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Abstract

New instruments and technologies are allowing the acquisition of large amounts of data
from astronomical surveys. Nowadays there is a pressing need for autonomous methods to
discriminate the interesting astronomical objects in the vast sky. The High Cadence Transient
Survey (HiTS) project is an astronomical survey that is trying to find a rare transient event
that occurs during the first instants of a supernova. In this paper we propose an autonomous
method to discriminate stellar variability from the HiTS database, that uses a feature extraction
scheme based on Non-negative matrix factorization (NMF). Using NMF, dictionaries of image
prototypes that represent the data in a compact way are obtained. The projections of the
dataset into these dictionaries are fed into a random forest classifier. NMF is compared with
other feature extraction schemes, on a subset of 500,000 transient candidates from the HiTS
survey. With NMF a better class separability at feature level is obtained which enhances the
classification accuracy significantly. Using the NMF features less than 4% of the true stellar
transients are lost, at a manageable false positive rate of 0.1%.
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1 Introduction

Nowadays astronomy is changing to a data-driven science [5]. The advances in observing and
processing technologies have allowed the development of deep and extent sky surveys. One of
the most emblematic examples of this is the Large Synoptic Survey Telescope (LSST; [11]),
currently under construction in Chile. The LSST will start operating in 2022, covering the
whole southern hemisphere sky. The LSST will generate a 150 Petabyte image database, 40
Petabytes worth of object catalogs, and 2 million transient alerts per night. The classification
and characterization of astronomical phenomena on these large streams of data is a challenge
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tackled by the new fields of astrostatistics and astroinformatics [1]. These fields combine tech-
niques from statistics, computer science and engineering for the development of robust methods
for big-data astronomical problems. It is expected that computational intelligence methods will
be key additions in these new areas [7]. Astronomy is entering the era of big-data and prepa-
rations should be made in order to cope with the challenges imposed by surveys such as the
LSST. In this paper we present a methodology to discriminate variable stars on large image
catalogs from the High Cadence Transient Survey (HiTS) [6]. First the dimensionality of the
dataset is reduced by projecting it to a set of prototypes obtained using Non-negative Matrix
Factorization (NMF; [9, 3]). After that, the coefficients associated to the prototypes are fed to
a classifier based on Random Forests [2]. The work presented in this paper considers a subset
of 500,000 HiTS transient candidates found in 2013. We show that using the NMF features
a better classification accuracy is obtained with respect to other feature extraction schemes.
The dictionaries obtained by NMF are part-based and naturally sparse, which helps to improve
class separability at feature level.

1.1 Astronomy Background

The HiTS (2013-2015), led by Francisco Förster et al.1, is focused on the real time detection of
supernovae (SNe), i.e. the explosion that characterizes the end of the life-cycle of a massive star
[13]. The scientific objective of HiTS is to detect a supernova shock breakout (SBO), an event
that occurs within hours after the supernova process begins. Detecting this event in the visible
spectrum may help to prove or discard the theoretical models on SNe evolution (e.g. [14]).
HiTS has been very successful on its SNe hunt [6], but the SBO is yet to be found. The HiTS
observations were performed at Cerro Tololo, Chile using the Dark Energy Camera (DECam;
[4]). DECam contains 60 CCD detectors of 2K x 4K pixels covering 3 square degrees of the sky.
In optics the capabilities of a telescope are summarized by its “etendue”, the product of the
capture area in square meters and the camera field of view in square degrees. The etendue of
DECam is 34 m2deg2, currently the second largest in the world, and it corresponds to a 10% of
the expected etendue of the LSST. HiTS observed 50 DECam fields (150 deg2) with a cadence
of 1.6 hours for 6 nights, between February and March 2015 [6]. The survey performed very
deep observations in order to gather a large volume of events and increase the SBO detection
chance. But the further the object the fainter it appears, making it harder to discriminate.
Approximately a 66% of the interesting events are expected to be found between signal-to-noise
ratio (SNR) 10 and 5 (the lower limit of the instrument).

