity of the local ring). 

Let H+ denote the positive integers of H. We construct a generating set called 
the standard basis for H, noted S, , inductively as follows: 

481/48/z-16 
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Let n, = m. If 12s < 1.. < nd have been chosen and i < m - 1 let ni+l = 
min{n E H+ 1 n E H - ujci {nj + mN}>, i.e., ni+i is the least integer in H having 
m-residue distinct from those of n,, ,..., ni . Unless otherwise stated the residues 
throughout are assumed to be modulo m. 

PROPOSITION 2.2. Let S, = {m = n, < n1 < ... < n,-,} be the standard 
basis for H. Then 

(i) c(H) = n,-, - n, + 1. (1) 

(ii) g(H) = ‘“c’ [r&J where [x] denotes thegreatest integer < x. (2) 
i-1 

m-1 
(iii) Let Z(H) = [H: c(H) + N]. Then Z(H) = 1 [n,-, - n&l + 1. (3) 

i=O 

Proof. (i) Suppose n > n,_, - no + 1. Since the elements of S, form a 
complete residue system modulo m, we can write n = nj + am where 0 < j < 
m - 1, aEZ. If a < 0, n < nj -m < n,-, -no + 1, a contradiction. So 
a > 0 and n E H. Now nnzel - no $ H since n,-i is the least integer in H having 
given m-residue. Hence 

c(H) =n,-, --no+ 1. 

(ii) Since S, is a complete residue system module m, 

m-1 

g(H)= c #(nEN--Hln=nj) 
kl 

(iii) Similarly, if Z(H) denotes the number of elements in H < the con- 
ductor of H, 

Z(H)=x#{nEH-(c+N)In=nj) 

= 
l+[ 

nm-;; n0 ] +zl 1 + [ nm-1 -n:- nj ] 

Remark. We have defined the standard basis relative to m, the multiplicity 
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of H. The same results (as in 2.2) hold if we similarly construct a complete 
residue system modulo p, for any positive integer p of H. In applications, if it 
is more convenient to consider a standard basis relative to p we shall do so. 

(2.3) A semigroup H is called symmetric if there is an integer c s.t. n E H 
if and only if c - 1 - n $ H, equivalently if in the set (0, I,..., c - l} there are 
precisely as many elements of H as gaps so that c(H) = 2g(H). It is well known 
that His symmetric if and only if BH is Gorenstein (e.g., see [7]). We obtain the 
following interesting characterization of the symmetric semigroup. 

PROPOSITION 2.4. The following statements are equivalent: 

(i) BH is Gorenstein; 

(ii) n,,-, = ni + TZ,_,-~ whenever 1 < i < m - 2; 
(iii) [End(H) : H] = 1 where End(H) = {n E IV 1 n + H+ C H}, i.e., trans- 

lations of H. 

Proof. (i) =P (ii) Assume BH is Gorenstein so that H is symmetric. The c 
in the definition of symmetric must necessarily be the conductor of H. Then 
n E H if and only if n,-, - m - n $ H. For 1 < i < m - 2, ni - m $ H 
entails n,,-, - ni E H. Since n+r is the least integer in H of given residue, 
n,-1 = ni + nj for some ni of the standard basis. We see that njm-, < nfmV3 < 
... < njl < n,-, so that ji = m - i - 1, i.e., n,-, = ni + n,-,_l whenever 
1 ,(i,(m-2. 

(ii) 3 (iii) Assume the equalities of (ii). Since End(H) is itself a semigroup, 
it suffices to see that nj - m $ End(H) for 1 <j < m - 2. (Note that n,-r - m = 
c - 1 E End(H) since (c - 1) + H+ C c + N C H. Also (n,-, - 2m) + m q! H 
entails n,-, - 2m # End(H).) But (nj - m) + n++i = n,-, - m $ H fol, 
1 < j < m - 2. Hence End(H) = H u {c - 11. 

(iii) 3 (i) Assume [End(H) : H] = 1. So see that B = B,, is Gorenstein 
it suffices to show that the length of the B-module m-l/B is one where m = 
(th j h E H+). Now B is a graded K-subalgebra of h[t] entails m-l is generated 
by monomials t” s.t. p + H+ C H. Hence l(m-l/B) = [End(H) : H] = 1 and 
BH is Gorenstein. 

3. MONOMIAL CURVES: THE COHOMOLOGICAL FUNCTOR Ti 

(3.1) Let G, denote the algebraic group over K where the group law is 
multiplication. Then an affine scheme V = Spec(A) has C&-action if and only 
if A is a graded K-algebra where the indexing set is Z, i.e., A = &,<n<m A, . 

DEFINITION 3.2. A monomial curve is an irreducible affine curve with G,- 
action. 
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If H is a numerical semigroup the associated semigroup ring BH is clearly 
a monomial curve and since B H = BnsH ktn is indexed by nonnegative integers, 
BH is the affine cone over Proj(B,). Once we fix a semigroup H we write B for 
BH and S for S, . 

Let S = {nz = n, < ... < rz+i}, 

.fij = xix? - xp,i)x&.i) 

for 1 GiGjim- where 

ni + ni = e(i, j)m + n,(i,j) . (5) 

Set 1 equal to the ideal of P = K[X,, ,..., X,-i] generated by {fij}r<i~j~m-l . 
We define a k-algebra map 9: k[X,, ,..., X,,_,] ---f B by v(Xi) = tnd for 0 < i < 
m - 1. 

PROPOSITION 3.3. The sequence 

0-+I-P&B-+0 

is exact. Furthermore, if we assign the weakht ni to Xi in P, then v is a (degree 0) 
homomorphism of graded k-algebras and I is homogeneous. 

The proof is obvious since B is free over the principal ideal domain A = k[t] 
and multiplication of the A-module generators {t”d} is defined by (5). 

(3.4) We will not attempt to give a precise definition of T* here. For 
definition and details of To, T1 one can consult Lichtenbaum and Schlessinger 
[8]; for the full cohomological properties of T* one should consult Rim’s 
article “Formal Deformation Theory” [14] (note that our Ti plays the role of 
Rim’s ZY). We state here several important properties of T* that we will need 
in later sections; see [ 141 for proofs of these assertions. 

