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INTRODUCTION

Throughout this paper K will denote a commutative ring with unity and
R an associative K-algebra with unity, unless indicated otherwise. All
modules are unital. We say R has a generalized triangular matrix representa-
tion if there exists a K-algebra isomorphism

R, Ry R,
0 R -+ Ry,

0:R— | . 2 ? , (*)
0 0 R

n

where each R; is a K-algebra with unity and R;; is a left R right
R-bimodule for i <.

Generalized triangular matrix representations provide an important tool
in the investigation of the structure of a wide range of algebras. Some of
the diverse applications associated with generalized triangular matrix rep-
resentations appear in the study of operator theory [HKL, PS], quasitrian-
gular Hopf algebras [CP], and various Lie algebras (Kac—Moody, Virasoro,
and Heisenberg) [MP]. Previous authors (e.g., [CH1, GS, Ha, LZ]) have
used a variety of conditions (e.g., CS, hereditary, semiprimary, Artinian) to
obtain a generalized triangular matrix representation for an algebra.

In this paper we develop the theory of generalized triangular matrix
representation in an abstract setting. This is accomplished by introducing
the concept of a set of left triangulating idempotents. These idempotents
determine a generalized triangular matrix representation for an algebra.
The existence of a set of left triangulating idempotents does not depend on
any specific conditions on the algebra (e.g., {1} is a set of left triangulating
idempotents); however, if the algebra satisfies a mild finiteness condition,
then such a set can be refined to a “complete” set of left triangulating
idempotents in which each “diagonal” subalgebra has no nontrivial gener-
alized triangular matrix representation. When this occurs we say the
generalized triangular matrix representation is complete. We then apply
our theorem to obtain new results on generalized triangular matrix repre-
sentations, including extensions of several well known results.

An idempotent e € R is left (respectively, right) semicentral in R if
Re = eRe (respectively, eR = eRe) [Bi4, p. 569]. As is well known [Ch], a
left semicentral idempotent induces a 2-by-2 generalized triangular matrix
representation on R. We use .%,(R) and .#(R) for the sets of all left and
right semicentral idempotents, respectively. Again taking e to be an
idempotent of R, observe that .#,(eRe) = {0, e} if and only if .#(eRe) =
{0, e}; when this occurs we say e is semicentral reduced. If 1 is semicentral
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reduced, then we say R is semicentral reduced. We say that R has a
complete generalized triangular matrix representation if each R, in (%) is
semicentral reduced (i.e., each R, has no nontrivial generalized triangular
matrix representation). In Section 1, we develop further properties of left
(right) semicentral idempotents.

An ordered set {b,,...,b,} of nonzero distinct idempotents in R is
called a set of left triangulating idempotents of R if all the following hold:

@D 1=b,+ - +b,;
(i) b, €e£(R); and

Gii) by, €F(c Rey), where ¢, =1 —(by + - +by), for 1 <k <
n—1

Similarly we define a set of right triangulating idempotents of R using (i),
b, € #(R), and b, , € %(c, Rc,). From part (iii) of the above definition,
a set of left (right) triangulating idempotents is a set of pairwise orthogo-
nal idempotents.

In [KMW], the authors state that there is a “search for a new internal
characterization of upper triangular matrix rings.” The concept of a set of
left triangulating idempotents can be used to obtain such an internal
characterization (see Proposition 1.9). This characterization is different
than that obtained in [SW].

Aset {b,...,b,} of left (right) triangulating idempotents of R is said to
be complete if each b, is also semicentral reduced. Proposition 1.3 shows
that R has a (respectively, complete) set of left triangulating idempotents
if and only if R has a (respectively, complete) generalized triangular matrix
representation. In the sequel, the behavior of a complete set of left
triangulating idempotents is shown to be “strictly between” that of a
complete set of primitive idempotents and a complete set of centrally
primitive idempotents (see Proposition 2.14(i), Example 2.15, Proposition
2.18, Proposition 2.20, and Example 2.21). We show in Corollary 1.7 that R
has a (complete) set of left triangulating idempotents if and only if R has a
corresponding (complete) set of right triangulating idempotents.

The condition that R has a complete set of left triangulating idempo-
tents is—among other things—a type of finiteness condition. In Theorem
2.9 we show that having a complete set of left triangulating idempotents is
equivalent to six other finiteness conditions, including {bR |b € .%,(R)} is
finite, and {bR |b € .%,(R)} satisfies both ACC and DCC. Theorem 2.10
establishes the “uniqueness” of a complete set of left triangulating idem-
potents. From Proposition 2.14, if R satisfies almost any of the well known
finiteness conditions, then R has a generalized triangular matrix represen-
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tation with semicentral reduced subalgebras on the “main diagonal” which
satisfy the same finiteness condition as R. This result and Proposition 2.16
show that the study of many well known classes of algebras can be reduced
to the investigation of the algebras with no nontrivial generalized triangu-
lar matrix representation (i.e., semicentral reduced algebras) from the
respective class.

In Section 3 we derive a canonical form for the generalized triangular
matrix representation of R and use it to determine the global dimension
of R.

We apply our theory to the class of quasi-Baer rings in Section 4.
Theorem 4.4 and 4.11 describe quasi-Baer rings with a complete set of left
triangulating idempotents. As corollaries of these results we obtain Mich-
ler’s splitting theorem for right hereditary right Noetherian rings [Mi],
Levy’s decomposition of right Goldie semiprime right hereditary rings [Le],
the characterization of a piecewise domain given in [GS], and the charac-
terization of a semiprime right FPF ring with no infinite set of central
orthogonal idempotents given in [Fal].

Standard terminology and notation are adhered to as much as possible.
Where there is conflict or confusion in the literature we define the term or
notation as we plan to use it herein. We use I(R), B(R), and N(R) for the
sets of idempotents, central idempotents, and nilpotents of R, respectively.
Observe that .Z(R) N.(R) = B(R). If N(R) = 0, then R is called re-
duced. We use P(R) for the prime radical of R (in the category of
K-algebras), and for any nonempty subset X of R, write rg(X) for
{c € R| Xc = 0} and [,(X) for {c € R|cX = 0}, which are called the right
annihilator of X in R and the left annihilator of X in R, respectively. The
subscript R might be omitted when the context is clear. By prime ideal we
mean a proper prime ideal of R. We denote by T,(R) and M,(R) the
K-algebras of all n-by-n upper triangular matrices and n-by-n matrices,
respectively, with entries from R.

1. TRIANGULATING IDEMPOTENTS

In this section we develop some basic properties of semicentral idempo-
tents and triangulating idempotents. Among other things we establish a
connection between triangulating idempotents and upper triangular matrix
algebras. We use the notation [al-j] for the square matrix whose (i, j)th
position is a;;. Some of these results are known or are part of the
“folklore”; however, we include them to make the paper self-contained.
We begin with a technical lemma, the proof of which is routine and will be
omitted.
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LEMMA 1.1. Let e € I(R). Then the following conditions are equivalent:

() eeZ(R);
(i) 1—-eeFR);
(iii) xe = exe, for each x € R,
Gv) (1 —e)Re = 0;
v) A—-e)x=~0-e)x(1—e), foreachx € R;
(vi) eR is an ideal of R,
(vii) R( — e) is an ideal of R.

LEMMA 1.2. Let {by,...,b,} be a set of nonzero idempotents of R. Then
the following are equivalent:

@ {by,...,b,} is a set of left triangulating idempotents,

(i) {by,...,b,} is an ordered set such that 1 =0b, + -+ +b, and
biRb, = 0, foralli <j < n.

Proof. (i) = (). Since b, € (1 — b;)R(1 — b,), we have b,b, = 0 and
hence b,Rb, = b,b,Rb, = 0, because b, €.%(R). Proceeding similarly
one obtains b;Rb, = 0, for all j > 1. By hypothesis b, €.7,((1 — b,)R(1
—b)). Let Ry =0 —-b)RA — b)) and ¢, =1 — b,, the unity of R,.
Then by €.%,((c; — b,)R(c, — b,)). Analogous to the calculation above,
using R; in place of R and b, in place of b, we get bb, =0 and
bjR,b, = 0, for all j > 2.

Thus for any r € R, we have 0 = bj[(l —b)r(1 — b, = [bj(l —b)r
—b(1 — brb,1b,. Since b(1 — b)rb, = 0, we have 0 = b,(1 — b)rb, =
bjrb, — b;byrb, = b;rb,. Thus b;Rb, = 0. Continue the process, using R,
=0-b, —b,)RA — b, —b,) and ¢, =1 — b, — b, in the next step,
and so on, to get b;Rb, = 0 for all j >i> 1.

(ii) = (). We will make use of the equivalence of conditions (i) and
(iv) in Lemma 1.1 repeatedly in this argument. Observe that (1 — b,)Rb,
=(by,+ - +b)Rb, =0. So b, €%(R). To see that b, €Z((1 —
b)R(1 — b)), observe that (1 — b)b,(1 — b)) = (b, + -+ +b,)b,(1 — b,)
=b,(1 — b;) = b,. Next, since (1 —b,)1 —b,) =(b, + by + - +b,)1
—b)=by+ b, + - +b,, we have (1 —b,)I(1 —b)R(A — b))b, =
" ,b;R(1 — b))b, = X! ,b,Rb, = 0. Continuing this process yields the
desired result.

PROPOSITION 1.3. R has a (respectively, complete) set of left triangulating
idempotents if and only if R has a (respectively, complete) generalized
triangular matrix representation.
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Proof. Let {b,...,b,} be a set of left triangulating idempotents of R.
Using Lemma 1.2 and a routine argument shows that the mapping

b,Rb, b,Rb, - bRb,
P
0 0 - bR,

defined by ¢(r) = [r;;], where r;; = b;rb;, is a K-algebra isomorphism.
Conversely, assume

R, Ry, Ry,

0 R .- R
02R R . .2 . 2n

0 0 R

n

is a K-algebra isomorphism. Then by routine calculations {6~ '(e,),...,
6~ '(e,)} is a set of left triangulating idempotents of R, where e; is the
n-by-n matrix with the unity of R; in the (i, i)-position and 0 elsewhere.

Thus if the set of left triangulating idempotents is complete, then the
“diagonal” algebras are semicentral reduced. Also note that R is semicen-
tral reduced if and only if R has no nontrivial generalized triangular
matrix representation.

LEMMA 1.4. Let e € #(R) and f € I(R). Then:

D) #A(eRe) CFA(R);
(i) fZ(R)f <L AfRf);
(iii) if f is a primitive idempotent of R such that fe # 0, then fef = f and
efe is a primitive idempotent in eRe;
(iv) iff €Z(R) and X is an ideal of R, then eXf is an ideal of R.

Proof. (i) Let g €.%(eRe). Then gRg = geReg = eReg = Rg. So g €
F(R).

(i) Let g €%(R) and r € R. Then by Lemma 1.1, (fgf )(fif ) fgf)
= (O fgf) = (fif X fgf). So fgf € Z(fRf) by Lemma 1.1.