The HiTS reduction pipeline performs real-time image subtraction in order to detect
variable sources. For each field a given epoch is chosen as reference, to which all the other
epochs are compared. In what follows the first steps of the HiTS pipeline are briefly described.
In the first step an image is aligned to the reference by detecting point sources using standard
astronomical tools and performing a second-order transformation. In the second step the point
spread function (PSF) of the images are matched. When observing an astronomical object,
what one actually gets is the convolution of the point source (object) with the PSF. The PSF
takes into account effects of the instruments and the atmosphere that, in practice, broadens the
object in pixel space. If the PSFs of the images are not matched before subtractions, artifacts
will appear. In the third stage the subtraction is performed. After that, the difference image
is divided by the local noise in order to obtain an “SNR image”. Any region in the difference

1A manuscript titled “The High cadence Transient Survey (HiTS): real-time detection of supernovae and
other transients using DECam” is in preparation. This manuscript will expose the HiTS tools, methods and
results from 2013 to 2015.
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image space, whose weighed integrated flux is larger than 5 standard deviations, is selected as
a transient candidate. Each candidate is represented by a set of 21 x 21 pixel stamps obtained
from the subtraction procedure and centered on the transient event. At this stage the candidates
are dominated by statistical fluctuations, cosmic rays, and artifacts due to misalignments and
wrong PSF matching. A training set using known variable stars artificially placed on DECam
images was constructed. The database contains roughly a hundred million candidates.

1.2 NMF Background

Non-negative matrix factorization (NMF) [9] is a technique to learn localized representations
for data in an unsupervised way. In NMF, a non-negative data matrix V ∈ R

M×N , containing
N samples and M dimensions, is decomposed as V ≈WH, where W ∈ R

M×K and H ∈ R
K×N

are the dictionary and coefficients matrices, respectively. The columns of the dictionary matrix
represent the basis vectors of the decomposition and we will refer to them as prototypes.
K is a user defined parameter. The key difference between NMF and other decomposition
techniques is the non-negativity constraint, which forces the components to be positive, but
most importantly it forces the combinations between dictionary elements to be purely additive.
This produces decompositions that are part-based and inherently sparse [9]. In this work we use
Fast Hierarchical Alternating Least Squares (Fast HALS) [3], to solve the following constrained
NMF optimization problem:

min
W,H

‖V −WH‖2F + λ‖H‖1 s.t. W ≥ 0, H ≥ 0, (1)

where a sparsity constraint for the coefficients based on the �1 norm is used. The parameter
λ represents the trade-off between reconstruction error and sparsity. The Fast HALS algo-
rithm performs a column-by-column optimization of the W and HT matrices, reducing the
computational time and memory requirements substantially in comparison with other NMF
implementations [3].

2 Methods

2.1 Description of the subset of the HiTS survey

The HiTS subset that is used to train and test the proposed methodology consists of 500,000
objects selected as transient candidates by the HiTS survey in 2013. Each sample is represented
by a 1323 dimensional vector corresponding to three 21 x 21 pixel images. The first image
corresponds to the difference image divided by the local noise or SNR image. The transient
candidate is centered in the SNR image. The second and third images correspond to the current
and reference frame, from which the difference image was obtained. In what follows we refer
to transient candidates associated to stellar variability as the true or positive class. Transient
candidates associated to cosmic rays, detection and subtraction artifacts are referred as the
false or negative class. The two classes in the 500,000 transient subset are balanced. Figure 1
show examples of positive and negative samples from the subset.

2.2 Description of the procedure to discriminate variable stars

In this section we describe the methodology used to discriminate variability due to stellar
phenomena from the HiTS transient candidate database. First the transient subset is separated
into a training set and testing set, each one having half the samples and preserving the balance
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(a) (b)

(c) (d)

Figure 1: Examples from the 500,000 transient subset selected from the HiTS survey. For
each sample (a-d), the current, reference and SNR difference image are showed. The colormap
is scaled per image, so that the dimmest and brightest pixel correspond to start and end of
the colormap, respectively. Figures (a) and (b) correspond to transients due to artifacts (false
class). Figures (c) and (d) correspond to transients due to stellar variability (true class). The
SNRs of the true samples are 50 and 6.

between classes. Ten disjoint partitions for the training and testing sets are used in order to
obtain error bars. Three NMF dictionaries are built from the training set, one for each of the
images contained in the samples. The HALS NMF procedure has two user-defined parameter,
the number of prototypes in the dictionary (K) and the sparsity level of the decomposition
(λ). The same number of prototypes is considered for the three dictionaries. HALS NMF is
implemented in python2. Tests were performed on an Intel i5-4460 CPU with 16GB of RAM.

