
Fundamental Nano-Patterns to Characterize
and Classify Java Methods

Jeremy Singer1 Gavin Brown Mikel Luján Adam Pocock
Paraskevas Yiapanis

University of Manchester, UK

Abstract

Fundamental nano-patterns are simple, static, binary properties of Java methods, such as ObjectCreator
and Recursive. We present a provisional catalogue of 17 such nano-patterns. We report statistical and
information theoretic metrics to show the frequency of nano-pattern occurrence in a large corpus of open-
source Java projects. We proceed to give two example case studies that demonstrate potential applications
for nano-patterns. The first study involves a quantitative comparison of two popular Java benchmarking
suites, in terms of their relative object-orientedness and diversity. The second study involves applying
machine learning techniques to program comprehension, using method nano-patterns as learning features.
In both studies, nano-patterns provide concise summaries of Java methods to enable efficient and effective
analysis.

Keywords: Nano-pattern, Java method

1 Introduction

Imagine you see the fragment of Java source code given in Figure 1, and you have
the task of describing this method concisely to another software developer. How
would you achieve this goal?

In this paper, we advocate the use of nano-patterns to characterise Java methods.
Nano-patterns are properties of methods that are:

• simple: They can be detected by manual inspection from a Java developer, or by
a trivial automated analysis tool.

• static: They should be determined by analysis of the bytecode, without any
program execution context.

• binary : Each property is either true or false for a given method.

1 Email: jsinger@cs.man.ac.uk

Electronic Notes in Theoretical Computer Science 253 (2010) 191–204

1571-0661 © 2010 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2010.08.042
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82609248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:jsinger@cs.man.ac.uk
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2010.08.042
http://creativecommons.org/licenses/by-nc-nd/3.0/

For instance, from our current set of 17 nano-patterns, the fib method in Figure
1 exhibits only two nano-patterns: namely Recursive and LocalReader. Note that
information is also conveyed by the fact that certain patterns are not exhibited:
examples include ObjectCreator and Looping.

1.1 Patterns

At the high level, design patterns [11] encapsulate developer practice, whether that
be existing conventions or managerial aspirations for better practice. These design
patterns are described in terms of software architecture, using technical prose or
UML diagrams. Such patterns describe re-usable templates for structuring software.
Due to their high level nature, they are not directly executable or verifiable.

Recently there has been much interest in automatic detection of low level pat-
terns, particularly in static analysis of Java bytecode. Gil and Maman [12] introduce
the concept of micro patterns to characterize Java classes. They propose the formu-
lation of nano-patterns to characterize methods within Java classes, however they
do not elaborate on this idea. Høst and Østvold [15] provide a set of simple Java
method attributes, which we term fundamental nano-patterns. In this paper, we
extend Høst and Østvold’s attribute set to give a fuller catalogue of fundamental
nano-patterns. These patterns encapsulate Java language-specific idioms that are
the lingua franca for experienced software developers. It must be emphasized that
this catalogue is still provisional ; we anticipate adding new nano-patterns over time.

There are many potential applications for these kinds of low level patterns. The
list below mentions a number of applications that have been the subject of recent
research investigations.

(i) Catalogues of idioms to enable novice developers to gain experience at reading
and writing code [15,16].

(ii) Tools to detect bugs from anomalies in pattern usage and interactions [17,20].

(iii) Auto-completion hints in development environments [20].

(iv) Succinct characterization of code [3].

(v) Empirical evaluation of coding styles and standards in a common framework
[12].

(vi) Relating dynamic program behaviour with patterns, to guide just-in-time op-

int f i b (int x) {
i f (x<=1)

return 1 ;
else

return f i b (x−1) + f i b (x−2);
}

Fig. 1. Fragment of Java source code to be characterized concisely

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204192

timization decisions [18].

1.2 Contributions

The key contributions of this paper are:

(i) A categorized catalogue of fundamental nano-patterns, each with a clear def-
inition that would enable simple mechanical detection of the pattern from
bytecode, Section 2.

(ii) Formal evaluations of the nano-pattern catalogue, using information theory
(Section 3) and data mining (Section 4) techniques.