(iii) First observe that 0 # fe = fefe; so fef # 0. Then primitivity of f
implies the idempotent fef must be f. Let u be a nonzero idempotent in
(efe)(eRe)(efe). Routine calculation, making use of e € %,(R) and f an
idempotent, yields that ue = u, fu = u, uf = fuf, and (uf Xuf) = uf. Since
uf = 0 implies u = ufe = 0, we have that uf is a nonzero idempotent in
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fRf. Primitivity of f in R then yields uf = f. Then u = ufe = fe = efe. So
efe is the only nonzero idempotent in eRe.

(iv) Observe that R(eXf)R = eReXfRf C eXf.

Lemma 1.5. () If h is a K-algebra homomorphism from R into a
K-algebra A, then h(#,(R)) €.%,(h(R)).

(i) Lete € Z(R) USL(R) and f €.F(eRe) U.Z(eRe). The function

h: R — fRf, defined by h(r) = fif, for each r € R, is a K-algebra homomor-
phism.

Proof.  The proof of part (i) is straightforward. For (ii), observe f € eRe
implies ef = f = fe. So for each x,y € R, fxyf = fexyef. Using ¢ €.%,(R)
USZ(R) and fe.Z(eRe) U.F(eRe), we have that fryf = fexeyef =
fexefeyef = fifyf by Lemma 1.1. So h(xy) = fif >yf = h(x)h(y).

PROPOSITION 1.6. Let {b,,...,b,} be a set of left triangulating idempo-
tents of Rand let ¢, =1 — (b, + -+ +b,), k = 1,...,n — 1. Then we have
the following:

) c¢,es(R, k=1,....,n—1;

Gi) b, + - +b, € FAR), k=1,...,n

(i) the function h;: R — b;Rb,, defined by h(r) = b;rb,, forallr € R,
is a K-algebra homomorphism;

(iv) let h be a K-algebra homomorphism from R onto A, then some
ordered subset H formed from the list h(b,),..., h(b,) is a set of left
triangulating idempotents of A;

) b, €Z,(R) if and only if b,Rb;, = 0 for all j < i;

i) b; €Z(R) if and only if b;Rb; = 0 for all j > i.

Proof. (i) Recall that b, €. %,(R) implies ¢, =1 —b, €%(R) by
Lemma 1.1. Since b, € #.(¢,Rc;) and ¢, =1 — b, — b, is in F(c,Rc)),
using the right-sided analog to Lemma 1.4(1) we get that ¢, €.%(R). Using
this procedure an induction proof completes the argument.

(ii) This part follows immediately from part (i) and Lemma 1.1.

(ii) Refer to Lemma 1.5(ii). Use e = ¢, and b = b, ;. Then from
part (i) above we have e €.%(R) and by definition we have b €.%,(eRe).
So the mapping given by r — brb is a K-algebra homomorphism.

(iv) This part follows from a routine application of Lemma 1.5(1).

(v) Assume b, €. %,(R). Since {b,,...,b,} is a set of pairwise or-
thogonal idempotents, Lemma 1.1(Gii) yields b;Rb;, = b;b;Rb, = 0 for j <.
Conversely, assume b;Rb; = 0, for all j <i. Use the triangulating proper-
ties of b, and b,, together with Lemma 1.2, to obtain b, Rb;, = 0 for all
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k > i. Therefore (1 — b)Rb;, = (X, . ;b,)Rb, = 0. Lemma 1.1 then yields
b; € Z(R).

(vi) Proceed analogously as in the proof of part (v), using the
right-sided versions of Lemmas 1.1 and 1.2 where necessary.

COROLLARY 1.7. The ordered set {b,,...,b,} is a (complete) set of left
triangulating idempotents of R if and only if {b,,...,b;} is a (complete)
ordered set of right triangulating idempotents.

Proof. Let b,,...,b, be a set of left triangulating idempotents of R.
Then by Proposition 1.6(G), 1 — (b, + -+ +b,_,) = b, € #(R). We next
show that b,_, €#((1 — b,)R(1 —b,)). Let R = (1 — b, )R(1 — b,) and
note that 1 — b, is the unity in this algebra. Let d =b, + - +b,_,.
Proposition 1.6(i) yields that d €.%,(R). Using the orthogonality of the
b, we obtain d = (1 —b,)d(1 —b,), and Lemma 1.4(i) gives (1 —
b ) (RX1 —b,) c((1 —b,)R(1 — b,)); so d €.7,(R'). Consequently
b,_, =0 —=b,) —d is in #(R'). Repeat the argument, using R" = (1 —
b, —b, )Rl —b, —b,_ ) and d' =b, + b, + --- +b,_;, to get that d’
€.%(R") and consequently b, , €.(R"). This argument is then re-
peated until the set b,,b,_,,..., b, is exhausted.

The right—implies—left converse is proved similarly. Since .%,(b;Rb,) =
{0, b;} if and only if .#(b;Rb,) = {0, b;}, “completeness” is left-right sym-
metric.

COROLLARY 1.8.  Let R be a subdirectly irreducible K-algebra. If {b, ...,
b,} is a set of left triangulating idempotents, then:

() for each i # 1 there exists j < i such that b;Rb; # 0;
(ii) for each i # n there exists j > i such that b;Rb; # 0;

(iii) the heart is contained in b, Rb,,.

Proof. By definition, b, € #(R). If b, € %(R), for k> 1, then
Lemma 1.1(vi) shows that b, R is an ideal. But b,;b, = 0,50 bR N b, R =
0, a contradiction. From Proposition 1.6(v), there is some j < i such that
b;Rb; # 0. This shows part (i). An analogous argument yields part (ii). Part
(iii) is a consequence of Lemma 1.4(iv).

From Corollary 1.8, one can see that if a subdirectly irreducible K-alge-
bra has a generalized triangular matrix representation then in each column
except for the first there are nonzero entries off the diagonal, and for each
row except the last there are nonzero entries off the diagonal. Our final
result of this section shows that a set of left triangulating idempotents can
be used to provide an internal characterization of an upper triangular
matrix algebra.
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ProposITION 1.9. R = T,(A) for some K-algebra A if and only if there
exists a set of left triangulating idempotents {b,, ..., b,} of R such that:

(i) there exist K-algebra isomorphisms ¢;:b;Rb; > b Rb, for all j,
1<j<n;and

(ii)  there exist group isomorphisms 6,; : b;Rb; — b, Rb, such that
(a) byrb, - (6,(b;sb)) = 6,((¢; ' (byrby) - b;sb,), and

(B) (6,(b;sb))byrb, = 6,(b;sb; - (¢ '(byrb,)) for all i,j, 1 <
i,j<nandr,s € R.

Proof. Let e;; be the n-by-n matrix with the unity of A in the
(i, j)-position and zero elsewhere. Assume ¢ : T(A) = R is a K-algebra
isomorphism. Let b, = (e;,). Then {b,,..., b,} is a set of left triangulating
idempotents. Define ¢, : b;Rb, — b,Rb, by ¢,(b;rb;) = (e, ;4" (r)e;,) for
all r € R. Define 6,; : b;Rb, — b, Rb, by 6, (b;rb;) = §(e,; ™" (r)e;,) for all
r € R. Routine, but technical arguments, show that the ¢; and 6,; have
the desired properties.

Conversely, define ®: R — T,(b,Rb,) by

0 7.

(D(R) = . . . . >

0 0 - 7

where r; = ¢,(b;rb;) and r;; = 6,(b;rb;). A routine, but technical argument,
shows that @ is a K-algebra isomorphism.

2. GENERALIZED TRIANGULAR MATRIX REPRESENTATIONS

Since the concept of “semicentral reduced” plays a key role in the main
results of this section, we begin by deriving several fundamental properties
of semicentral reduced algebras. Our main theorem provides a characteri-
zation of a K-algebra with a complete set of left triangulating idempotents
in terms of finiteness conditions on ideals generated by left semicentral
idempotents. We then consider the “uniqueness” of a complete set of
triangulating idempotents. Next we show that if R satisfies almost any of
the well known finiteness conditions, then R has a generalized triangular
matrix representation with semicentral reduced subalgebras on the “main
diagonal” which satisfy the same finiteness condition as R. Also we show
that the condition of having a complete set of left triangulating idempo-
tents is “strictly between” that of having a complete set of primitive
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idempotents and that of having a complete set of centrally primitive
idempotents.

LEMMA 2.1.  The following are equivalent:

(i) R is semicentral reduced,

(i) (1 —e)Re and eR(1 — e) are both nonzero for each nontrivial
idempotent e;

(iii) if e is a nontrivial idempotent of R and A and B are subsets of R
that contain e and 1 — e, respectively, then neither ARB nor BRA can be zero;

(iv) if X is a right ideal and ¢ € I(R) such that 1 — e € X, then
XeR = 0 impliese = 0 ore = 1.

Proof.  Assume (i). Then (ii) follows from Lemma 1.1 and its right-sided
analog. Assume (ii). Since ARB = 0 implies eR(1 —¢) = 0, and BRA = 0
implies (1 — e)Re = 0, when e is nontrivial, we have neither ARB nor
BRA can be zero. Assume (iii). If X is a right ideal of R and e € I(R)
such that 1 — e € X and XeR = 0, then (XR)eR € XeR = 0 and hence
e =0 or e = 1. Finally, assume (iv). Consider e €.%,(R). Then ((1 —
e)R)eR = (1 — e)(eRe)R = 0. So using X = (1 — e)R in (iv), we get ¢ is 0
or 1.

COROLLARY 2.2. Let R be semicentral reduced. Then exclusively, either:

(i) R is reduced and I(R) = {0, 1}; or

(ii) for each nonzero idempotent e € R, eR and Re each contain
nonzero nilpotent elements.

Proof. If R is reduced, then all idempotents are central. So I(R) =
ZAR) = {0, 1}. Part (ii) follows from the equivalence of parts (i) and (ii) in
Lemma 2.1.

Observe that if R is a prime K-algebra, then R is semicentral reduced.
Thus one may think of Corollary 2.2 as generalizing the result that a prime
ring is either a domain or every nonzero ideal contains a nonzero nilpotent
element [Bil, Proposition 3.1].

We use Soc(Ry) for the sum of the minimal right ideals of R.

PROPOSITION 2.3.  Let R be semicentral reduced with So( Rg) # 0. Then
either R is a skewfield or Soc(Ry) = U & V & X, as a direct sum of right
ideals, where:

() Uis an ideal of R and U* = 0;

(i) V'is a direct sum of minimal ideals V; (of R), where V; = Re;R,
e; € I(R), and each e;R is a minimal right ideal of R with ¢;R N N(R) # 0;
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(iii) X is a direct sum of the minimal right ideals X, (of R), where each
X, is isomorphic as a right R-module to a nilpotent right ideal of R and each
X; is generated by an idempotent.

Proof.  First consider R reduced. Since Soc(Ry) # 0, there is a minimal
right ideal of R of the form eR for some e € I(R). Since R is reduced,
e € B(R). Hence R = eR. By [J, Proposition 1, p. 65], R is a skewfield.
Next consider N(R) # 0. Then using a K-algebra version of Theorem 4.6
of [BHL], we get Soc(Ry) = U & V & X, where } and X are as desired
and U =D & B, where D is a direct sum of minimal right ideals of R
which are skewfields and B is a square zero ideal. However, Lemma 2.1
forces D to be zero, thus completing the decomposition as described.

Note that V; is a homogeneous component of ¢;R and ¢;R cannot be
isomorphic (as an R-module) to a square zero right ideal of R (otherwise
V; would contain a nonzero nilpotent ideal, contrary to V; being a minimal
ideal).