THEOREM 3.5. (1) If 0 + M’ --f M--f M” --f 0 is an exact sequence of A- 
modules, then 

0 + T”(A / R, M’) + T”(A 1 R, M)-+ T”(A ( R, M”) 
+ T1(A 1 R, M’) -+ T1(A 1 R, M)+ T’(A 1 R, M”) 
-...--LT”(AIR,M’)+T~(AIR,M)+T”(AIR,M”)+... 

is exact. 
(2) Let S ---f R + A be ring homomorphisms. Then for any A-module M 

we have the long exact sequence 

O-+T”(A/R,M)-tTo(A~S,M)+To(RIS,M) 
--f T’(A / R, M) --+ T’(A / S, M) + T1(R I S, M) 
+ ... - T”(A / R, M) --f Tn(A / S, M)+ Tn(R / S, M) ---f . .._ 
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(3) Let P be a polynomial akebra over R and let 0 --, I + P + A 
exact. Then 

T”(A 1 R, M) = Der,(A, n/r), 

T1(A / R, M) = Coker(Der,(P, M) --z Hom,(l/12, M)) 

= the set of isomorphism classes of 

R-algebra extensions of A by M. 

3 

459 

0 be 

(6) 

(7) 

COROLLARY 3.6. (a) An R-algebra A is formally smooth over R ;f and only 
if T1(A 1 R, M) = 0 for every A-module M. 

(b) Let R be Noetherian and A a local R-algebra of essentially Jinite type. 
We denote by A the m-adic completion of A where m = the maximal ideal of A. 
Then for any A-module E of finite type we have a canonical isomorphism 

Tl(A 1 R, A aa E) r A aA T1(A / R, E). 

COROLLARY 3.7. Let R be Noetherian and A an R-algebra of finite type. Then 

(a) Supp T”(A 1 R, A) C Sing(A 1 R) for all i > 0 where Sing(A I R) = 
{x E Spec(A) / A is nonsmooth over R at the point x}. 

(b) Suppose that A is smooth (over R) everywhere except at one closed point 
x E Spec(A). We then have isomorphisms 

T1(A j R, A) N Tl(A, ! R, A,) N Tl(A, 1 R, A,). 

Remarks 3.8. We see (by 3.5(l)) that T*( ): (A-mod) + (A-mod) defined 
by Ti(M) = Ti(A I R, M) is a cohomological functor; i.e., given a short exact 
sequence of A-modules we get a long exact sequence on Ti. 

Similarly (by 3.5(2)) if we fix a target A and an A-module M, given a triple of 
rings S + R + A we get a long exact sequence on Ti. We will often use these 
results. 

4. A COMPLETE CHARACTERIZATION OF THE NEGATIVELY GRADED SEMIGROUPS 

(4.0) Now suppose that we have a graded k-algebra A (indexed by Z) of 
finite type where we recall that k is an algebraically closed field of characteristic 0. 
We can then find an exact sequence 

where P = k[X, ,..., X,] and weights n1 E Z s.t. if we assign deg(XJ = ni then 
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v becomes a (degree 0) homomorphism of graded k-algebras. In turn T1(A) = 
Tr(A 1 k, A) becomes a graded k-vector space via 

Tl(A) = @ Tl(A), 
-wo<P,<rr. 

so that 

= @ Coker(Der,(P, A)p + HomA(1/12, A),), 
--oc<P<rn 

Tl(A), N the set of isomorphism classes of degree 0 
graded k-algebra extensions of A by A(p), 

where A(p) is the graded k-module obtained from A by shifting the degree by p; 
i.e., A(p), = AB+n. 

We are interested in characterizing those monomial curves BH for which 
Y(H)+ = Tl(B,),. = 0. These are the so called negatively graded semigroups of 
Pinkham [12]. For this purpose we describe another characterization of Y(H). 

PROPOSITION 4.1. Let k be an algebraically closed field, A a reduced k-algebra 
of finite type. Then 

T1(A) g Coker(Der,(A, K) + Der,(A, K/A)), (8) 

where K denotes the tota ring of fractions for A. 

Proof. The exact sequence 0 + A --f K --f K/A + 0 gives us the exact 
sequence 

0 - T”(A ( k, A) + T”(A / k, K) + T”(A / k, K/A) 

---f T1(A 1 k, A) + T1(A 1 k, K). 

Since k is algebraically closed and A is reduced, A is generically smooth over k 

( i.e., for any generic point p E Spec(A), A(p) = A&A, is smooth over k). 
Hence T’(A ( k, K) = 0. Thus 

T1(A 1 k, A) ru Coker(TO(A 1 k, K) + T”(A / k, K/A)) 

e Coker(Der,JA, K) + Der,(A, K/A)). 

Unless otherwise stated m shall denote the maximal ideal of B generated by 
{t” / h E H+}, 8 the m-adic completion of B and & = k((t)) the fraction field of a. 

COROLLARY 4.2. Let B = B, and 0 ---f I ----f P - B ---f 0 be exact where P 
is a polynomial algebra over k. Then 

T’(B), = Coker(Der,(B, R), * Der,(B, R/B),), 

Hence dim, Tl(B), = max{O, dim,(Der,(B, R/8), - 1)). 

ZEZ. (9) 
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The proof is as above as we note that P is formally smooth over k and 
Der,(B, I?), N Der,(k[t], I?), is l-dimensional. 

(4.3) Before we state the main theorem of this section we need some nota- 
tion and definitions. For a numerical semigroup H, let h(H) = [End(H) : HJ. 
We say that H is an ordinary semigroup of genus g (denoted by HB) if h(H) = g; 
equivalently if H = (0, g + 1, g + 2, g + 3,...}. We say that H is hyperordinary 
if H = m&l + H, where H, is ordinary and 0 < m < g. 

Let X be a smooth projective curve of genus g, x E X and V = X - {x}. 
Then we have an ascending chain of finite-dimensional k-vector spaces k = 
T(X, O(x)) C T(X, l(x)) C ... C r(x, n{X}) C ... where I’(X, nix}) = (f~ k(X) If 
is regular on V having a pole of order at most n at x}. By Riemann-Roth, we 
know dim,QX, 2g - l(x)) =g and dim, r(X, n + I(x)) - dim, r(X, n{x}) < 1. 
Hence between 0 and 2g - 1 there are precisely g integers sr < ... < sg called 
the gap sequence for X at x for which there exists no rational function f, regular 
on V, having a pole of order precisely si at x. 