(iii) Two case studies that demonstrate how nano-patterns can be used to compare
different code bases (Section 5) or to aid program comprehension via large-scale
statistical analysis of Java methods (Section 6).

2 Nano-Pattern Catalogue

Nano-patterns are simple properties exhibited by Java methods. They are traceable;
that is, ‘they can be expressed as a simple formal condition on the attributes, types,
name and body’ of a Java method [12]. They should be automatically recognisable
by a trivial static analysis of Java bytecode.

Høst and Østvold [15] present a catalogue of traceable attributes for Java meth-
ods. They argue that these attributes could be used as building blocks for defining
nano-patterns. In this paper, we refer to these traceable attributes as fundamen-
tal nano-patterns, which could potentially be combined to make composite nano-
patterns.

We have supplemented Høst and Østvold’s original catalogue of fundamental
nano-patterns [15]. The full set of our fundamental nano-patterns is given in Table
1. The original patterns are given in plain typeface, and our new patterns are given
in bold typeface. Another novelty is that we have grouped these patterns into four
intuitive categories.

It is easy to see how composite nano-patterns could be constructed from logical
combinations of fundamental nano-patterns. For instance, the PureMethod nano-
pattern might be specified as:

¬ FieldWriter ∧ ¬ ArrayWriter ∧ ¬ ObjectCreator ∧ ¬ ArrayCreator ∧ Leaf

A more complex definition of method purity would remove the leaf method re-
striction, and replace it with the recursive constraint that all method calls must also
be pure methods. However this definition would require whole-program analysis,
which is considered non-trivial and therefore not suitable for a nano-pattern. Note
that in the remainder of this paper, we restrict attention to fundamental nano-
patterns only.

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204 193

category name description

Calling

NoParams takes no arguments

NoReturn returns void

Recursive calls itself recursively

SameName calls another method with the same name

Leaf does not issue any method calls

Object-Orientation

ObjectCreator creates new objects

FieldReader reads (static or instance) field values from an object

FieldWriter writes values to (static or instance) field of an object

TypeManipulator uses type casts or instanceof operations

Control Flow

StraightLine no branches in method body

Looping one or more control flow loops in method body

Exceptions may throw an unhandled exception

Data Flow

LocalReader reads values of local variables on stack frame

LocalWriter writes values of local variables on stack frame

ArrayCreator creates a new array

ArrayReader reads values from an array

ArrayWriter writes values to an array

Table 1
Catalogue of fundamental nano patterns. Boldface names are for original patterns we have devised, all

other patterns come from Høst and Østvold’s catalogue.

2.1 Detection Tool

We have developed a command line tool to detect nano-patterns for methods in
Java bytecode class files, based on the ASM bytecode analysis toolkit [6]. Our tool
reads in a class file name specified as a command line argument, and dumps out
a bitstring of nano-patterns exhibited for each method in the class. The detection
tool is written in Java; it is only 600 source lines of code. Our code makes extensive
use of data structures and visitor code from the ASM API. The tool operates in
two different ways to detect specific nano-patterns:

(i) Some patterns are found by simple iteration over a method bytecode array,
searching for specific bytecode instructions that indicate particular nano-patterns.
For example, the newarray bytecode indicates the ArrayCreator nano-pattern.

(ii) Other patterns are found by simple regular expression matches on method
signatures. For example, if the method type signature contains the string ()
then the method exhibits the NoParams nano-pattern.

We envisage that it should be possible to automate the generation of ASM-based
detection code for specific nano-patterns, given some kind of formal specification of
the nano-pattern characteristics. A meta-language like JTL [8] may be useful here.
We do not address this issue in the current research.

2.2 Statistics

We analyse a large and varied corpus of Java programs; the details are given in
Table 2. These are all commonly available industry-standard benchmark suites and
open-source Java applications, that have been used in previous research-based Java
source code case studies.