It is worth noting that in the above proposition if R is also assumed to
be semiprime, then either R is a skewfield or Soc(Ry) = V.

In the next corollary we use the notation introduced in Proposition 2.3
and its proof.

COROLLARY 2.4. The following are equivalent:

(1) R is semicentral reduced with a complete set of primitive idempo-
tents and V + 0;

(ii) R is isomorphic to a full n-by-n matrix algebra over a skewfield, for
some n.

Proof. Assume R is semicentral reduced, V' # 0, and {e;,...,e,} is a
complete set of primitive idempotents of R. First observe either e,R N V'
=0 or e¢,R C V. To see this suppose e;R N V' # 0. Then there exists a
minimal right ideal c¢R such that ¢ =c* and cR Ce;R N V. By the
primitivity of e;,, then ¢, R=cR CV. Let b = Ye;, where ¢, € V. So
V=Vn(®BR&(0—-bR)=>bR& (VN —b)R). Observe that 1 — b =
Ye;, where ¢,/ = 0.Thus ' N (1 — b)R = 0 and hence V' = bR. By Lemma
1.1, b € #(R); so R = bR = V. Hence ¢;R is a minimal right ideal for all
i=1,...,n. Therefore R is isomorphic to a full n-by-n matrix algebra
over a skewfield. The converse is immediate.

As a direct consequence of Corollary 2.4 we have the well known result
that a prime ring with nonzero socle and a complete set of primitive
idempotents is isomorphic to a full matrix ring over a skewfield.

We begin now a buildup to one of our main results, Theorem 2.9, and its
several useful corollaries.
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LEMMA 2.5. Let 0+ feI(R). Assume eR =fR for each 0+ e
FAfRf). Then f is semicentral reduced.

Proof.  Let e € Z(fRf). Then since eR = fR, it follows that f = ex for
some x € R. So e = ef = eex = ex = f; so f is semicentral reduced.

LEMMA 2.6. (i) R has DCC on {bR | b €.%,(R)} if and only if R has ACC
on {Rc|c € Z(R)}.

(i) R has ACC on {br|b € %, (R)} if and only if R has DCC on
{Rc|c € Z(R)}.

(iii) If R has DCC on {Rc | c € #(R)}, then R has DCC on {cR|c €
FA(R)}.

Proof. (i) Assume R has DCC on {bR|b €.%,(R)}. Consider a chain
Rey CRe, C ..., where ¢; € %(R). Then (1 —¢)R2(1 -¢)RD ...,
with 1 — ¢; € %,(R). This descending chain becomes stationary, say with
1 -c¢)R=0-c,,)R, for each j > 1. Then c,, (1 —¢,)R=0 and
hence ¢,,; = ¢, ;c,. S0 Re,,; = Rc,. The converse is proved similarly.

(i) The proof of this part is analogous to that of part ().

(iii) Assume R has DCC on {Rc|c € #(R)}. Let c;,R 2¢,R D -
be a descending chain with ¢; €. #(R). Observe ¢, = ¢;¢;,1 = €;Ci11C;-

But multiplying ¢,,, = c,;c;,, on the right yields c;, ,c; = c;c;,,c;. Hence

Ciy1 = CiCiyq = C;41C;» 50 Re; 2 Re;, ;. Thus we have the descending chain
Rc, 2 Rc, 2 +--. Then there exists n such that Rc, = Rc,. ;- A rou-
tine argument yields (1 —¢,)R =1 —¢,,,;)R. Hence (1 —¢,)Rc, = (1
—c¢,.1)Rc,,,. Observe that Rc, =c,Rc, + (1 —c¢,)Rc, =c,R+ (1 -
Cn)RCn’ and ch+1 = cn+1ch+l + (1 - Cn+1)ch+l = Cn+1R + (1 -
¢,.)Re, . Since c,R>c,.,Rand ¢c,R +(1 —¢,)Rc, =c, R+ (1 —
¢,.1)Rc, ., then ¢c,R =c, . R.

LEMMA 2.7. Lete €.Z(R). If R has DCC on {bR | b €.7,(R)}, then eRe
has DCC on {d(eRe) | d € %, (eRe)}.

Proof. Let R, =e¢Re and ¢, € #(R,) such that Rc;, CRc;;,, I =
1,2,..., is an ascending chain. By the right-sided analog of Lemma 1.4(i),
¢; € Z(R). Since (1 — e)Rec; = (1 — e)Rec,e = (1 — e)Rc; < (1 —
e)Rc;, ,, it follows that Rc; C Rc;, ;. By Lemma 2.6, there exists a positive
integer n such that Rc, = Rc,, ;. But Rec, = Rc,, = Rc,,,; = Rec,,, ;. So
R,c, = R,c, .- From Lemma 2.6, R, has DCC on {dR, |d € #,(R,)}.

LEmMMA 2.8. Let {b,,...,b,} be a complete set of left triangulating idem-
potents for R.

(i) Ife € Z(R), then eR = @ bR, as a direct sum of right ideals of
R, where the sum runs over a subset of {1,..., n}.
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(ii) There are at most 2" distinct right ideals of the form eR with
e € 7(R).

Proof. Let 0 # e € %,(R). Consider i such that b,e # 0. We show that
b,eR = b;R. Observe that by Lemma 1.1, b,eb;e = b;e #+ 0; so b,eb;, # 0.
Recall from Lemma 1.4(ii) that b,%(R)b, C.%(b,Rb;)). So b,eb; €
Z(b;Rb,), but by hypothesis this latter set is {0, b,}. So b;eb, = b, and
b;,R = b;eb,R C b,eR C b;R; hence b,eR = b;R. Recall that the b, are
pairwise orthogonal. This and b,eb;e = b;be yields bye, ..., b,e are pair-
wise orthogonal idempotents. Let I ={i|1 <i <n and b,e # 0}. Then
eR= @ _,beR = ®_,bR. Observe that there can be no more than 2"
such direct sums.

Note that if in the above the b, are all central, then we achieve the
upper bound of 2".

The following result, which is one of our main theorems, fully character-
izes rings which have a complete generalized triangular matrix representa-
tion.

THEOREM 2.9. The following conditions are equivalent:

(1) R has a complete set of left triangulating idempotents;
(i) {bR|b €.Z,(R)} is a finite set;
Gii) {bR|b € F(R)} satisfies ACC and DCC;
(iv) {bR|b € Z(R)} and {Rc | c € Z(R)} satisfy ACC;
& {bR|b € ZAR)} and {Rc | c € F(R)} satisfy DCC;
i) {bR|b € Z(R)} and {cR|c € F(R)} satisfy DCC;
(vii) R has a complete set of right triangulating idempotents.

(viii) R has a complete generalized triangular matrix representation.

Proof. Lemma 2.8 yields (i) = (ii), and (i) = (ii) is trivial. Then (iii)
= (iv) = (v) = (vi) follow immediately from Lemma 2.6. The equivalence
of (vii) and (i) follows from Corollary 1.7. Finally, assume (vi). We will
show (vi) = (D). If Z(R) = {0, 1}, then we are finished. Otherwise take e,
to be a nontrivial element of .#,(R). If e, is not semicentral reduced, then
there exists a nontrivial element e, of .#.(e,;Re;); so ;R 2e,R. By
Lemma 1.4(), e, €.%(R). Next, if e, is not semicentral reduced, then
there exists a nontrivial element e; of .#.(e,Re,) and so e,R D e3R.
Again by Lemma 1.4(), e; €.%(R). Continue this procedure to get a
descending chain ¢;R 2 e¢,R De;R 2 -+-. The DCC on {bR |b €.Z(R)}
guarantees this chain must become stationary, and Lemma 2.5 yields that
it does so with an e, €.%,(R) such that e, is semicentral reduced. Starting
a new process, let b, = e, and observe that 1 — b, € Z(R). If 1 — b, is
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semicentral reduced, then {b,,1 — b,} is a complete set of left triangulat-
ing idempotents. Otherwise, consider the algebra R, = (1 — »,)R(1 — b)),
observe that by Lemma 2.7, R, has DCC on {dR, |d €.%,(R,)}, and using
a strictly analogous argument to that used to get b,, obtain b, € Z(R,)
such that #,(b,R,b,) = {0,b,}. Since 1 — b, is the unity for R, and
b, € R, we have b,R,b, = b,Rb,; so #(b,R,b,) ={0,b,}. Also, (1 —
b)) — b, € %(R)). The right-sided analog of Lemma 1.4() yields .#(R,)
C%(R). If 1 — b, — b, is semicentral reduced in R, then {b,b,,1 — b,
— b,} is a complete set of left triangulating idempotents. Otherwise we can
continue the process, generating a descending chain of terms from {cR | ¢
€.%(R)}. By the DCC hypothesized this chain must become stationary
after a finite number of steps, yielding a complete set of left triangulating
idempotents. The equivalence of (i) and (viii) follows from Proposition 1.3.

It is worth noting that if {b,,..., b,} is a complete set of left triangulat-
ing idempotents of an algebra R and each of the rings b;Rb; satisfies
I(b,Rb;) = B(b,Rb,), then {b,,...,b,} is a complete set of primitive idem-
potents. This occurs, for example, if each b, Rb; is commutative or duo.

The next theorem shows the uniqueness of a complete generalized
triangular matrix representation. In the proof of this theorem we make use
of the following result due to Azumaya: if I is a quasi-regular ideal of R
and {e,...,e )}, {f},..., f,} are two sets of pairwise orthogonal idempotent
elements of R such that & =f, for every i with images &, and f, in
R = R/I, then there exists an invertible element « € R such that f, =
a'e;a for each i [Az, Theorem 3]. Recall for 0 # ¢ € B(R), e is said to
be centrally primitive if 0 and e are the only central idempotents in eR.
Also, R is said to have a complete set of centrally primitive idempotents if
there exists a finite set of centrally primitive pairwise orthogonal idempo-
tents whose sum is the unity of R [Lam 1, Sects. 21 and 22].

THEOREM 2.10 (Uniqueness). Let {b,,...,b,} and{c,,...,c,} each be a
complete set of left triangulating idempotents for R. Then n = k and there
exists an invertible element a € R and a permutation o on {1,...,n} such
that b, ;, = a 'c;a for each i. Thus for each i, ¢;R = b, R, as R-modules,
and ¢;Rc; = b, ;,RD, ;), as K-algebras.

Proof. Let U = ¥,_;b;Rb;. Thus U corresponds to the strictly upper
triangular matrix subalgebra of T,(R) induced by {b,,...,b,} as in the
proof of Proposition 1.3. Recall U is an ideal of R and U" = 0. Let
R = R/U and denote by ¥ the image of x € R under the natural homo-
morphism R — R. Since (b,Rb) N U =0, for i = 1,...,n, we have that
each b,Rb; is isomorphic as a K- algebra to b;Rb,. So R is a direct sum of
the b, Rb,, and consequently {b,,...,b} is a complete set of centrally
primitive idempotents for R.
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Now by Lemma 1.5(G), ¢, €.%.(R). Hence ¢, = X' ,b,¢,. Since b, is
semicentral reduced, then b,¢, € {0, b,}. Thus ¢, € B(R). Then ¢, €.7.((1
—¢)R( - ¢,)). Because 1 — ¢, € B(R), Lemma 1.4(i) yields ¢, € %,(R).
Using the above argument, with ¢, in place of ¢,, we obtain ¢, € B(R).
Continuing this procedure yields that {cl,.. ,C} is a set of pairwise
orthogonal nonzero central idempotents in R. Hence C; Rc =0, for i <j.
Thus ¢;Rc; c U, forall 1 <i <j <k.