Let H,,, = {nEN 13fEk(X) g 1 re u ar on U, having a pole of order n at x}. 
Thus n E H,,, if and only if r(X, n - l(x)) $ r(X, n(x)). 

Then x is an ordinary point if Hl(X, g(x)) = 0, i.e., H,,, = (0, g + 1, g + 2,.. .}. 
So x is an ordinary point of X if and only if H,,, is ordinary. Otherwise x is 
called a Weierstrass point of X. 

(4.4) Throughout the rest of this section let S, = {m =I n, < n, < 
... < n,-r} denote the standard basis for H where m = m(H), c = c(H), and 
B = BH . Let B denote the m-adic completion of B where m = (th 1 h E H+) 
and R = k((t)). Set E, = Der,(B, I?/@, for each 1 E Z. By dim(.) we mean 
dimension as a K-vector space unless otherwise stated. 

LEMMA 4.5. For each I EZ, let G, = {n E S, 1 n + 16 H) and RR, = 
{ fij E I 1 ni + nj + 14 H}. Associate each element fij of R, with the vector Vci*i) = 
(V(y),..., v:fj) E Km where m = m(H) and 

y(i.4 
k = - 4, j) ifk =Oandr(i,j) #0 

= -(e(i,j) + 1) ifK =Oandr(i,j) =0 

=2 ifh=i=j 

= 1 ifK=iorK=jandi#j 
zzz --I if K = y(i,j) # 0 

=o otherwise. 

Associate R, with the vector subspace of km spanned by {Vi,?)}. Then dim T’(H), = 
max{O, #G, - dim R, - l}. 

Proof. A typical element of E, = Der,(B, K((t))/& is defined by a vector 
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(a, ,.-a, u,,-r) E km s.t. ai = 0 whenever ni $ G, and ai + aj = e(i,j) a, + u,u,j) 
whenever fii E R, . Thus dim, E, = #G, - dim R, and the statement follows 
from (4.2). 

LEMMA 4.6. (a) If H is negatively graded, then c < n, + m. Consequently, 
H is negatively graded ;f and only if#G, < 1 for all 1 > 0. 

(b) If H is negatively graded, then nrnez < n, + m. For the negatively 
graded semigroup there is at most one gap between n1 and n, + m. 

Proof. (a) Suppose that c > nr + m so that c > n, + m + 1 (since 
n, + m E H). Then setting p = c -- 1 - (nr + m) we obtain p > 0. Now 
c - 1 - (n, + m) + 2n, = c - 1 + (n, - m) > c entails R, # @. Since G, 
contains m and nr we have F(H), # 0, a contradiction. Hence c < ni + m so 
that R, = D whenever p > 0 (since ni $ nj + p > n, + m + p > c). Thus 
dim E, = #G, and our assertion follows. 

(b) This is clearly the case for m < 3 so assume m > 3. Suppose nmp2 > 
n,+msothatn,-,>n,+m.Setp=n,-,-(n,+m)>O.Thenp+n,# 
H entails p + m E H, i.e., 71,-Z = n, $- nj for some nj E S, . Set q = n,-, - 
n, > m. If q E H, then n,-, = n, + n, for some nk E S, . In that case G,+, 
contains both nj and nk , contradicting (a). Hence q $ H. Then G,-,, contains 
both m and n, , again a contradiction. Hence q-s < n, + m. Therefore n, ,..., 
n,-, and an m-multiple must occur between n, and nr + m so that there can be 
at most one gap for H in this interval. 

THEOREM 4.7. Let H, g = g(H), h = h(H) be as above. H is negatively 
graded if and only if H is of one of the following types: 

(i) H is ordinary; 

(ii) H is hyperordinury ; 

(iii) excluding the ordinary and hyperordinary cases, given g and X with 
2 < h < g - 2 there exists a unique negatively graded semigroup (denoted by H,,,J 
of given g and A. Namely, 

Hg,, = {O, g,..., 2g - x - 1,g; 2g - x + 1,2g - x + 2 )... }. 

If X = 1 we have two possibilities; by abuse of notation we write: 

H,,, = (0, g, g + I,...> 2g - 2, g< 2g, 2g + l,... } 

or 

Hg,, = (O,g - L&g + l,..., 2g - 2, ?gz-, 2g, 2g + l,... }# 

Proof. By 4.6 we have two cases to consider, namely, when there is no gap 
between nr and n, + m and when there is one gap. 
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The former case entails that H is ordinary or hyperordinary and clearly 
F(H)+ = 0. 

So assume the latter (so His neither ordinary nor hyperordinary). Let n, + r 
denote that gap so that n1 + r - 1 is either an element of S, or an m-multiple. 
If n,+r-lE&, then F(H), = 0 entails m + 1 E H. In this case nr = 
m + 1, n,-, = 2m + r + 1, and 

ni = m + i, l<i<r 

=m+i$l, r-+1 <i<m-2. 

Here we have g = g(H) = m and h = h(H) = m - r - 1 so that 1 < X < 
g - 2. 

If n1 + Y - 1 = qm some q > 2, then n, + r - 2 E S, entails m + 2 E H, 
n, = m + 2,..., nmm2 = 2m-1 and n,-,=3m+l. Since #G,<l 

ZLnever I > 0, F(H)+ = 0. In this caseg = g(H) = m + 1 and h = h(H) = 1. 

Remark 4.8. Let g = g(H). Just as X(H) = g if and only if H is ordinary, 
we can characterize those H for which h(H) = g - 1. Indeed, X(H) = g - 1 
entails End(H) is elliptic, i.e., End(H) = (0,2, 3,4,...} and hence H = 
{O,g,g + 2,g + 3 ,... }. If h(H) = g - 2, then End(H) = (0, 3,4, 5 ,... } or 
(0,2,4, 5 ,... } and hence H = (0, g - 1, g + 2, g + 3, g + 4 ,... } or (0, g - 1, 
g + Lg + 3,g + 4,...1 or {O,g,g + Lg + 3,g + 4,...). 