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204194

program version description

Ashes Suite 1st public release Java compiler test programs

DaCapo 2006-10-MR2 Object-oriented benchmark suite

JBoss 3.2.2 Application server

JEdit 4.3 Java text editor application

JHotDraw 709 Java graphics application

Jikes RVM 2.9.1 Java virtual machine, includes classpath library

JOlden initial release Pointer-intensive benchmark suite

JUnit 4.4 Test harness

SPECjbb 2005 Java business benchmark

SPECjvm 1998 Simple Java client benchmark suite

Table 2
Java benchmarks used in nano-pattern coverage study

nano-pattern % coverage

LocalReader 89.4

StraightLine 63.6

FieldReader 51.4

Void 50.6

NoParams 39.2

SameName 32.4

LocalWriter 31.1

ObjectCreator 26.5

FieldWriter 26.5

Leaf 20.3

TypeManipulator 15.2

Exceptions 13.6

Looping 11.3

ArrayReader 6.7

ArrayCreator 5.4

ArrayWriter 5.3

Recursive 0.7

Overall 100.0

Table 3
Coverage scores for each nano-pattern on the corpus of Java programs

In total, there are 43,880 classes and 306,531 methods in this corpus. We run
our nano-pattern detection tool on all these classes. Table 3 summarises the results.
It gives the proportion of methods that exhibit each kind of nano-pattern. The
overall coverage represents the percentage of all analysed methods that exhibit any
nano-pattern. Since this score is 100%, all methods analysed exhibit at least one
nano-pattern from our catalogue. The mean number of nano-patterns per method
is 4.9.

3 Information Theoretic Characterization

Information theoretic entropy measures the uncertainty associated with a random
variable. In this section, we consider our nano-pattern detector tool as a black box
supplying values that represent nano-pattern bitstrings. For each of the different
potential bitstrings, there is an associated probability based on its frequency of

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204 195

occurrence. (We estimate probabilities by frequencies in our corpus of 306,531
methods.) Given the set of all possible bitstrings B, we denote the probability of
the occurrence of a particular bitstring b ∈ B as pb. We compute the entropy H

(after Shannon) as:

H = −
∑

b∈B

pblog2(pb)

A low entropy score indicates low uncertainty in the underlying random variable,
which means that nano-patterns are very predictable. This would reduce their
utility for classification. On the other hand, a high entropy score indicates high
uncertainty. The maximum entropy score is log2|B| where |B| is the number of
potential bitstrings. Since there are 17 different nano-patterns in our catalogue,
the maximum entropy score would be 17. This would mean all nano-patterns are
independent, and have a 50% chance of being exhibited by a method.

In fact, from the 306,531 methods we measured, the entropy of the bitstrings is
8.47. This value is relatively high, which means the nano-patterns for a method
are not easily predictable. There are some inter-dependencies between patterns, but
these are generally non-trivial. (The next section describes cross-pattern relation-
ships in detail.)

4 Data Mining Characterization

4.1 Background

Data mining is ‘the non-trivial extraction of implicit, previously unknown, and po-
tentially useful information from data’ [10]. A number of techniques exist to perform
data mining on large data sets. One of the most popular techniques is association
rule mining from sets of items in a data set, introduced by [1]. Association rules
are obtained via frequent pattern mining. Association rules take the form of logical
implications. Their primary use is for market basket analysis, where vendors search
for items that are often purchased together [5].

We are interested in sets of nano-patterns that are frequently exhibited together,
by Java methods. Such association rules have the form A → B, meaning that if
method m exhibits nano-pattern A, then this implies m also exhibits B. Along with
each rule, there are two related measures of interest: support and confidence. The
support is the proportion of methods that exhibit both A and B in relation to the
total number of methods analysed. The confidence is the proportion of methods
that exhibit both A and B in relation to the total number of methods that exhibit
A. A rule is only retained if it satisfies user-determined minimum thresholds for
both support and confidence [2].

4.2 Nano-Pattern Analysis

We perform association rule mining on the complete set of 306,531 methods for
which we have nano-pattern data. The rule mining algorithm produces hundreds
of rules. However we immediately discard all rules involving the LocalReader nano-

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204196

pattern; since it is such a prevalent pattern, any rules involving it are not really
meaningful. Many rules remain after this initial pruning. Some of these are ob-
vious, for instance: ArrayCreator implies ArrayWriter with high confidence. In the
remainder of this section, we report on three interesting rules that occur due to
common Java programming idioms. Each of these rules exceeds our thresholds
for support and confidence. We carry out further statistical analysis using the lift
and χ2 measures to determine whether there are statistically significant correlations
between the associated nano-patterns in each rule. In each case we find that the
nano-patterns are significantly positively correlated.