Let V = Zl < j¢iRe;. Thus V' corresponds to the strictly upper triangular
matrix subalgebra of T,(R) induced by {c,,...,c,} as in the proof of
Proposition 1.3. Using an argument similar to the above one, we obtain
b;Rb; C V, for all 1 <i <j < n. Hence U = V. Therefore {b,...,b,} and
{¢,,..., ¢} are both complete sets of centrally primitive idempotents for R.
It is well known that for such sets of centrally primitive idempotents n = k
and there exists a permutation o on {1,..., n} such that ¢, = b, ), [Laml,
(22.1) Proposition]. Use Azumaya s result to get an invertible element « in
R such that b, = o~ 'c,a for every i. Thus ¢,R = b, R as R-modules.
Since Endg(c;R) = ¢;Rc; and Endg(b;R) = b;Rb;, we have c,Rc; =
b, Rb, ), as K-algebras.

With a different but much longer proof of Theorem 2.10, one can show
that the permutation o can be chosen so that ¢,R = b, ;,R and (1 — b,
= =by_ 1)) R =0b,4 R, k=2,...,n. Then the function f:c,R —
b,yR defined by f(c,r) =d;c,r, where d; =1 and d, =1-1b,,
— = =by_1y, for 2 <k <n, is an R-module isomorphism. Note that
b,y €LAR).

The next example shows that the isomorphism ¢;R = b, ;) R, given in
Theorem 2.10, cannot be sharpened to equality. In fact, there can be
infinitely many different complete sets of triangulating idempotents for
certain R. This is in stark contrast to the result for complete sets of
centrally primitive idempotents [Lam1, Sect. 22].

ExampLE 2.11. Let R = (} ), where F is a field of characteristic not 2.
Let

(1 x (0 —x .
ex—(o 0), f"_(O 1), xeF,x#0;

and let

1 0 0 0
b1=(0 0)’ b2=(0 1)'

Then {e_, f,}, for each x, and {b,, b,} are complete sets of left triangulating
idempotents for R, giving infinitely many such sets when F is infinite.



TRIANGULAR MATRIX REPRESENTATIONS 573

Moreover, bR = e, R, b,R # f.R, but bbR=f R and (1 —b)f R =
b,R.

According to [Lam3, p. 35] 1. Kaplansky raised the following question:
Let A and B be two rings. If M,(A) = M, (B) as rings, does it follow that
A = B as rings? It is known that there are nonisomorphic semicentral
reduced rings (e.g., simple Noetherian domains) which have isomorphic
full matrix rings [Lam2, Lam4, Smi]. Surprisingly, our next result shows this
situation cannot hold for n-by-n (n > 1) triangular matrix rings over
semicentral reduced rings.

COROLLARY 2.12. Let A and B be semicentral reduced K-algebras. If
T,(A) = T,(B) as K-algebras for some m and n, then m = n and A = B as
K-algebras.

Proof. Because A is semicentral reduced, the matrix units £, form a
complete set of left triangulating idempotents for 7,,(A). A similar result
holds for T,/(B). Since the property of being a complete set of left
triangulating idempotents is preserved under isomorphisms, the hypothesis
7,(A) = T,(B) together with Theorem 2.10 yields m = n and also the
isomorphism of the algebras in the first row, first column (i.e., 4 = B).

We note that in [Wh] it has been shown that if F and K are fields then
F =K if and only if their strictly upper triangular matrix rings are
isomorphic.

LEMMA 2.13. Let {ey,...,e,} be a complete set of primitive idempotents
of R. If b is a nontrivial idempotent in #,(R) U.Z(R), then there exists a
subset P of {ey, ..., e,} such that {bejb | e; € P} is a complete set of primitive

idempotents of bRb and this set has less than n elements.

Proof. Consider b €.%,(R). Let P be the set of all ¢; such that the
clements be;b are distinct and nonzero. Without loss of generality let
P={e,...,e,}). By Lemma 1.4(ii), the beb, j =1,...,m, are primitive
idempotents in bRb, and e;be; = e, From b= (e, + - +e,)b=¢b
+ - +e,b =be,b + -+ +be,b = beb + -+ +be, b, we have that {be;b | j
=1,...,m} is a complete set of primitive idempotents for bRb. Suppose
n=m. Then 1 =e¢, + - +e, = e,be;, + -+ +e,be, = be be, + -+ +
be,be, = b(e,be; + -+ +e,be,) = b(e; + -+ +e,) = b, a contradiction. So
m < n.

The proof for b €.%(R) is a right-sided dual of the proof given above.

From Proposition 1.3, Theorem 2.9, and Theorem 2.10 we have that if R
satisfies certain mild finiteness conditions then R has a complete general-
ized triangular matrix representation. Moreover, by Proposition 1.6, the
diagonal subalgebras of R (which are of the form eRe for e = ¢?) are also
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homomorphic images of R. In the next two propositions we show that the
study of many well known classes of algebras and rings can be reduced to
the investigation of semicentral reduced algebras and rings from the same
respective class.

PROPOSITION 2.14. If R satisfies any of the following conditions, then

R, Ry, Ry,
r=|" R Rl
0 0 R

where each R; is semicentral reduced and satisfies the same condition as R,
R;; is a left Rright R -bimodule, and the K-algebras (rings) R,,..., R, are
uniquely determined by R up to isomorphism (induced by an inner automor-
phism of R) and permutation:

(1) R has a complete set of primitive idempotents;
(i) R has no infinite set of orthogonal idempotents,
(iii) Ry has Krull dimension;
(iv) R has DCC on (idempotent generated, principal, or finitely gener-
ated) ideals;
(v) R has DCC on (idempotent generated, principal, or finitely gener-
ated) right ideals;
(vi) R has ACC on (idempotent generated, principal, or finitely gener-
ated) ideals;
(vii) R has ACC on (idempotent generated, principal, or finitely gener-
ated) right ideals;
(viii) R has either ACC or DCC on right annihilators;
(ix) R is a semilocal ring;
(x) R is a semiperfect ring;
(xi) R is a semiprimary ring.
Proof. (i) Let {ey, ..., ¢,} be a complete set of primitive idempotents of
R. Then for any b € %(R), b =e¢,b + -+ +e, b, and by Lemma 1.1(iii)

each e;b is an idempotent. Without loss of generality, assume the full set

of all e;b which are not zero is given by j = 1,...,m. Then bR C ¢,bR
+ -+ +e,bR = be,bR + -+ +be, bR C bR, or bR =¢R + -+ +e¢,,bR.
Primitivity of e; implies e,bR = ¢;R, whenever e;b # 0. So bR = ¢,;bR
+ -+ +e¢,, R and consequently the total number of right ideals of the form
bR, b € #,(R) cannot exceed 2*. Then Theorem 2.9 yields that R has a

complete set of left triangulating idempotents.
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Let {b,,...,b,} be a complete set of left triangulating idempotents for
R. Using Proposition 1.3, take R; = b;Rb; and R,; = b;Rb;, for i <. Then
R;; is a left Rright R;-bimodule, for i <. Lemma 2.13 and Proposition
1.6(1) ensure that each R; has a complete set of primitive idempotents.
The uniqueness of the R; follows from Theorem 2.10.

(ii) Since this condition implies that R has a complete set of primi-
tive idempotents, we have the unique generalized triangular matrix repre-
sentation by (i). Each subalgebra of R, in particular R;, has no infinite set
of orthogonal idempotents.

(iii) By [Kr, Proposition 4] Ry has finite uniform dimension. So (ii) is
satisfied. Hence R has the unique generalized triangular matrix represen-
tation. From [GR, Proposition 1.4] and Proposition 1.6(iii), each R, has
Krull dimension.

(iv)—(viii) By Lemma 1.1, if b €. %,(R) and ¢ €.%(R), then bR and
Rc are ideals of R. For each chain condition under consideration, Theo-
rem 2.9 yields that R has a complete set of left triangulating idempotents.
As in the proof of (i) we have the unique generalized triangular matrix
representation. Each chain condition is either inherited by K-algebra
homomorphic images or by subalgebras of the form eRe, where e is an
idempotent [Lam1, p. 322]. Using Proposition 1.6(iii), each R; satisfies the
same chain condition as R.

(ix)-(xi) For each of these conditions, R has a complete set of
primitive idempotents. By (i), R has a complete set of left triangulating
idempotents. As in the proof of (i), we have the unique generalized
triangular matrix representation. From [AF, p. 305; Lam1, p. 312] the class
of semilocal and the class of semiperfect rings are closed under homomot-
phic images. By Proposition 1.6(iii), if R is semilocal (respectively,
semiperfect), then so is each R;. By [AF, p. 319], if R is semiprimary then
so is each R,.

Observe that the class of all left perfect rings is included in the class of
rings described in condition (v) of Proposition 2.14. Also Proposition
2.14(1) shows that if R has a complete set of primitive idempotents, then R
has a complete set of triangulating idempotents. The next example shows
that the converse to this statement is false.

ExamPLE 2.15. Let V' be an infinite dimensional vector space over a
field F and let R = End (). Then R is a prime ring; hence {1} forms a
complete set of left triangulating idempotents. Since R is a von Neumann
regular ring and is not semisimple Artinian, R cannot have a complete set
of primitive idempotents. If dim, V' = X,,, m any finite ordinal, then the
F-algebra R has ACC and DCC on ideals. Next if dim, }JV = X, then R
has DCC on ideals, but R does not have ACC on idempotent generated
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ideals. To see the latter, recall that R, = {f € R|rank(f) < X}, where n
is any ordinal less than w, is an ideal of R. Observe that if g € R with
rank(g) = X, then RgR =R, ;.

Some of our motivating ideas for defining triangulating idempotents
originated with [Bi2, Theorem 5]. This result decomposed a ring with a
complete set of primitive idempotents in terms of iterated generalized
triangular matrix representations involving reduced rings and MDSN rings.
Recall that R is MDSN if 0 # e € I(R) implies eR contains a nonzero
nilpotent element. Now from Corollary 2.2 and Proposition 2.14(i), we
obtain that if R has a complete set of primitive idempotents, then R has a
complete set of left triangulating idempotents {b,,..., b,} such that each
b, Rb; is either an indecomposable reduced ring or an MDSN ring.