We will now present the proofs of some well-known results (e.g., see [12]) 
which will be used repeatedly in Sections 5 and 6. 

THEOREM 4.9. Any conjiguration of m lines through the origin in general linear 
position in d-space is negatively gradedprovided that (m - l)/(d - 1) < 2. 

Proof. Let B denote the (homogeneous) coordinate ring of the m-lines in 
d-space and B the integral closure of B in its total ring of fractions. If m < d, by 
suitable homogeneous change of coordinates, we can assume that the m-lines are 
given by the X1 ,..., X, axes in d-space. Then B = k[X, ,..., X,1/(X,X, , 
X, / 1 < i < j < m, m < k}, i.e., B N k[X, ,..., X,l/{XiXi 1 i # j} and B N 
k[X,] @ ... @ k[X,]. Thus B is a graded k-subalgebra of B s.t. (B/B), = 0 
whenever I > 0 so that F(B)+ = 0 by 4.1. 

So suppose d < m < 2d - 1. As does Saint-Donat [16] we choose homo- 
geneous coordinates so that L, ,. . ., L, represent the X1 ,. . . , X, axes and L, = 
(tv 1 t E k, v = (u,,~ ,..., u~,~)} for d + 1 < j < m. Then L, ,.. ., L, are in 
general linear position entails any k x k minor of A = (a~,j)lsisd,d+lCjs.l is 
nonzero whenever 1 < k < m - d. So if B = k[X, ,..., X# and B = 
k[Y,] @ ... @ k[Y,], then q~: B -+ B is given by 

Xi - (O,..., Yi ,..., 0, ai,d+l , ai,dr2 ,..., a,,,Y,) 1 I< i < d. 
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Then for each 1 > 2, the images of Xrl,..., Xdz, Xi-‘X2 ,..., XtW-‘Xd span BE 
(since the dimension of the subspace spanned by these is given by 

rank{X,‘,..., X,“} + rank{Xi-‘Xa ,..., XiPIXd} 

= d + rank{Xi-‘Xa ,..., Xi-rXd} = d + rank{Xa ,..., X,} 

==d+m-d=m). 

Hence (B/B), = 0 whenever I > 2 and F(B)+ = 0 by 4.1. 

(4.10) There is a natural correspondence between k-algebras B with 
descending filtration and F(gr B), . Let B be a k-algebra with descending 
filtration ... BP, 3 B-,+1 3 ... 3 B, 3 B, 3 ... with BiBi C B,+j and unEZ B, = B 
(i.e., k C B, and each Bi is a k vector space). Set A = gr B = QjnEZ B,/B,+, . 
Let B++ be that graded k-algebra whose nth homogeneous part is B, (and multi- 
plication is defined as in B) so that B# = GneZ B, . 

Let E denote the image of 1s in BEI . Then 

If A( 1) denotes the graded k-module obtained from A by shifting the degree by 
1 (i.e., A(l)nz = A,+l), then 0 ---f A(1) 5 B#/e2B# + B#/eB# + 0 defines a 
graded k-algebra extension of A by A( 1 ), i.e., an element of T1(A / k, A(l)),, Y 
T1(A 1 k, A), = Tl(gr B), . 

The relation between k-algebras B with ascending filtration and Tl(gr B)- 
is analogous. 

THEOREM 4.11. Let A be a graded k-algebra ofjinite type s. t. P(A)+ = 0. If B 
is a k-algebra with descending Jiltration ... BP, 3 BP,+, 3 ... 3 B, 3 B, 3 ... 
as above s.t. gr B N A, then B is formally isomorphic to A; i.e., ;f & denotes the 
completion of B with respect to the given filtration and A” denotes the completion of A 
w.r.t. the$ltration induced by the gradation, then I? 5 d. 

Proof. Let B# and E be as above. Then since P(A), = 0, the k-algebra 
extension 

0 ---+ A(1) 2 B”/2B,g ++ A k 0 
\ : .--’ 

admits a section s?: A -> Bs/2B” in the category of graded k-algebras. 
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Continuing in this fashion, consider the commutative diagram: 

0 _+ A(n) 2 B#I<n+lBP m,,+l+ B”IE”B# -+ 0 

II t "1 t 
3, 

0 --+ A(n) - B#‘lcn+*Bz 8’$ A -$ A -+ 0. 

L \ : 
‘S_/’ 

Since F(A)% = 0, p, admits a section qn so that if s,+r = p, 0 qn , then s,,.,: 

A-tB /c # n+lB# is a degree 0 homomorphism of graded h-algebras 

s.t. q&+1 a %+I = (%z+r o PI) o qn = s, o P2 o 9n = sn . 

Thus we obtain a graded map 

s = lim(s,): A + &I B#/?B# = & 
?7 

where B# denotes the l BS-adic completion of B#. Now 

where & denotes the completion of B, by the induced filtration B, 3 Bmfl 3 

B m+2 3 . . . . 

Let p: B# - B be the canomcal map, 

A 
P(W) = c 6” and $B-#+B 

denote the extension of p to $. Then 8 is filtered by {Bn}nEE as above and the 

composition 

AqG-%t+grBrgrB = A 

is the identity on A. 

Hence the induced map a + B is an isomorphism [I, p. 1121. 

COROLLARY 4.12. (i) Let A be a geometric local domain s. t. gr A is isomorphic 
to the coordinate ring of m lines through the origin in d-space in general linear 
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position. If(m - l)/(d - 1) < 2, then A E the hzddgebra of k[[Y,]] @ .*. @ 

k[[Y,]] generated by the tangent vectors where a denotes the completion of A at 

the origin. 

(ii) Let H be a negatively graded semigroup. The one-dimensional unibranch 

geometric local domain A (over k) with value group H is unique up to formal iso- 

morphism. 

Proof, (i) It is clear in lieu of 4.9 and 4.11. 

(ii) Since (A, m) is a unibranch geometric local domain, d 2 A is a 

one-dimensional complete, normal, local domain where (2, n) denotes the 

normalization of A, 2 its n-adic completion, A^ the m-adic completion of A and 

A its normalization. Hence 2 N k[[t]]. Now A C A’ N k[[t]] and v(A) = H 

(where v is the valuation on A induced by t) entails A is equipped with a natural 
descending filtration s.t. the associated graded ring gr A ‘V k[B,]. Since H is 

negatively graded a N 3 z k[[B,,]] by 4.11; i.e., A is unique up to formal 

isomorphism. 