Looping → TypeManipulator(1)

This rule is caused by the prevalence of java.util.Iterator objects used in
while loops over data structures from the Java Collections framework. The code
listing below gives an outline example.

while (i . hasNext ()) {
Element e = (Element) i . next () ;
// . . .

}
In older versions of Java, all objects are coerced to the Object supertype when

they are stored in library container data structures. Even with addition of generics
in Java 5 source, type casts are still present in Java bytecode for retrieving objects
from container data structures. Therefore this rule is an idiomatic artifact of the
Java source to bytecode transformation.

ArrayReader → Looping(2)

This rule is caused by the idiom of iterating over an entire array, reading each
element. The code listing below gives an outline example.

for (int i =0; i<a . l ength ; i++) {
// . . .
doWork(a [i]) ;
// . . .

}

FieldWriter ∧ StraightLine → NoReturn(3)

This rule is due to the prevalence of object-oriented setter accessor methods.
Such methods take a single argument, write this value to a field of the current
object and return void. The code listing below gives an outline example. One
would expect to see this kind of rule for well-written programs in any object-oriented
language.

public void setXYZ(Foo xyz) {
this . xyz = xyz ;
return ;

}

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204 197

4.3 Applications

There are many potential applications for these kinds of association rules. We
outline three areas below.

(i) Detection of high-level design patterns from low-level nano-patterns. In gen-
eral, design pattern discovery is acknowledged to be difficult [14,9]. We have
shown above that some combinations of low-level features are potential indica-
tors for higher-level patterns. Gueheneuc et al [13] explore this concept further,
although with a possibly more restrictive set of static code features.

(ii) A ‘Programmer’s Lexicon’ style guidebook for novice programmers [15], out-
lining common and idiomatic programming conventions. Each discovered con-
vention requires manual annotation to provide some measure of goodness. In
particular, it is likely that prevalent anti-patterns may be discovered.

(iii) Identification of potential bugs. Given a large and varied corpus of code, we
can extract a set of high-confidence association rules. If these rules are not
kept in new code, an online interactive checker can inform the developer of the
rule violations [20].

5 Case Study A: SPECjvm98 vs DaCapo

In this section, we use nano-patterns to contrast two Java client-side benchmark
suites. In general, it is difficult to quantify the differences between two sets of
programs: However we demonstrate that nano-patterns provide a good basis for
differentiation.

The SPECjvm98 benchmark suite was originally intended to evaluate the per-
formance of commercial Java virtual machine (JVM) implementations. However
due to its small size and relative age, it is now only used as a target for academic
research such as points-to analysis [21]. A potential replacement for SPECjvm98 is
the DaCapo benchmark suite, compiled by an academic research group. The Da-
Capo introductory paper [4] presents an extensive empirical study to highlight the
differences between these two benchmark suites. The authors claim that DaCapo
is superior to SPECjvm98 for two main reasons:

(i) DaCapo programs are more object-oriented than SPECjvm98.

(ii) DaCapo programs are more diverse in their behaviour than SPECjvm98.

Using our nano-patterns catalogue, we should be able to provide new quantitative
evaluations of these criteria for the two benchmark suites.

5.1 Object Orientation

The DaCapo paper [4] argues that the DaCapo suite is ‘more object-oriented’ than
SPECjvm98. The static analysis study that backs up this claim employs Chidamber
and Kemerer metrics [7]. We can evaluate the level of static object orientation in
each benchmark suite, by considering the four nano-patterns that deal with object