PROPOSITION 2.16. Let R be a ring. If R has a complete set of left
triangulating idempotents and satisfies any of the following conditions, then

R, Ry R,
R= O R.z Ko )
0 0 R

n

where each R; is semicentral reduced and satisfies the same condition as R,
R;; is a left Rright R-bimodule, and the rings R,,..., R,, are uniquely
determined by R up to isomorphism (induced by an inner automorphism of R)
and permutation:
(i) Ry has Gabriel dimension;

(ii) R is a Baer ring;

(iii) R is a right semihereditary ring;

(iv) R is a right hereditary ring;

(V) R is an I-ring (i.e., every non-nil right ideal contains a nonzero
idempotent element),

(vi) R is a mregular ring;
(vii) R is a right semiartinian ring;
(viii) R is a Pl-ring;

(ix) R is a right PP-ring;

(x) R is a semiregular ring;

(xi) R has bounded index of nilpotency;
(xii) R is right self-injective.
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Proof. Since R has a complete set of left triangulating idempotents, as
in the proof of Proposition 2.14(1), R has the indicated unique generalized
triangular matrix representation. To see that each R, satisfies the same
condition as R observe that if R satisfies any of the conditions (i)—(vi),
then subrings of the form eRe, where e = e?, also satisfy the same
condition as R [NO, p. 147, Ka, p. 6; Wi, pp. 336-339; J, p. 211].
Conditions (v) and (vi) are preserved under homomorphism [St, p. 193].
Thus by Proposition 1.6(ii), if R is right semiartinian (respectively, PT)
then so is each R;. For (ix), recall that R is right PP if and only if for any
X € R there exists an idempotent e € R such that r(x) = eR. Hence the
proof of this part is similar to [Ka, Theorem 4]. Condition (x) is a
consequence of [Ni, Corollary 2.3]. The remaining conditions are satisfied
by subrings of the form eRe, where e = e°.

Note that each of the following classes of semiprime rings is closed
relative to subrings of the form eRe, where e = e’: (i) von Neumann
regular, (ii) biregular, (iii) (right) fully idempotent, (iv) right V-ring. Also if
R is semiprime, then R is semicentral reduced if and only if R is
indecomposable. Thus Proposition 1.3 and Theorem 2.9 yield that if R has
a complete set of left triangulating idempotents and is from one of the
above classes, then R = @ R,, where each R, is indecomposable and from
the same class as R.

ExAMmPLE 2.17. For the ring Z of integers and a prime p, let 4, =
Z/pZ, n=1,2,...,and let 4 be the ring I'I,_, 4,. Consider the subring
R of A generated by & _, A, together with 1 € 4. Then R is a semiar-
tinian ring [St, Exercise 12, p. 193]. Thus R has Gabriel dimension 1. But
since R is a commutative von Neumann regular ring which is not Artinian,
R cannot have a complete set of left triangulating idempotents.

Observe from Theorem 2.10 and Corollary 1.7 that the number of
elements in a complete set of left triangulating idempotents is unique for a
given algebra R (which has such a set) and this is also the number of
elements in any complete set of right triangulating idempotents of R. This
motivates the following definition: R has triangulating dimension n, written
Tdim(R) = n, if R has a complete set of left triangulating idempotents
with n elements. Note that R is semicentral reduced if and only if
Tdim(R) = 1.

PrROPOSITION 2.18. If {e,,...,e,} is a complete set of primitive idempo-
tents for R, then Tdim(R) < n.

Proof. By Proposition 2.14(i), R has a complete set of left triangulating
idempotents, say {b,,...,b,}. Let ¢, =1 —(b; + -+ +b,),for 1 <k <m.
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Then each ¢, €.%(R), by Proposition 1.6(1). Lemma 2.13 guarantees that
c;Rc; has a complete set of primitive idempotents, and this set has n,;
elements, with n; < n. Then ¢, € ¢;Rc, and ¢, Rc, has a complete set of
primitive idempotents, and this set has n, elements, with n, <n,. If
m > n, then this process can be continued until one arrives at a contradic-
tion. So m < n.

LEMMA 2.19. (i) Let ¢ = b + e, where ¢ € B(R), b € #(R), and ¢ €
I(R). If eb = 0, then e € %(R).

(i) Let {ey,...,e,} be a set of nonzero, pairwise orthogonal, left
semicentral idempotents in R. If e; + -+ +e, is in B(R), then {e,,...,e,} C
B(R).

Proof. (i) For any x € R, xc = xb + xe, and exc = exb + exe = ebxb +
exe = exe. Since ec = e, we have ex = ecx = exc; so exe = ex and hence by
Lemma 1.1, e € #(R).

(ii) The case n = 1 being trivial, consider n > 1. Assume one of the
e; is not in B(R); without loss of generality let this be e,. Let e =e¢,
+ --- +e,. Observe that e is an idempotent orthogonal to e,. It can be
easily checked that e €.%,(R). Note that ¢ = e, + ¢ is in B(R) and use
part (i) to obtain e, €. #(R). Since it is given that e¢; € % (R), we get

e, € B(R).

Recall that R has a “block decomposition” if and only if R has a
complete set of centrally primitive idempotents [Lam1, Sects. 21, 22]. Our
next result shows that if R has a complete set of left triangulating
idempotents, then R has a “block decomposition” and Tdim(R) is greater
than or equal to the cardinality of a complete set of centrally primitive
idempotents.

PROPOSITION 2.20. Let {b,,...,b,} be a complete set of left triangulating
idempotents for R.

(@ ¢ € B(R\{0, 1} if and only if there exists I < {1,...,n} such that
¢ =Y,cb; and b;Rb; = b;Rb, = 0, for each i € I and j & I.

(i) R has a complete set of centrally primitive idempotents.

(i) {by,...,b,} € AR if and only if {b,,...,b,} is a complete set of
centrally primitive idempotents.

Proof. (i) Let ¢ € B(R\{0,1}. Then ¢ = c(b, + -+ +b,) = cb; + -+
+cb,. However, cb;, € .%,(b;Rb;) and .%,(b;Rb,) = {0, b;}, for each i. Hence
there exists I ¢ {1,...,n} such that ¢ = X, _,b;. Let i € I and j & I. Then
b;Rb; = c¢b;Rb; = b;Rb; = 0. Similarly, b;Rb, = 0. Conversely, let r € R.
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Then r € X7 X/_,b;Rb;. A routine argument shows cr = rc. Observe that
for the converse we need only assume that {b,,...,b,} is a set of left
triangulating idempotents.

(i) By part (i), B(R) is a finite set. Now a standard argument yields
a complete set of centrally primitive idempotents.

(iii) Let {by,...,b,} €. %(R). Observe that the b, are pairwise or-
thogonal. Then, recalling that b, + --- +b, = 1, Lemma 2.19 yields {b,,
., b,} € B(R). The converse is immediate.

Note that from Proposition 2.20(1), if R has Tdim(R) < oo, then one can
determine B(R) (and hence the indecomposability of R) by observing
certain patterns of zeros in its generalized triangular matrix representa-
tion. Moreover, from Propositions 2.18 and 2.20, if R has a complete set of
primitive idempotents of cardinality »n, then R has a complete set of
centrally primitive idempotents of cardinality m and m < Tdim(R) < n.

By Proposition 2.20(ii), if R has a complete set of left triangulating
idempotents, then R has a complete set of centrally primitive idempotents.
But in the following example, the converse does not hold.

ExamMpLE 2.21. Let R be the R,-by-X, upper triangular row-finite
matrix ring over a field. Then obviously {1} is a complete set of centrally
primitive idempotents of R. Let e, be the matrix in R with 1 in the
(n, n)-position and 0 elsewhere. Then e, + -+ +e, is a left semicentral
idempotent of R for any positive integer n. Since (e; + -+ +¢,)R < (¢,
+ - +e, + ¢,, )R, for each n, Theorem 2.9 implies that R cannot have
a complete set of left triangulating idempotents.

3. CANONICAL FORM AND GLOBAL DIMENSION

In this section we show that if R has a set of left triangulating
idempotents, then it has a “canonical” generalized triangular matrix repre-
sentation, where the “diagonal” subalgebras are organized into “blocks” of
square diagonal matrix algebras. This canonical representation is then
used to obtain a result on the left global dimension of rings with a set of
left triangulating idempotents.

For the remainder of this section {b,,..., b,} is a set of left triangulating
idempotents for R. If J is a subset of {1, ..., n}, for notational convenience
we denote the sum of all the b,, i €J, by gy, and use o7 =1 — oy. If
J =, then take 0, = 0 and oy = 1.

LEmMMA 3.1. Let J be a subset of {1,...,n} and let m € {1,...,n}\J.
Then b,, € #,(a/Ray) if and only if b;Rb,, = 0 for each i & J U {m}.
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Proof. First observe that using orthogonality of the idempotents we
have that if i €J, then b, = g/b,0]/ = o/b, = b,o/. Now assume b,
€ %(o/Raoj) and let i &J U {m}. Then b,Rb, = b(d/Ro))b, =
bb,o/Ra}b, = 0.

Conversely, assume b;Rb,, = 0, for each i & J U {m}. Let J* ={1,...,
n\J. Then (o/Raj)b, = 0;«Rb,, = XL, ,;+b;Rb,. So L,.,«b,Rb, =
b, Rb, = b,(d/Ra})b,,. Hence b,, € Z(a/Rad}).

PROPOSITION 3.2. Let j and m be in {1,...,n} with j <m <n. If
b;Rb,, =0 for each i such that j <i <m, then {b,,...,b;_,,b,,b;,b;,,,
b b ..., b} is a set of left triangulating idempotents of R.

oY m-0Ym+ 1

Proof. Let J={1,...,j— 1} and I =J U {m}. Since {b,,...,b,} is a
set of left triangulating idempotents of R, a moments reflection will reveal
that the desired result will be established if we show that b,, €.%.(o/Ray),
b, € #,(o/Roy), and b, € %,(0/Roy), where L ={1,...,k — 1, m}, for
j <k <m.Lemma 1.2 yields that b;Rb,, = 0, for all i > m. By hypothesis,
b,Rb, = 0, for j <i <m. Use Lemma 3.1 to obtain b, €.%.(o/Ray).
Next, use Lemma 1.2 to obtain b;Rb; = 0 for i > j + 1. So b;Rb; = 0 for
i & I U {j} and hence by Lemma 3.1 we have b; €.%,(g/Roy). In a similar
fashion we obtain b, €.%,(a/ Ra).

We make use of the procedure given in Proposition 3.2 to obtain a
canonical form for the generalized triangular matrix representation for R.
In this the following notation will be helpful. Let S = {b,,..., b,}. Recur-
sively define the sets I, and J(k) as follows: I, = {i | b, € Z,(R)}, J(1) = I;
whenever I, and J(k) are defined, then let I, ={i|i € J(k), b, €
F iRy}, and J(k + 1) = I, U J(k). This process terminates af-
ter no more than n steps. Consider the situation where I,.... 1, is a
partition for {1,..., n}. Then §,, ..., S, is a partition for {b,...,b,}, where
S; ={b;|i € I,}. (We will show in the proof of Theorem 3.3 that this always
occurs.) Then reorder {1,...,n} so that each I, has any (fixed) ordering
and so that elements of I; always precede elements in [, ;. This can be
thought of in terms of a permutation ¢ on {1,..., n}. Then the ordered set
{bd,(l), e, bl,,(n)} is called a canonical form for {b,,...,b,}.

THEOREM 3.3. Let {b,,...,b,} be a set of left triangulating idempotents.
Then a canonical form for {b,,...,b,} exists, and any such canonical form is
a set of left triangulating idempotents of R.