5. DEFORMING BY THE QUADRATIC TRANSFORM OF H 

In this section we show that a large class of monomial curves can be negatively 

smoothed. By the work of Pinkham [12] the existence of a negative smoothing 
for the semigroup ring BH (H nonordinary) is equivalent to the existence of a 

Weierstrass point x on a smooth projective curve X s.t. H,,, = H (recall the 

notation of 4.3). The general idea is to split the unibranch singularity at the 
origin into a unibranch singularity of the same type but of smaller genus and a 

multibranch point. 

Definitions and remarks (5.0). Let A,, be a reduced k-algebra of finite type. 

A deformation (A, R) of A,, over R is said to be a smoothing of A, if R is a 

Noetherian k-algebra without zero divisors and A is generically smooth over R 

(i.e., the generic fiber is smooth over the fraction field of R). 

Now let A, = BH be a semigroup ring. Then Pinkham showed that if (B, S) 

represents the formal versa1 deformation of A,, , (B, S) can be provided with a 
compatible G,-action. 

Let 

S = k[[t, ,..., tJ1.7, 

B = SKX, ,-.., Kn11/(~“), 

where ti has weight -ei and Xi has weight ni . Set s’, B’ equal to the quotients 
of S and B, respectively, by the ideals generated by the ti’s s.t. the weight -ei 
is negative (so the corresponding element in T’(H) E Hom,(m,/m,z , k) is of 
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positive degree). Since the generators of the defining ideals for S’ and B’ in 

Wdl and NG , 411 are polynomials we may and shall replace S’ and B’ by the 
corresponding quotient rings of k[tJ and k[ti , Xj] which we continue to call S’ 
and B’. 

We say A, can be smoothed negatively if there exists a point x E Spec(S’) s.t. 
the fiber B’(x) is smooth over S’(x). Thus if H is negatively graded, S’ = S and 
B’ = B so A, = BH can be smoothed if and only if A, can be smoothed negatively. 

(5.1) Let H be a numerical semigroup of multiplicity m, and let S, = 
(m = n, < n1 < ..* < n,-i} be the standard basis for H. Let H’ denote the 
quadratic transform of H, i.e., H’ is the semigroup generated by {m, n, - m, 
n2 - m ,..., n,,-i - m}. Set nj’ = min{n E H’ 1 n = nj (mod m), 1 < j < m - l}. 
Then nj’ = nj - ujm, for some aj 3 1 and {m, nr’, no,l,..., nc-,> defines the 
standard basis for H’ relative to m. 

If A is a reduced one-dimensional algebra over k, we let A denote its normaliza- 
tion and S(A) = dim A/A. 

We introduce some notation to use in the following sequence of propositions. 

(5.2) Set f = t” - o! and define S to be the k[a]-subalgebra of k[ol, t] 
generated by {f, tnl’jal,..., t%-If am-l}. Further set T’ = T[y] where T = k[ollol 
and y satisfies y” = 01 (y in the algebraic closure of k(a)). Finally, let C denote the 
k-subalgebra of k[z] generated by {z” - 1, Z’Q’(P - l)“~,..., .&+s” - 1)“~1). 

LEMMA 5.3. (a) S, &. T’ 21 C ok: T’. 

(b) S defines a deformation of B = BH over k[or] if and only if one of the 
following equivalent conditions holds: 

(i) S/W!? C-+ k[t] is un inch&on. 

(i)’ S/C& contains no nilpotents. 
(ii) Let 0 -+ S --+ k[or, t] -+ E + 0 be exact. Then E is k[a]-projective 

of constant rank. 
(ii)’ Let CYsa denote the k-subalgebra of k[t] generated by tm - a, 

Pl’(P - a)al,..., t%-l(tm - a)%-1 where a E k. Then 6(C,,,) = 6(B,) for all 
a E k (i.e., it is a &constant family). 

Proof. (a) The proof is clear since 

,%‘(,m _ qi = tqpn - y”>“i = yni (y ((y - l)? 

(b) We show (i)’ * (i) 5 (ii) o (ii)’ => (i)‘. 

(i)’ a (i) Suppose S/as contains no nilpotents so that S/OS is the 
affine coordinate ring of a one-dimensional variety over k. Thus the map 
S/C& + k[t] is an injection if and only if Spec(k[t]) -+ Spec(S/arS) is a surjection. 
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The latter is clearly the case since S = k[ol, t] entails that every maximal ideal 
of S containing a is of the form (a, t - b) n S some b E k. 

(i) a (ii) Assume that S/as c+ k[t] so that if E = k[or, t]/S = s/S, 
then Tor:lU1(E, Iz[~~]/(ol)) = 0. Then if m, corresponds to the maximal ideal 
(a - a) of K[or], Em0 is k[ol],O-free of rank S(S/&‘) = S(B,), and hence E is k[o;J- 
free in some open set of Spec(K[ 01 1) containing the maximal ideal m, . 

In lieu of the isomorphism S, Or T’ N C @I,, T’ of (a) we have E, @Jr T’ P 
k[x]/C Ok T’. Hence E, @r T’ is T-free of rank 6(C). But T’ is a finite T-free 
module so that E, is T-free of rank S(C). Hence for any maximal ideal m, with 
a # 0 we have [E(m,) : k] = S(C) and E,= is k[a],.-free so that S/(LY - a)Sc+ k[t] 
is isomorphic to C,=, . Thus E is K[ol]-projective, hence K[ol]-free. In particular, 
6(C) = 6(B,) and E is k[ol]-projective of constant rank. 

(ii) * (ii)’ Assume E is k[ol]-projective of constant rank. For any a E k, 
we have the exact commutative diagram: 

0 -+ Tor:[“‘(E, k[a]/(oi - IX)) + S/(cx - a)S -+ k[t] -+ E/(ol - a)E -+ 0 

1 1 1 
0 - cm=, -+ k[t] - k[t]/C,=, ----f 0. 