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204198

benchmark # methods % OC % FR % FW % TM % cov

S
P

E
C

jv
m

9
8

201 compress 44 13 65 52 0 86

202 jess 673 33 50 23 8 75

205 raytrace 173 16 58 40 2 86

209 db 34 38 79 50 32 94

213 javac 5601 29 61 26 10 77

222 mpegaudio 280 17 60 38 2 79

227 mtrt 177 15 57 39 2 85

228 jack 302 23 36 49 10 66

geomean 249 21 57 38 5 81

D
a
C

a
p
o

antlr 1788 41 62 39 13 81

bloat 2718 33 66 33 22 85

chart 4182 33 59 26 12 82

eclipse 5385 27 58 29 16 79

fop 5180 24 46 32 7 76

hsqldb 2767 21 58 22 12 72

jython 6549 25 55 19 19 75

luindex 963 28 56 33 9 79

lusearch 1252 27 58 32 10 81

pmd 4923 20 45 26 13 66

xalan 5512 20 54 28 10 75

geomean 3180 27 56 28 12 77

Table 4
Object-oriented nano-pattern coverage for each benchmark

orientation. Recall from Table 1 that these are ObjectCreator, FieldReader, Field-
Writer and TypeManipulator. (In this study we abbreviate these nano-patterns as
OC, FR, FW and TM respectively.)

Table 4 presents the results of this analysis. For each benchmark suite, we con-
sider every Java application separately. For each application, we perform static
analysis on all methods defined in benchmark classes that are loaded by a JVM
during an execution of that benchmark with the default workload. From this anal-
ysis, we report the proportion of methods that exhibit each OO nano-pattern. We
also report the overall OO coverage, which gives the proportion of methods that
exhibit at least one OO nano-pattern.

From these results, it is not immediately clear to see whether DaCapo is more
object-oriented than SPECjvm98. They have similar overall coverage scores for
the OO nano-patterns, in relative terms. However note that absolutely, DaCapo is
much larger than SPECjvm98. The OO metrics given in the original DaCapo paper
were absolute figures too.

A higher proportion of methods create objects in DaCapo, and it also has many
more type manipulating methods. These are clear indications of object orientation.
On the other hand, there are similar amount of object field reading for both suites.
Interestingly, SPECjvm98 seems to perform much more object field writing. We
investigate the difference between accesses to static and instance fields, since FR
and FW cover both static and instance accesses by definition. Again we found
similar statistics in both suites: around 20% of reads are to static fields, and less
than 10% of writes are to static fields.

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204 199

One potential limitation of this study is that the nano-pattern catalogue does not
presently capture all object-oriented behaviour. For instance, we do not have any
measure of method overriding via virtual method calls. Also we make no distinction
between accessing object fields through a this pointer and other pointers. Perhaps
a richer set of nano-patterns would provide a clearer picture.

5.2 Diversity

Nano-patterns can be used to indicate similarity between methods; we assert that
similar methods should exhibit similar nano-patterns. The DaCapo paper [4] criti-
cizes the SPECjvm98 benchmarks for being overly similar. The authors take a set
of architectural metrics for each benchmark and perform a principal components
analysis with four dimensions. They show that the DaCapo programs are spread
around this 4-d space, whereas the SPECjvm98 programs are concentrated close
together.

Again, we can use nano-patterns to confirm the results of this earlier study. We
consider all nano-patterns in our catalogue from Table 1. Again, we consider all
methods from benchmark classes loaded during execution. To demonstrate that
different benchmarks within a suite are diverse, we take two measurements for each
benchmark.

(i) Number of unique nano-pattern bitstrings: Given a set of nano-pattern bit-
strings for a single benchmark, which of these bitstrings do not appear in any
other benchmark in the suite? This characterizes behaviour that is unique to
one benchmark. We can count the number of such unique bitstrings as an
indicator of benchmark diversity within a suite.

(ii) Information theoretic entropy : Given a set of nano-pattern bitstrings for each
benchmark, we can compute the information theoretic entropy of that set.
High entropy values indicate greater uncertainty, i.e. the bitstrings are less
predictable. Again, this can indicate benchmark diversity within a suite.

Table 5 reports the results for this analysis of benchmark diversity. It is clear to
see from the geometric mean scores for each benchmark suite that DaCapo bench-
marks have more unique nano-pattern bitstrings per benchmark, and that the en-
tropy of nano-pattern bitstrings is higher for DaCapo. This analysis confirms the
claims in the original DaCapo paper [4] that the DaCapo suite is more diverse than
SPECjvm98.

5.3 Caveats

Analysis based on nano-patterns is entirely static. For a true comparison between
the benchmark suites (especially in relation to diversity) it would be better to look
at both static and dynamic behaviour. The DaCapo study focused entirely on
dynamic behaviour, whereas we have only looked at static behaviour here. However
we reach the same conclusions in relation to intra-suite diversity.