Proof. The proof involves repeated use of Lemma 3.1 and Proposition
3.2, as indicated in the following discussion. Observe that b, € §,. If
b, € S, and m # 1, then Lemma 3.1 yields b,Rb,, = 0, for all i # m. Use
Proposition 3.2 to get that {b,,,by,...,b,,_1,b,,41,--.,b,} is a set of left
triangulating idempotents of R. Continue this process using elements of S,
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until they are exhausted. Following the procedure given in Proposition 3.2
this results in a permutation « on {1,..., n} such that b,,...,b,,, are
in S;, where n; =1S,|, and a(n, + 1) is the smallest positive integer i such
that b; & S,. Also, the ordered set {b,,), by, ...} is a set of left triangu-
lating idempotents of R.

If n, = n, then we are finished. So consider n, < n and let ¢ = a(n, +
1). Observe that b, is the first element in this new ordering which is not in
S;. We show b, € §,. Let y be the sum of all elements in §;. Note that
y = ¢ + d, where c is the sum of all elements b, € S, such that i < g and
d is the sum of all elements b, €S, such that g <j. (If the latter
summation is over the empty set, then d = 0.)

Observe that inherent in the rearrangement process, we obtain b, €
ZA(1 = ¢)R(1 — ¢)). Orthogonality of the idempotents b,,..., b, yields
b,=0 -yl —y)and1 —y =1 —c)1 —y)1 —c). So b, isin (1 —
YI(Z A1 = c)R(1 — )1 — y). Now by using Lemma 1.4(ii), we have that
1 = y)Z (1 - c)RA — N —y) ¢ — y)X1 — c)RA — )1 —
y)). Since (1 —yX1 — ¢) =1 —y, we have b, €%,((1 — y)R(1 — y)). Con-
sequently, b, € S,. Either this exhausts the elements in S, or (in the
ordering given by a) there is an element b, in S, beyond b, (ie.,
p = a(k) where k> n,; +1). Use Lemma 3.1 and Proposition 3.2 as
before to obtain a set of left triangulating idempotents of R of the form
{Buciys -+ Bagnyys Dps Bys Do, 4295 - + -5 Dy} As before, repeat this process
using elements of S, until they are exhausted. This results in a permuta-
tion y on {1,..., n} such that {b . s Dy by(,,lﬂ),...,by(nz),...,by(n)}
is a set of left triangulating idempotents of R, with y(i) = a(i),1 <i < n,,
by, = by, and {by, 11y, --5 by, )} = S,. Either §; U S, ={b,,...,b,} or
we can continue the process on S, and so on. After k steps, k < n, the
process terminates in a set of left triangulating idempotents of R in
canonical form. In particular S,...,S, is a partition of {b,...,b}.
Finally, note that for any rearrangement of the elements within a given S,
we obtain another ordered set which serves as a left triangulating set of
idempotents of R.

The results of the above theorem together with those of Proposition 1.3
provide the vehicle for a generalized triangular matrix representation for
R in a special “canonical” form, which we give below:

COROLLARY 3.4 (Canonical Representation). Let {b,,...,b,}, S,...,
Sy, and  be as above. Then using 0 =n, <n, < -+ <mn,, we have
Sy = {bw(njﬂ), e, bw(n,+1)}’ j=0,1,...,k — 1, and R is isomorphic to the
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n-by-n matrix [ AG, j)], where the A(i, j) are the n;-by-n; block matrices

by 1yRbyn 1y 0
0
A(i+1,i+1) = ;
0 bl//(ni+])Rb¢(ni+l)
bl//(nﬁl)Rbl//(nﬁl) bw(nlﬂ)wa(nH.)
A(i+1,j+1) = : : ,
bwm,»ﬂ)wan,-H) bw(ni+1)wa(n,+1>

fori <j; and A(i, j) = 0, forj <i, wherei,j=0,1,...,k — 1.

CoROLLARY 3.5. If b; and b; are distinct elements in some S, then
Homg(b,R, b;R) = 0.

Proof. Observe that Homg(b,R, b;R) is group-isomorphic to b;Rb,.
From the canonical generalized triangular matrix representation for R we
see that since b;, b; € S, and i # j, we have b,Rb; = 0.

The final result of this section uses our canonical representation to
address a problem implicitly posed by Chase [Ch, p. 19]: “In general it
seems to be difficult to express the global dimension of R = (R, S, A) in
terms of the homological invariants of R’, S, and A4.” Here (R, S, A)

denotes the formal triangular matrix ring (¥ ).

THEOREM 3.6. Let {b,...,b,} and S,,...,S, be as above. Then R has
finite left global dimension if and only if D = b,Rb, + +-- +b,Rb, has finite
left global dimension. In this case, 1.gl.dim D < l.gl.dim R < k - (L.gl.dim D)
+k-1

Proof. The proof is by induction on k. If k=1, then R=D by
Theorem 3.3 or Corollary 3.4 and we are done.

Assume k > 2. Let A=1X, csbRb, M=X, s jcs,u... usbiRD;
and

B=(1—Zbi)R(1—Zbi)=( > b]-)R( ) b]-).

b,eS, b,eS, bieS,U - US, bjeS,U - US,

Then S, U --- U S, is a complete set of left triangulating idempotents of B
and S,,...,S, is a partition which establishes a canonical generalized
triangular matrix representation for B. Let D, = beeszu ... us,bRb;.
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Then by the induction hypothesis, l.gl.dim D, < l.gl.dim B < (k — 1)~
lLgl.dim D, + k — 2. Note that D = 4 ® D, by Theorem 3.3 or Corollary
3.4, so max(l.gl.dim 4, l.gl.dim D,) = Lgl.dim D. Also note that

(s 3

and M is a left A-right B-bimodule. By [Fi, Corollary 5], max(l.gl.dim A,
lgl.dim B) < lLgldim R < max(lL.gl.dim A4, Lgl.dim B + lLpd, M + 1),
where l.pd denotes the left projective dimension. Since lpd, M <
l.gl.dim 4 < l.gl.dim D, it follows that l.gl.dim D < l.gl.dim R < l.gl.dim B
+lgldimA4+1<(k—-1-lgldmD, +k -2+ lgldimD < (k- 1-
lLgldim D + k —2 + lgldimD + 1 =k -(lgl.dim D) + k — 1.

Consequently, R has finite left global dimension if and only if D has
finite left global dimension.

4. QUASI-BAER RINGS

Throughout this section R denotes a ring (i.e., K is the ring of integers).
In [CI] Clark called a ring quasi-Baer if the right annihilator of every right
ideal is generated by an idempotent as a right ideal. He used quasi-Baer
rings to characterize a finite dimensional algebra over an algebraically
closed field as a twisted semigroup algebra of a matrix units semigroup.

Examples are provided and various properties of quasi-Baer rings are
extensively studied in [Cl, PZ, Bi4]. In particular, Baer rings [Kal, prime
rings, semiprime right FPF rings [Fa2, p. 168], and piecewise domains [GS]
(see Corollary 4.13) are examples of quasi-Baer rings.

One advantage of the class of quasi-Baer rings is that it is closed under
the formation of n-by-n full matrix rings and n-by-n upper triangular
matrix rings [PZ]. This is not true of the class of Baer rings. For example, if
D is a commutative domain which is not Priifer, then the ring M,(D) is a
prime ring (hence quasi-Baer) which is not Baer [Ka, p. 17]. Also if R is
the 2-by-2 upper triangular matrix ring over a prime ring which is not a
Baer ring, then R is a quasi-Baer ring which is not a Baer ring. Observe
that prime rings with nonzero left or right singular ideal [Law] are
quasi-Baer but not Baer.

In this section we describe quasi-Baer rings which have a complete set
of left triangulating idempotents. As corollaries we obtain several well
known results, such as Michler’s splitting theorem for right hereditary right
Noetherian rings [Mi, Theorem 2.2], Faith’s characterization of semiprime
right FPF rings with no infinite set of central orthogonal idempotents
[Fal], and Gordon and Small’s characterization of piecewise domains [GS,
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Main Theorem]. We extend the structure theorem of Chatters and Hajar-
navis for semiprimary right nonsingular right CS-rings [CH1, Theorem 3.1].
Furthermore, the global dimension of quasi-Baer rings with a complete set
of left triangulating idempotents is investigated. Also, we provide an
intrinsic criterion for a triangular ring to be quasi-Baer, thereby answering
a question of Pollingher and Zaks [PZ].

The following result is a generalization of Theorem 2 in [Cl] and
Remark 3 in [PZ]. We obtain it immediately from Theorem 2.9.

PROPOSITION 4.1. Assume that R is a quasi-Baer ring with a complete
generalized triangular matrix representation. Then {r(I) | I is a right ideal of R}
and {/(I) |1 is a left ideal of R} are finite distribute sublattices of the lattice of
all ideals of R.

We next prove two lemmas which lead to one of the main theorems of
this section.

LEMMA 4.2. R is a prime ring if and only if R is quasi-Baer and
semicentral reduced.

Proof. Clearly a prime ring is quasi-Baer and semicentral reduced.
Conversely, assume R is quasi-Baer and semicentral reduced. Let X and Y
be ideals of R such that XY = 0. Then there exists an idempotent e € R
such that #(X) = eR. By Lemma 1.1(1) and (vi), e €.%(R). Hence ¢ €
{0,1}.If e=0then Y=0, and if ¢ = 1 then X = 0.

For a ring R with a generalized triangular matrix representation, the
following lemma illustrates the interplay between the structure of R and
its “diagonal” rings.

LEmMA 4.3. Let {b,,...,b,} be a set of left triangulating idempotents of R.

(1) P is a prime ideal of R if and only if there exists a prime ideal P, of
the ring b, Rb,, such that P = P, + YLb,Rb;, where the sum is over all

i,j=1,...,n, such that (i, j) # (m, m). Furthermore, P is a minimal prime
ideal of R if and only if P, is a minimal prime ideal of b,, Rb,,,.
(i) If I is a minimal ideal of R, then there exist, i, j € {1,..., n} such

that I = b;Ib;. Moreover ifI*# 0, theni = j.

Proof. (i) Referring to the generalized triangular matrix representation
for R given in the proof of Proposition 1.3, observe that the set of all
elements whose main diagonal is zero is a nilpotent ideal. Corresponding
to this in R we have that § = Zbinj, where i,j=1,...,n, i #j, is a
nilpotent ideal of R. Also observe that D,, = Zbinj, where i,j = 1,...,n,
with (i, j) # (m, m), is an ideal of R, for each m.
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Let P be a prime ideal of R. Then § C P. Since b;R + - +b,R = R,
there is some m such that b, R ¢ P. If k # m and b, R ¢ P, then neither
(b,,R)(b, R) nor (b, RXb,,R) is contained in P, contrary to one of these
products being zero. So b;R C P, for all i # m, and hence b,Rb; C P, for
each i # m. So b;Rb; C P, whenever (i, j) # (m, m). From the generalized
triangular matrix representation for R we see that P is the sum of all
b;Rb;, and hence P = b, Pb, + D,. Since P is a prime ideal of R, one
immediately has b,, Pb,, is a prime ideal of the ring b,, Rb,,.

Conversely, assume P,, is a prime ideal of the ring b,, Rb,,. Observe that
P, + D, is an ideal of R. Since b, Rb,, /P, is a prime ring, and R/(P,, +
D,)=b,Rb,/P,, we have that P, + D,, is a prime ideal of R.