Hence E/(or - a)E ‘v h[t]/C,=, so that [E(m,): k] = S(C,=,). Hence E is 
k[o;l-projective of constant rank if and only if [E(m,) : K] is constant if and only 
if 6(C,=,) is independent of a. 

(ii)’ 3 (i) Assume 6(C,=,) is constant. We saw that 6(C,=,) is inde- 
pendent of a entails E is k[ol]-projective of constant rank. Hence 

Tor:[“(E, K[ol]/(ol)) = 0 

and S/&’ c-+ k[t] is an inclusion. 
We are now in a position to state the main result of this section. 

THEOREM 5.4. Consider the family of rational curves parameterized by a: 

tm - o! 

c,: t--t P”( t m-a% 

i : 

) . 
t”;“-l(t5n ‘_ qb-1 I 

C, defines a deformation of B = BH over k[cll] if and only ;f the following condition 
(*) is vaZid: 

ni + nj = np (mod m) * ai + uj > uk 

all i,j,k: 1 <i;,j,k <m- 1. 
(*I 
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Proof. The family of curves C, defines a deformation of B = BH over k[a] 
if and only if the special fiber is B (since S is defined to be a k[oc]-subalgebra of 
K[ol, t] and is a fortiori K[ol]-flat). Then by 5.3 C, defines a deformation if and 
only if S(B) = S(C,=,). 

Now S(B) = g(H) = cy==;’ [nJm] ( see 2.2(ii)). As in the proof of 5.3, if 
0 + S - k[a, t] -+ E - 0 is exact then E, is K[ol],-free of rank S(C) for all 
maximal ideals m s-t. 01$ m. In particular ColLl ‘v S/(LX - 1)s c+ R[or, t]/ 
(a - l)K[ol,t] so that C,=, z C = k[z” - 1, P~‘(z” - l)“~,..., z”6-1(~ - I)++l]. 

Now setf = .P - 1. Then Spec(C) = Spec(C,) u Spec(C,,) and Spec(Cf) n 
Spec(Csn) E Spec(k[zlzmr) is smooth over K so that 6(C) = S(C,) + S(C,S. But 
C,, N D,, where D = k[f, z~f~l,..., ,zr+tfa+l], ri E ni (mod m) with 
0 < ri < m. Set ~a = 0, a, = 1. Consequently, S(C,,) = S(D,,). 

We have {~‘if~},,<~~,,-~,~~~ forms a K-basis for K[x]. 
Now h E D,, if and only if xmdh E D some d > 0. Hence zr’fe E D,, if and only 

if x7i+dmf e E D some d > 0 if and only if e = Cy=yl ciai and ri + dm = CT=<’ c,r, . 
Thus if bi = rnin(~~~<’ cjuj / cj 3 0, C cjni = ni (mod m)) we have z”~j~* E D,, 
but ~‘~~~--l$ D,, . Now by our choice of K-basis for K[z], k[z],, is a graded 
k-algebra and D,, is a graded subalgebra. Hence S(D,,) = dim(k[x],m/D),,) = 
CzQ1 6, * 

On the other hand, consider C, E k[xn”, z+‘,..., ~~&-l]~. Since B’ = BH, is 
nonsingular except (possibly) at the origin, 

S(C,) = S(B’) = g(W) = z; [$] = ;F; [ ni iaim ] 

Thus S(C) = S(C,) + S(C,,) = S(B) + CL;’ (bi - ui). 
Now 1 . ni = ni (mod m) implies bi < 1 . ai = a, . Thus bi < ui each i and 

S(C) = S(B) if and only if bi = ai all i if and only if .z7yai-i 4 D,, (1 < i < 
m - 1) if and only if (*) w h enever nj + n, = ni (mod m) we have uj + a, > ai 
1 <i,j,k<m-I. 

Hence the family C, of rational curves is a deformation of B = BH if and only 
if (*) is valid for H. 

Remarks 5.5. (a) Recall that a, was defined by aim = ni - ni so that 
ui = max{u ( n, - am E H’ = (m, n, - m, na - m ,..., n,-i - m>]. So another 
characterization of ui is given by 

ai = max{u 1 ni - am = cl(nl - m) + *u* + cr/l-l(n,-,- m)} 

I 

m-1 m-1 
= max a ) n, - am = C cinj - JJ cjm . 

j=l j=l 1 
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Now CL;’ cjnj = ni + c,‘m some c,’ > 0, and a = -c,,’ + x7=<’ cj . Thus 

I 

m-1 m-1 
ai=max C ci[cO~O,cj~O(l <j<m-l),n<= C 

j=O j=O 

SO (*) is valid for H if and only if 

I 
m-1 m-1 

max C cj 1 co < 0, cj >, 0 (1 < j < m - l), ni = C cjnj = 
j=O j=O 1 

m-1 m-1 
min 

I 
C ci 1 ci 3 0 (1 < j < m - l), ni = 1 cjn, some co < 0 . 
j=l i=O 1 

(b) Say (*) is valid for H so that the family C, defines a deformation of 
B = BH over R = k[ol]. The fibers C,=, N C for 0 # a E k have a unibranch 
singularity at m = (P, Pl’jal,..., ,zz%x-I~~~-~) where f = ,zm - 1 corresponding 
to the semigroup H’ (unless of course H’ = N in which case C is smooth at m). 
The only other possible singularity occurs at n = (f, znl’fal,..., x%-lf~-l) 
which is an m-fold multibranch point. At m we have lowered the genus of H by 
XL;1 ai . 

We wish to examine the properties of the ai’s in order to determine which 
semigroup rings may be deformed via this quadratic tranform. 

Notation 5.6. Let MH be that subset of S, , the standard basis for H, which 
is the minimal generating set for H (i.e., if MH = (m = niO < ni, < *.. < nit} 
then for each j = l,..., 1 nij is not in the semigroup generated by niO ,..., nij-,>. 

PROPOSITION 5.7. If #(S, - Ivl-,) < 1, then the condition (*) of 5.4 is valid 
for H. 

The proof of this proposition is an immediate consequence of the following 
lemma. 

LEMMA~.~. ~f#(S,-MM,)=l,thaa~~Z+lforl~~~m-l. 