On the other hand, we assert that it is still useful to perform a static compar-

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204200

benchmark # methods # unique NP sets entropy

S
P

E
C

jv
m

9
8

201 compress 44 6 4.69

202 jess 673 52 6.09

205 raytrace 173 0 4.55

209 db 34 8 4.79

213 javac 5601 628 8.13

222 mpegaudio 280 32 6.48

227 mtrt 177 0 4.58

228 jack 302 24 4.92

geomean 248.63 13.65 5.41

D
a
C

a
p
o

antlr 1788 28 7.22

bloat 2718 49 7.02

chart 4182 98 7.17

eclipse 5385 95 8.35

fop 5180 32 7.01

hsqldb 2767 144 8.29

jython 6549 136 7.13

luindex 963 10 7.62

lusearch 1252 13 7.65

pmd 4923 44 7.57

xalan 5512 110 8.08

geomean 3179.85 50.14 7.54

Table 5
Measurements of benchmark diversity in terms of unique nano-pattern sets and nano-pattern entropy

ison of the benchmark suites in isolation. Often these particular Java benchmarks
are used to compare static analysis techniques (as opposed to runtime JVM per-
formance) in which case, static object orientation and diversity become the main
concern. Hence this style of empirical comparison based on nano-patterns is indeed
valuable.

6 Case Study B: Method Clustering based on Nano-
Patterns

Clustering is a form of unsupervised learning. It is used to group data points into
a variable number of clusters based upon a similarity measure, usually a distance
metric. This enables a quick characterisation of data into higher level groupings.
In this particular context, we aim to cluster similar methods to enable program
comprehension, where method similarity is based on nano-pattern bitstrings. There
are two main obstacles:

(i) All our nano-pattern features are binary values, which is non-standard for
clustering algorithms that generally operate on real-valued continuous data.

(ii) Our nano-pattern feature space has 17 dimensions. This makes it difficult to
visualize any clusterings.

To work around these problems, we use principal components analysis (PCA)
to project our data into a continuous 2-d space. PCA transforms the data into a
different space. It creates new features out of the axes of maximum variation in the

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204 201

Fig. 2. 2-d projected nano-pattern data for methods in corpus (note sausage-shaped clusters)

original data set. This means the largest principal components contain the most
information about the data. Figure 2 shows a visualization of this projected data.
The first two principal components form the axes for this graph, as these account
for most of the variation in the data.

The figure shows a number of different clusters, indicating that there are several
groups of similar methods in the original data set. A further clustering on this
data would provide a basis for relating the apparent clusters to the presence of
combinations of nano-patterns in the original data set.

We note in passing that there has been previous work using clustering to anal-
yse Java methods [19]. However our set of static method features appears to be
richer than in earlier work. The application area for this analysis is mostly program
comprehension.

7 Conclusions

In this paper, we have shown that fundamental nano-patterns can provide succinct
characterizations of Java methods. We have demonstrated the capabilities of nano-
patterns to provide a framework for quantitative analysis of large Java applications,
and to enable learning-based techniques like data mining and clustering.

Our future work includes extending the provisional catalogue of nano-patterns.
We hope to improve its object-oriented features with support for method over-
loading, overriding and super() calls. We also want to enrich our Exceptions
nano-pattern to distinguish between methods that throw exceptions directly, catch
exceptions, and propagate uncaught exceptions. Additional higher-level method

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204202

characteristics include threading activity and use of standard Java APIs like the
collections framework.

Finally, we hope to employ state-of-the-art clustering algorithms to group related
methods together and analyse these results. Eventually we aim to use fundamental
nano-patterns in a supervised learning context.

References

[1] Agrawal, R., T. Imielinski and A. Swami, Mining association rules between sets of items in large
databases, in: Proceedings of the International Conference on Management of Data, 1993, pp. 207–216.

[2] Agrawal, R. and R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the 20th
International Conference on Very Large Databases, 1994, pp. 487–499.