(ii) Let k be the largest element of {1,..., n} such that Ib, # 0. For
t €{1,...,n}define d, = X!_,b,. By Proposition 1.6(ii), d, €.%,(R). Hence
I=d, I Also by Proposition 1.6(1), b, € %(d, Rd,). Let r € R. Then
r=rd, +rX}_,,,b. So Ib,r=1b,rd, = Ib,rd. b, CIb,. Hence I =
d Ib,. If d,_,1b, = 0, then I = b, Ib, and we are done. Suppose d,_,Ib,
# 0. As above, d, _, €#,(R), so I =d,_,Ib,, I* =0 and b, Ib, = 0. If
dy_,1b;, = 0, then b, _,Ib, = I and we are finished. Otherwise d, _,Ib, # 0
and hence I = d,_,Ib,. This process will terminate in a finite number of
steps to yield the result.

Using the notation and hypotheses of Lemma 4.3, we see immediately
that the mapping defined by ¢(P) = P,,, for each prime ideal P of R, is a
bijection from Spec(R) onto Spec(}'), where V = b, Rb, + -+ +b,Rb,.
Recall [R, p. 418] that the little Krull dimension of R, denoted by kdim(R)
is the length of a maximal chain of prime ideals of R. Then Lemma 4.3
immediately yields kdim(}") = kdim(R) and P(R) = P(V) + X, _ ;b;Rb; =
P(b,Rb,) + -+ +P(b,Rb,) + L, _ ;b;RD;.

By applying Proposition 1.3, Theorems 2.9 and 2.10 to the case of
quasi-Baer rings, we obtain the following structure theorem.

THEOREM 4.4. Let R be a quasi-Baer ring with Tdim(R) = n. Then
R = A & B (ring direct sum) such that:
» A= EB,.k:l A; is a direct sum of prime rings;

(ii) there exists a ring isomorphism

B, B, B,

6B | . . .
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where each B; is a prime ring, B
k+m=n;

(iii) for each i € {1,...,m} there exists j € {1,..., m} such that either
B,-j #0 orBji # 0;

(iv) the rings By, ..., B,, are uniquely determined by B up to isomor-
phism (induced by an inner automorphism of R) and permutation;

is a left Brright Bi-bimodule, and

i

(v) B has exactly m minimal prime ideals P,,..., P,, R has exactly n
minimal prime ideals of the form A ® P; or C; ® B where C; = @, ,; A; and
these are mutually comaximal, P(R) = P(B), and (P(R))" = 0;

(i) if I is a minimal ideal of R, then either I* #+ 0 and I C A, for some
1<i<k, orl*>=0and $(I) C (B;) forsome1 <i<mand1<j<m,
where (B;;) is the set of m-by-m matrices with entries from B;; in the (i, j)th
position and zero elsewhere.

Proof. Let E ={b,,...,b,} be a complete set of left triangulating
idempotents of R.

() Let {ey,...,¢,} = ENB(R). Take A; = ¢;R. By Lemma 4.2,
each A, is a prime ring.

(i) Let {f},...,f,,) = E\le,,..., e}, where the f, are maintained
in the same relative order as they were in E. Then {f,,...,f,} is a
complete set of left triangulating idempotents of B. Define ¢ as in the
proof of Proposition 1.3, and let B; = f; Bf; and B;; = f, Bf;. By [Cl, Lemma
2] and Lemma 4.2, each B; is a prime ring.

(iii) This part is a consequence of Proposition 2.20(i).

(iv) This part follows from Theorem 2.10.

(v) This follows from a routine argument using Lemma 4.3(i).

(vi) Since P(R) = P(B), if I?> =0, then I C f;Bf; for some i,j €
{1,...,m}. So assume that I* # 0. By Lemma 4.3(ii) there exists b, € E
such that I = b,Ib,. Consider the following cases:

Case 1. Assume v = 1. Then there exists e €.%,(R) such that rg(I) =
eR. Then (1 — b))R C eR. Since eb; € r, , (1) and b, Rb, is a prime ring,
then eb; = 0. Thus e = eb, + e(1 — b)) = e(1 — b)) = 1 — b,. By Propo-
sition 1.6(), 1 — b, € #(R). So 1 — b; € #(R) NF(R). Hence 1 — b, is
central. Therefore b, is also central.

Case 2. Assume v > 1. Let g = XY_,b; and I'" = gRg. By Proposition
1.6(Gi), g €. #(R). From [Cl, Lemma 2], T' is a quasi-Baer ring with a
complete set of left triangulating idempotents {b,,...,b,}. Thus there
exists ¢ €. #(I") such that /(1) =Tc. Hence R(g —b,) CT'c. Since
b,c €/(I) and b,Rb, = b,I'b, is a prime ring, it follows that b,c = 0.
Therefore ¢ = b,c + (g — b,)c = (g — b,)c =g — b,. By Proposition
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1.6(ii), g — b, € #AT). So g — b, € #(T') N#(T'). Hence b, is central in
I'. Thus b;I'b, = b;Rb, = 0 for all j < n. By Proposition 1.6(v), b, € #,(R).

Now let 4 = X! b, and A = hRh. By Proposition 1.6(), & €. Z(R).
From [Cl, Lemma 2], A is a quasi-Baer ring with a complete set of left
triangulating idempotents {b,,..., b,}. Thus there exists d €.%,(A) such
that r,(I) = dA. Then (h — b,)A c dA. Since db, € 1, ,, (I) and b,Ab,
= b,Rb, is a prime ring, it follows that db, = 0. Thus d = db, + d(h —
b,) = d(h —b,) = h — b,. From Proposition 1.6(), h» — b, € #(A). So
h — b, € 7(A) NF(A). Hence b, is central in A. Thus b,Ab; = b,Rb;
=0 for all j > v. By Proposition 1.6(vi), b, €. Z(R). Therefore b, €
Z(R) NZ(R). Consequently, b, is central in R.

Observe that in Theorem 4.4(vi), if I € A;, then A, is a subdirectly
irreducible ring. Moreover if X is a minimal right ideal of R such that the
ideal generated by X is a minimal ideal of R (equivalently, X is not
R-isomorphic to a nilpotent right ideal) then X C A,, for some i, and A4, is
a right primitive subdirectly irreducible ring.

COROLLARY 4.5. For each of the following conditions R has the general-
ized triangular matrix representation of Theorem 4.4, with each R; a prime
Baer ring, where R, € {A,,..., A} U{B,,..., B}

(1) R is a quasi-Baer left perfect ring. In this case each R; is a simple

Artinian ring.

(i) R is a right nonsingular right CS left perfect ring. In this case each
R, is a simple Artinian ring.

(iii) R is a right (semi-) hereditary ring with no infinite set of orthogonal
idempotents. In this case each R; is a (semi-) hereditary prime ring.

(iv) R is a right hereditary right Noetherian ring. In this case each R, is
a right hereditary right Noetherian prime ring.

(v) R is a right Goldie semiprime right PP ring. In this case R = @R,
where each R; is a prime right Goldie ring.

Proof. (i) This part is a consequence of Proposition 2.14(v) and Theo-
rem 4.4.

(i) From [CK, Theorem 2.1] a right nonsingular right CS ring is a
Baer ring. Now (i) can be used to obtain the result.

(iii)-(v) From [Sma, Theorem 1], R is a Baer ring. The remainder of
the proof follows from Proposition 2.14, Proposition 2.16, and The-
orem 4.4.

Since every semiprimary ring is left perfect, Corollary 4.5(1) extends the
structure theorem of Chatters and Hajarnavis for semiprimary right non-
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singular right CS-rings [CH1, Theorem 3.1]. Recently, Barthwal, Jain,
Kanwar, and Lopez-Permouth have obtained a generalization of the Chat-
ters and Hajarnavis result [BJKL-P]. Note that there are semiprimary right
nonsingular quasi-Baer rings which are not right CS. For example, take

(F FeF
R‘(o F )

where F is a field. Thus in Corollary 4.5, condition (i) is weaker than
condition (ii). Moreover, Corollary 4.5(iv) and (v) indicate that Theorem
4.4 is a generalization of Michler’s splitting theorem for right hereditary
right Noetherian rings [Mi, Theorem 2.2] and Levy’s decomposition of
right Goldie semiprime right hereditary rings [Le, Theorem 4.3], respec-
tively.

The following result of Faith [Fal, Theorem 1.4] is also a corollary of
Theorem 4.4.

COROLLARY 4.6. A ring R is semiprime right FPF with no infinite set of
central orthogonal idempotents if and only if R is a finite direct sum of prime
right FPF rings.

Proof. From Lemma 1.1, it follows that in a semiprime ring R, B(R) =
FAR) =.Z(R). Assume R is a right FPF with no infinite set of central
orthogonal idempotents. It is known that a semiprime right FPF ring is
quasi-Baer [Fa2, p. 168]. Furthermore R has a complete set of centrally
primitive idempotents which is also a complete set of left triangulating
idempotents. By Theorem 4.4, R is a finite direct sum of prime rings. Since
ring direct summands of right FPF rings are right FPF, these prime rings
are right FPF. The converse is immediate.

COROLLARY 4.7. Assume that R is a quasi-Baer ring with a complete
generalized triangular matrix representation, then the following are equivalent:

() lgldim R is finite;
(i) Lgl.dim R/P(R) is finite;
(i) Lgldim(R, + --- +R,) is finite, where the R; are the diagonal
rings in the complete generalized triangular matrix representation of R.

Proof. By Theorem 4.4, if R/P(R) is prime, then so is R. The proof
(i) < (i) then follows as in the proof of [GS, Corollary 5]. As a direct
consequence of Theorem 3.6, we have (i) < (iii).

If a ring R is semiprimary, then l.gl.dim R = r.gl.dim R by [Au, Corol-
lary 9]. When R is semiprimary, we use gl.dim R instead of l.gl.dim R or
r.gl.dim R.
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COROLLARY 4.8. Every semiprimary quasi-Baer ring has finite global
dimension. Therefore, every quasi-Frobenius quasi-Baer ring is semisimple
Artinian. In particular, if the group algebra F[G] of a finite group G over a
field F is quasi-Baer, then F[G] is semisimple Artinian.

Proof. This follows immediately from Corollary 4.7.

In the following, we use Theorem 3.6 to provide an upper bound for the
global dimension of a semiprimary quasi-Baer ring.

COROLLARY 4.9. Assume that R is a semiprimary quasi-Baer ring. Let
Si,.--»8; be the partition (as in Theorem 3.6) of a complete set of left
triangulating idempotents {b,, ..., b,}. Then gl.dim R < k — 1.

Proof. Since R is semiprimary quasi-Baer, each b;Rb; is a simple
Artinian ring. Hence D = b,Rb, + -+ +b,Rb, is a semisimple Artinian
ring. Thus Theorem 3.6 yields that gl.dim R < k& — 1.

There is a semiprimary quasi-Baer ring R whose global dimension is
k — 1. For example, let R be the 2-by-2 upper triangular matrix ring over a
field. Then k = 2 and gl.dim R = 1. Also for a semiprimary quasi-Baer
ring R, note that k < Tdim(R). Therefore we have that gl.dim R <
Tdim(R) — 1.