Proof. Using the characterization of a, given in (5.5) it suffices to see that if 

ni + am = nj, + .*. + nip, nil, E &f - 14, 01 3 0, 

thenp-a<Z+l. 
We proceed by induction on p noticing that for p < 1 + 1 the statement is 

obvious. So assume p > I + I and the statement holds for all 4 < p. Set 
ni + arm = nil + ‘..+nj,.Ifanyn+ni,then 

aim = njI + ... + (ni, - ni) + ..a + nj, 

> ( P - l)m + (nj, - 4 

3ci>p--lap-cx<l. 
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So assume njk < n, all R = l,..., p. Consider the partial sums 

S(r) = ?Zj, + “* + ?Zj, for 2 < r ,< p. 

Notice that if S(r) = bm for some r (so b > r), then 

ni + am = bm + ni,+, + *+* + nil, 

=t- ni + (a - b)m = nj,+l + *** + nj, and P-r<P 

so that 

p-r-((ol-b)<Z+l 

=xp-a<p--a+(b-r)<Z+l. 

Similarly if S(r,) = S(Y,) (mod m) the statement follows by induction. So it 
suffices to assume all the partial sums represent distinct nonzero residues 
modulo m. Since S, - MH contains 1 elements and we assumed p > I+ 1 the 
list of partial sums must contain at least p - 1 - I residues of elements of MH . 

Say S(rtii) = nsi + him with 2 < rkl < +.. < rkp--l--2 , nsj E MH . Since 
S(rtl) involves at least two summands and nsl E MH we have 6, > 0. Since 
Shj+,> - Shi) = nsj+l - nsj + (bj+l - i) b m represents an element of H and 
TZ,~+~ E MH we have bj+l > 6,. In particular, b,-(z+l, 3 p - (1 + 1). But 

ni + am = S(r,-(~+d + (SC PI - S(Y~-(Z+~))) 

==n so--(z+,, + L(z+1P + n* 

PROPOSITION 5.9. Let H be ordinary or hyperordinary. Then (*) is valid 
for Hand BH can be negatively smoothed. 

Proof. If H is hyperordinary of ordinary, the standard basis for His also the 
minimal generating set. Hence (*) is valid for H (by 5.7) and C, of 5.4 is a flat 
family with special fiber C,=, = BH . The fiber C,=, ‘v C for 0 # a E k has 
two possible singularities as in the proof of 5.4. The first occurs at n = (f, znl’f,..., 
PA-lf), wheref = zm - 1. Now xm is a unit in C,, so that C,, N k[f, zf,. . . , z+lf],,r 
where n’ = (f, xf ,..., z+lf). 

Then consider the maximal ideals ni = (z - wi) K[z] in k[z], where wi are the 
mth roots of unity in k. Then 

h[f, zf,..., z+lf] = R @ n, n n2 n ... n nnz C k[x] 

and hence c = the subalgebra of k$n,n...nn, N h[[zJ] x -.* x k[[z,,J] having 

the same constant term, i.e., 2 = h@l]l Xk ... x k q&J = m 
(zizj 1 i # j). Thus it is smoothable (cf. 5.15). Consequently BH is smoothable. 

481/48/z-17 
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The other possible singularity occurs at m = (P, PI%..., zG-lf) and corre- 
sponds to H’ which is again hyperordinary or ordinary. Since (*) is again valid 
for H’ and g(F) < g(H), B’ may be smoothed inductively. Then since C is a 
curve there is no obstruction to gluing local deformations of C to give a global 
deformation, so that C may be smoothed. Thus BH may be smoothed. 

PROPOSITION 5.10. Suppose that H is negatively graded of the third type listed 
in 4.7. Then B = BH can be (negatively) smoothed. 

Proof. If H is of the third type, then S, - M, = in,,-,> where m is the 
multiplicity of H so that (*) is valid for H by 5.7. We note that ai = 1 for 
1 < i < m - 2 and a,-, = 2 (by 5.7 and 5.8). 

Set n,-, = 2m + r where 2 < r < m + 1. Then C ‘V C,=, of 5.4 has two 

possible singularities occurring at m = (P, zf ,..., $ ,..., ~“-~f) and at n = 

(f, zf, .‘., of,..., ZP-lf) where f = .P - 1 and with the obvious modification xf 
is missing in case r = m + 1. 

Now since f is a unit in C,,, we have C, isomorphic to a localization of K[z] 
if r # m + 1 and k[z2, z3],,,, otherwise, where m’ = (z2, x3). In either case 
C,,, is smoothable. 

To treat the other case, consider n, = (z - wi) k[z] where wi are the mth 
roots of unity in K. Then C,, C k[~],,~...~~~ and C, is negatively graded. Con- 
sequently (by 4.12) CD is the K-subalgebra of K[[zJ] x *.. x k[[z,J] generated by 
its tangent vectors Ti (1 < i < m) where Ti = rnwy-‘(1, wi ,..., UT-~, 0, 

r+1 y-l). Thus C” C k[[xr]] x ... x K[[zm]] represents m lines in general 
Zeil;‘FoZition in (m - l)-space and is smoothable (see [12]). Hence B = BH is 
smoothable. 

Summarizing the results of 5.9 and 5.10 we have the following. 

COROLLARY 5.11. Every negatively graded semigroup ring BH can be negatively 
smoothed. In turn, there exists a smooth projective curve X with base point x s. t. 
H consists of the orders of poles at x of rational functions on X, regular on X - {x}. 

COROLLARY 5.12. There is no rigid semigroup, i.e., F(H) = 0 if and only 
ifH=N. 

It would be interesting to know in exactly what generality 5.4 can be used to 
inductively smooth the semigroup ring BH . In concluding this section we give 
an example for which we actually obtain a smoothing. We do not know the full 
implications of the following remark, but will take it up at a later date. 

Remark 5.13. If H is any numerical semigroup with standard basis S, = 
(m = n, < n, < ... < n,,-r}, m the multiplicity of H, let H* denote the semi- 
group generated by (n + m 1 n E H} (i.e., H* is obtained from H via right 
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translation by m). Then we note that the standard basis for H* is given by 
{m = n,* < nr* < *.* < nzml} where ni* = np’ + m and that this is also the 
minimal generating set for H*. In particular (*) is valid for H* and the family 
C, defines a deformation of B* = B,, . We note that in taking the quadratic 
transform of H* we again obtain H. 