[3] Bajracharya, S., T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi and C. Lopes, Sourcerer: a search engine
for open source code supporting structure-based search, in: Companion to the 21st ACM SIGPLAN
Symposium on Object-Oriented Programming, Systems, Languages, and Applications, 2006, pp. 681–
682.

[4] Blackburn, S. M. et al., The DaCapo benchmarks: Java benchmarking development and analysis,
in: Proceedings of the 21st Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 2006, pp. 169–190.

[5] Brin, S., R. Motwani, J. Ullman and S. Tsur, Dynamic itemset counting and implication rules for market
basket data, in: Proceedings of the 1997 ACM SIGMOD International Conference on Management of
Data, 1997, pp. 255–264.

[6] Bruneton, E., R. Lenglet and T. Coupaye, ASM: a code manipulation tool to implement adaptable
systems, in: Adaptable and Extensible Component Systems, 2002.

[7] Chidamber, S. and C. Kemerer, A metrics suite for object oriented design, IEEE Transactions on
Software Engineering 20 (1994), pp. 476–493.

[8] Cohen, T., J. Y. Gil and I. Maman, Jtl: the Java tools language, in: Proceedings of the 21st Annual
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications,
2006, pp. 89–108.

[9] Dong, J. and Y. Zhao, Experiments on design pattern discovery, in: Proceedings of the Third
International Workshop on Predictor Models in Software Engineering, 2007, p. 12.

[10] Frawley, W., G. Piatetsky-Shapiro and C. Matheus, Knowledge discovery in databases: An overview,
AI Magazine (1992), pp. 213–228.

[11] Gamma, E., R. Helm, R. Johnson and J. M. Vlissides, “Design Patterns: Elements of Reusable Object-
Oriented Software,” Addison Wesley, 1994.

[12] Gil, Y. and I. Maman, Micro patterns in Java code, in: Proceedings of the 20th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, 2005, pp. 97–116.

[13] Gueheneuc, Y., H. Sahraoui and F. Zaidi, Fingerprinting design patterns, in: Proceedings of the 11th
Working Conference on Reverse Engineering, pp. 172–181.

[14] Heuzeroth, D., T. Holl, G. Högström and W. Löwe, Automatic design pattern detection, in: Proceedings
of the 11th IEEE International Workshop on Program Comprehension, 2003, pp. 94–103.

[15] Høst, E. W. and B. M. Østvold, The programmer’s lexicon, volume I: The verbs, in: Proceedings of the
Seventh IEEE International Working Conference on Source Code Analysis and Manipulation, 2007,
pp. 193–202.

[16] Høst, E. W. and B. M. Østvold, The Java programmer’s phrase book, in: Proceedings of the First
International Conference on Software Language Engineering, 2008, pp. 322–341.

[17] Kim, S., K. Pan and E. Whitehead Jr, Micro pattern evolution, in: Proceedings of the International
Workshop on Mining Software Repositories, 2006, pp. 40–46.

[18] Marion, S., R. Jones and C. Ryder, Decrypting the Java gene pool: Predicting objects’ lifetimes with
micro-patterns, in: Proceedings of the International Symposium on Memory Management, 2007, pp.
67–78.

[19] Rousidis, D. and C. Tjortjis, Clustering data retrieved from Java source code to support software
maintenance: A case study, in: 9th European Conference on Software Maintenance and Reengineering,
2005, pp. 276–279.

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204 203

[20] Singer, J. and C. Kirkham, Exploiting the correspondence between micro patterns and class names,
in: Proceedings of the Eighth IEEE International Working Conference on Source Code Analysis and
Manipulation, 2008, pp. 67–76.

[21] Sridharan, M. and R. Bod́ık, Refinement-based context-sensitive points-to analysis for Java, in:
Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2006, pp. 387–400.

J. Singer et al. / Electronic Notes in Theoretical Computer Science 253 (2010) 191–204204

	Introduction
	Patterns
	Contributions

	Nano-Pattern Catalogue
	Detection Tool
	Statistics

	Information Theoretic Characterization
	Data Mining Characterization
	Background
	Nano-Pattern Analysis
	Applications

	Case Study A: SPECjvm98 vs DaCapo
	Object Orientation
	Diversity
	Caveats

	Case Study B: Method Clustering based on Nano-Patterns
	Conclusions
	References