LEMMA 4.10. Let {e,,...,e,} be a set of orthogonal idempotents such that
e, + -+ +e, = 1. Then the following conditions are equivalent:

() if e;xe;Re;ye, = 0 for some x,y € R and some 1 <1i,j,k <n,
then either e;xe; = 0 or e;ye, = 0;
(ii) ifxe;Re;y =0 for somex,y € R and some 1 <j < n, then either
xe; = 0 ore;y = 0;
(iii) if Ke;L =0 for some K and L ideals of R and some 1 <j < n,
then either Ke; = 0 or e;L = 0.

Proof. (i) = (ii). Assume xejRe;y = 0. 1If e;xe; = 0, forall i = 1,...,n
then lxe; = Ye,xe; = 0. Hence xe; = 0, and we are done. So suppose
e,xe; # 0 for some m €{1,...,n}. Then e¢;ye, =0 for all k=1,...,n.
Hence 0 = (¢;yXXe,) = e;y1 = ¢;y.

(i) = (iii). Assume Ke;L =0 and e¢;L #0. Let y € L such that
e;y # 0. Then xe;Re;y = 0, for all x € K. So xe; = 0, for all x € K. Hence
Ke; = 0.

(iii) = (i). Assume e,xe;Re;ye;, = 0. Since ¢;R = ¢;Re;R, it follows
that (Re;xe;R)e;(Re;ye; R) = 0. Then either Re;xe;R = 0 or Re;ye, R = 0.
Since R has a unity, either e;xe; = 0 or ¢;ye, = 0.
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THEOREM 4.11. Assume that R has a complete set of left triangulating
idempotents with Tdim(R) = n. Then the following are equivalent:

(1) R is quasi-Baer;
(i) for any given complete set of left triangulating idempotents {b,,
.,b,} of R, if b;xb;Rb,yb, = 0 for somex,y € Randsome 1 <i,j,k <n,
then either b;xb;, = 0 or b;yb, = 0;

(iii) there is a complete set of left triangulating idempotents {c,, ..., c,}
of R such that if ¢;xc;Rc;yc, = 0 forsomex,y € Rand some 1 < i, ],k <n,
then ¢;xc; = 0 or ¢;yc;, = 0;

(iv) for any given complete set of left triangulating idempotents {b,,

> b,}, if xb;Rbjy = 0 for some x,y € R and some 1 < j < n, then either
xb; = 0 or bjy = 0;

V) for any given complete set of left triangulating idempotents
{by,....b,}, if Kb,L = 0 for some K and L ideals of R and some 1 <j <n,
then either Kb, = 0 or b;L = 0.

Proof. (i) = (ii). Let r(b;xb;R) = fR, where f €.7,(R). Then b;fb; €
&,(b;Rb;) by Lemma 1.4(ii). Since {b,,...,b,} is a complete set of left
triangulating idempotents, it follows that .,(b;Rb;) = {0,b;}. So either
b;fb; = 0 or b;fb, = b;. If b;fb; = 0, then since b,yb, € r(b,xb;R) = fR, we
have that b;yb, = fb,yb,. Thus b;yb, = b;b;yb, = b;fb;yb, = 0. On the
other hand, if ;fb; = b;, then since b,xb;f = 0, it follows that 0 = b, xb, fb,
= bxb;.

(ii) = (iii). This follows immediately because R has a complete set
of triangulating idempotents.

(iii) = (). This follows using the same method of proof as in (iv) =
(1) in Theorem 1 of [Cl].

(ii) & (iv)  (v). These implications follow from Lemma 4.10.

Observe that Theorem 4.11 answers the question of Pollingher and Zaks
which is implicit in their statement [PZ, p. 134], “Except for self-evident
cases we don’t know of any intrinsic criterion for a triangular ring to be
quasi-Baer.”

The following result extends Theorem 1 of [Cl] and Theorem 1 of [PZ].

THEOREM 4.12.  If R has a complete set of primitive idempotents, then the
following are equivalent:
(1) R is quasi-Baer,

(i)  for any given complete set of primitive idempotents {e,,...,e,}, if
e;xe;Re;ye, = 0 for some x,y € R and some 1 <1i,j,k <n, then either
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e;xe; = 0 orejye, = 0;
(iii) there is a complete set of primitive idempotents {f,,..., f,} of R
such that if f;xf,Rf;yf;, = 0 for somex,y € R and some 1 <1, j,k < m, then

Jixf; =0 or fiyfi, = 0;

(iv)  for any given complete set of primitive idempotents {g,,..., g,}, if
xg;Rg;y = 0 for some x,y € R and some 1 <j < p, then either xg; = 0 or
8y = 0;

(V) for any given complete set of primitive idempotents {g,, ..., g}, if
Kg,L = 0 for some K and L ideals of R and some 1 <j < p, then either
Kgi=0org,L =0.

Proof. For fe.%,(R) and a nonzero idempotent e, note that efe €
Z,(eRe), by Lemma 1.4(ii). In particular, if e is primitive, then .#,(eRe) =
{0, ¢} and so it follows that either efe = 0 or efe = e. The proof can then
be completed using an argument strictly analogous to that used in The-
orem 4.11.

By Proposition 2.14(i), a quasi-Baer ring with a complete set of primitive
idempotents has a complete set of left triangulating idempotents. But
there is a quasi-Baer ring with a complete set of left triangulating idempo-
tents which does not have a complete set of primitive idempotents. Let 1
be an infinite dimensional vector space over a field F and let R =
End (V). Then as in Example 2.15, R is a prime ring; hence R is a
quasi-Baer ring, and {1} is a complete set of left triangulating idempotents.
But R does not have a complete set of primitive idempotents.

As in [GS], a ring R is called a piecewise domain (or simply PWD) if
there is a complete set of primitive idempotents {e;,...,e,} such that
xy = 0 implies either x = 0 or y = 0 whenever x € ¢;Re; and y € ¢;Rey,
forl1 <i,j,k <n.

COROLLARY 4.13.  Any PWD is a quasi-Baer ring.
Proof. 'This is a direct consequence of Theorem 4.12.

This corollary may also be obtained from [PZ, Proposition 4; GS, p. 554,
No. 3]. There are PWDs which are not Baer. For example, as mentioned
before, let D be a domain which is not Priifer; then M,(D) is a PWD, but
not Baer. Also the ring (4 2), where Z is the ring of integers, is a PWD,
which is not a Baer ring.

In light of Theorems 4.11 and 4.12, it is interesting to compare quasi-Baer
rings having a complete set of left triangulating (or primitive) idempotents
with piecewise domains. In fact, the equivalence of (i) and (iii) in Theo-
rems 4.11 and 4.12 suggests calling a quasi-Baer ring with a complete set of
left triangulating idempotents a piecewise prime ring, PWP ring (i.e., the
piecewise prime generalization of a piecewise domain). Furthermore, in



592 BIRKENMEIER ET AL.

[GS, p. 554] Gordon and Small posed the following question: “Can a PWD
R possess a complete set {f;}/”, of primitive orthogonal idempotents for
which it is not true that xy = 0 implies x = 0 or y = 0 for some x € f;Rf;
and y € f, Rf;7” Moreover they stated, “To avoid ambiguity, we sometimes
say that R is a PWD with respect to {e,}.” Theorems 4.11 and 4.12 show
that if R is a PWP ring, then it is a PWP ring with respect to any complete
set of left triangulating idempotents. Thereby it provides an answer to the
“Question” of Gordon and Small for PWP rings.

Zalesskii and Neroslavskii [CH2, Example 14.17, p. 179] gave an example
of a simple Noetherian ring R which is not a domain and in which 0 and 1
are the only idempotents. So this ring R is a PWP ring, but it is not a
PWD. A right PP ring with a complete set of primitive idempotents and a
right nonsingular ring which is a direct sum of uniform right ideals are
PWDs [GS, p. 555]. So as a byproduct of Corollary 4.13, they are quasi-Baer.

LEMMA 4.14. If Ris a PWD and 0 # e € %, (R) U.Z(R), then the ring
eRe is also a PWD.

Proof. Assume R is a PWD with respect to a complete set of primitive
idempotents {e,,...,e,}. Then since e €.%(R), e;e = ee;e is an idempo-
tent for each i. Since e; is primitive and e;eR C ¢;R, it follows that either
e;e =0 or e;eR = ¢;R. If necessary reindex {e;,...,e,} so that J = {1,
...,r} is the set of all indices such that e;e # 0 for all i €J. Then
e=1(e; + - +eJe=¢ee+ - +ee and eR=¢eR+ - +e¢,eR = ¢R
+ -+ +¢,R. Furthermore, by Lemma 2.13, {eeye, ..., ee,e} is a complete
set of primitive idempotents in the ring eRe. It can be easily checked that
the mapping ¢ : eRe — [¢;Re;] defined by ¢(exe) = [e,xe;], is a ring iso-
morphism. We will use E;; for the r-by-r matrix units.

Now assume that x € (ee;e)(eRe)(ee;e) and y € (ee;e)eRe)ee,e)
such that xy =0 for 1 <i,j,k <r. Put x = (ee;e)(eae)(ee;e) and y =
(ee;e)ebeXeeie). Then 0= ¢p(xy) = ¢(x)Pp(y) = e;ae;be, E;, and so
(e;ae;)e;bey) = 0. Since R is a PWD, either e;ae; = 0 or e;be;, = 0, and
hence ¢(x) = 0 or ¢(y) = 0.So x = 0 or y = 0. Therefore eRe is a PWD
with respect to the complete set of primitive idempotents {ee;e, ..., ee, e}.

We next get as a corollary, the “Main Theorem” in [GS].
COROLLARY 4.15 [GS, Main Theorem]. Assume that R is a PWD. Then

R, Ry, Ry,
0 R, -+ R,

0 0 - R

n
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where each R; is a prime PWD and each R;; is a left R-right R;-bimodule.
Furthermore

Ri=| : - | 2

where each D; is a domain and each D, is isomorphic as a right D\ -module

to a nonzero right ideal in D). and as a left Di-module to a nonzero left ideal in
D;. The integer n is unique and the ring R; is unique up to isomorphism.

Proof. Assume that R is a PWD with respect to a complete set of
primitive idempotents {e;,...,e,}. By Corollary 4.13, R is quasi-Baer.
Thus the uniqueness of 7 and that of the ring R; up to isomorphism follow
from Theorem 4.4. From Proposition 2.14(i), there exists a complete set of
left triangulating idempotents {b,...,b,}. We obtain (1) from Theorem
4.4, where R; = b;Rb; is a prime ring. Lemma 4.14 yields R, = b, Rb, and
(1 = b)R(A — b)) are PWDs. Since 0 # b, € Z((1 — bR — b)),
Lemma 4.14 yields R, = b,Rb, = b,(1 — b))R(1 — b))b, is a PWD. By
the same method, it can be shown that each R, = b;Rb; is a PWD, for
i=1,...,n. So there exists a complete set of primitive idempotents
{cy,..., ¢, } for R; such that c;xc; yc, = 0 implies ¢;xc, = 0 or ¢, yc, = 0,
for x,y € R,. Then (2) follows immediately, where Dy is ¢;R;c,. Hence
each D]- is a domain. As in the proof of “Main Theorem” in [GS], let
0 # x € ¢;R;¢; then ¢, R;c; is isomorphic as a right ¢;R;c;-module to the
nonzero right ideal xcRc; of ¢;jR;c;.
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