The fiber C = C,=, has two singularities occurring at m = (P, .zn%..,, znm-lf) 
and at n = (f, z”lf,..., Pm-If) where f = zm - 1. Now C’,,, N B,, where 
B = BH and m’ = (P, PI,..., tn+1). Also C, ‘v k[f, xf,..., ~-tf],,, where 
n’ = (f, zf,..., z+lf) and h ence is smoothable. Thus if H can be smoothed so 
can H*. This is precisely the situation we encountered in smoothing the ordinary 
and hyperordinary cases. We draw one immediate conclusion and hope to develop 
more in the future. 

COROLLARY 5.14. Suppose H = H,,, + qm where H,,, is negatively graded 
(of the third type) of multiplicity m and q 3 1. Then B = BH can be smoothed. 

PROPOSITION 5.15. Let S, be the coordinate ring of m lines in general linear 
position in m space. Then S,,, can be (negatively) smoothed. 

Proof. The result is well known for m < 2; so we assume m > 3 and 
proceed by induction. 

By homogeneous change of coordinates we can assume that S, is the coordinate 
ring of the coordinate axes in m space, i.e., 

N k[X, )..., 

Thus S,,, N S, xk K[X,,] where the K-algebra map S, --+ K is defined by 
Xi --+ 0 (1 < i < m) and K[X,+,] + k is defined by X,,, -+ 0. 

Now S, E k[X, Y, zJ/(XZ, XY, YZ). Let R = k[t] and set B = R[X, Y, Z]/ 
((X - t).Z, XY, YZ). Then B is R-flat (since if B denotes the integral closure 
of B in its total ring of fractions, R N k[t] Ok (k[X,] @ k[X.J @ k[X,]) is k[t]- 
free and B/B is a finitely generated k[t]-module of constant rank 2, hence k[t] 
projective. Hence B is R-flat). Hence (B, R) is a deformation of S, whose fiber 
away from t = 0 is two ordinary double points, and hence is smoothable. 
Thus Ss is smoothable. We define an R-algebra map g: B + R via X--f t, 

Y -+ 0, 2 + 0 and note that it extends our mapping S, -+ k. Therefore 
(B x R R[X,], R) is a deformation of S, E S, x k k[X,1 whose fiber away from 
t = 0 is an ordinary triple point and an ordinary double point, and hence is 
smoothable. Thus S, is smoothable. Inductively, we see that S, is smoothable 
whenever m > 3. 
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6. A DIMENSION FORMULA FOR THE COARSE MODULI SPACE&?~,~ 

(6.1) As,1 will denote the coarse moduli space of smooth projective 
curves of genus g with a section (i.e., curves of genus g together with a base 
point). Consult [lo] for precise definition and details. 

If H ( # N) is a numerical semigroup of genusg, let J%‘~ denote the subscheme 
of Ma,i defined by 

(Recall the notation of 4.3.) Then ~%‘~,i = LIBtH)+ J%‘~ where the union indicated 
is disjoint. If h(H) = [End(H) : H] (so that 1 < X < g), then we define J&‘$ by 

where the union indicated is again disjoint. Thus 

dim J&‘,$ = ,~z~ {dim AH}. 
A(H)=A 

We recall the situation described in Section 5.0. For a fixed semigroup H 
let (B, S) denote the versa1 deformation of BH where 

s = at, ,‘.., a/J> 
B = S[[Xl T..., &lJl/P), 

and ti has weight -ei and Xi has weight ni . Let N denote the ideal of S generated 
by the images of those ti s.t. the corresponding weight -ei is negative. Set S’ = 
SjNS and B’ = B/NB so that (B’, S’) is a deformation of BH . 

Set U = {x E Spec(S’) 1 the fiber above x in B’ is smooth). Then Pinkham [12] 
has shown that U is invariant under the G, action on s’ and if 0 denotes the 
quotient of U by the G, action, then g N J%‘~. Thus dim MH = dim U - 1. 

By the work of Deligne [4] we know dim U < 36 + d - c where we recall 
8 = dim(k[t]/B,) = g(H) = g; c = dim(k[t]/C) = c(H); and C = the con- 
ductor ideal of BH , d = dim(Coker(HomsJQ,t,] , C) -+ Hom,JQBH , BH))). 
Now c = [N : c + N] = [N : H] + [H : c + IV] = g + I where g = g(H), 
1 = Z(H) = [H : c + N]. 

In our case the formula above can be simplified. Set B = BH , B = BH = 
k[t], and K = the fraction field of B, = the fraction field of k[t]. Since C is 
torsion free we have Hom,(QB , C) C Hom,(QB , C) Be K N- Hom,(Q, , K). 
Similarly, Homs(QB, C) C Horn&J,, K). By viewing each as a submodule of 
Hom,(Q, , K) we see that HomB(QB, C) N Hom,(QB , C) N Der,(B, C). 
Setting D(B) = Der,(B, B) and D(B) = Der,(B, B) we have D(B) C D(B) 
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(since K is of characteristic 0) and each contains Der,(B, C). Now 
dim Der,(B, C) = c and d = dim(Coker(Der,(B, C) -j D(B))) entails c - d = 
[D(B) : D(B)] so that 36 + d - c can be replaced by 3s - [D(B) : D(B)] = 
3g - [D(B) : D(B)]. 

Now O(@n is one dimensional for all n > - 1 entails 

[D(B) : D(B)] = #{n 2 -1 1 D(B), = 0) 

= 1 +{n>Ojn+H+(TH} 

= 1 + [N : End(H)] 

=1$-g--h. 

Thus 3g - [D(B) : D(B)] = 2g + h - 1. 

COROLLARY 6.3. dim J$~~ = 2g + X - 2. 

Proof. We saw (in 6.1) that if H is a semigroup s.t. g(H) = g and X(H) = h, 
then dim JY~ = dim U - 1 < 2g + h - 2. By 4.7 and 4.9 given any h and g 
with 1 < X < g we can find a negatively graded semigroup of given g and h. 
By 5.11 the corresponding monomial curve BH can be negatively smoothed. 
Henceforthat H, dim U=3g+d-c=2g+h-1 so that dimdH= 
2g + h - 2. Thus 
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