The method chosen to classify the samples is the random forest (RF) [2], primarily due
to its competitive performance and simplicity in terms of parameter calibration. The RF
implementation of the scikit-learn package is used [12]. The RF classifier is trained using
an information gain criterion based on Shannon’s entropy and 100 decision tree estimators.
Because we are interested in testing NMF for feature extraction we do not delve much into
parameter selection of the RF nor comparison with other classifiers. The procedure to obtain
the dictionaries using NMF and train the classifier is as follows:

1. Select the number of prototypes (K) and the sparsity level of the decomposition (λ).

2. Normalize the images (SNR, current and reference) so that their pixels are mapped in
[0.0, 1.0]. This is done for every single image and is required by the NMF algorithm to
find meaningful structures.

3. Apply HALS NMF to the normalized training set, but doing it separately for each of
the images comprising the samples. At the end of this step three dictionaries are gener-

2The python custom implementation of HALS NMF can be found online at https://sites.google.com/

site/pablohuijse/.
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ated, W1, W2 and WS . Note that each column of the dictionary corresponds to a 21x21
prototype image.

4. Train a random forest classifier using the coefficient matrices of the three images, H1, H2

and HS ; plus the mean and standard deviation of each of the un-normalized images (i.e.
having their original pixel values). This corresponds to a total of 3K + 6 features.

5. Save the random forest model and the three dictionaries for further evaluation.

The dictionaries and the model are then evaluated on the test database as follows:

1. Normalize the samples so that each image has its pixels mapped in [0.0, 1.0].

2. Project the new samples into the three dictionaries and obtain Ĥ1, Ĥ2 and ĤS . This is
done using the HALS NMF algorithm but keeping the dictionaries fixed and update only
the coefficients.

3. Obtain the mean and standard deviation of the original (un-normalized) SNR image,
current image and reference image in the test database.

4. Set a probability threshold and evaluate the random forest model using the projected
coefficients and statistical features.

For each trained classifier the predicted labels are compared to the real labels, to compute
false positive rates (FPRs) and false negative rates (FNRs). We measure the performance of
the method in terms of FPR versus FNR curves. Different discrimination threshold for the
probability output of the classifier are used in order to obtain the curves. Results are evaluated
in a high (SNR > 6) and low SNR (5 < SNR ≤ 6) regimes.

3 Results

3.1 Parameter calibration

A 10-fold cross validation procedure is performed to select the optimal values of K (number of
prototypes) and λ (sparsity). The following values for K are considered: 10, 20, 50, 100 and
200. Note that K prototypes are used per dictionary, so if K = 200 a total of 600 features is
extracted. The following values for λ are considered: 0, 5, 10, 25, 50, 100, 200. Our experiments
show that the best classification performance is obtained with K = 10 and λ = 0, i.e. using
no enforced sparsity. Figure 2 shows the performance curves for a selection of the tested K
and λ values. We present this plot to illustrate two findings. First, we find that increasing
K reduces the performance of the classifier. This tell us that a few prototypes are needed to
have a good characterization of the HiTS transient set. Also, by using fewer prototypes we are
alleviating the “curse of dimensionality” which impacts the classification accuracy. Secondly,
we find that the effect of the sparsity λ is different depending on K. For lower values of K the
sparsity does not play an important role, but for larger values of K including sparsity increases
the performance. Remember that the sparsity on the coefficients (Eq. 1) represent a trade-off
with the reconstruction error. When a small K is used the sparsity may be redundant, as
the images are already projected using few coefficients, and a better reconstruction might be
preferable. On the other hand, when many prototypes are generated, the sparsity constraint
yields more simple data reconstruction combinations, and the increased reconstruction error
can be tolerated. Our observations hold for both SNR regimes. In what follows K = 10 and
λ = 0 are selected as the best parameter combination for NMF.
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Figure 2: Curves of classification performance, using ten-fold cross validation, reducing di-
mensionality with NMF using different values of K and λ, for SNR > 6 (a) and SNR < 6 (b).
K is to the number of prototypes per dictionary and λ is the enforced sparsity.

3.2 Comparison with other feature extraction schemes

The performance of NMF is compared with Principal Component Analysis (PCA) and a scheme
that uses the raw pixel data as input. PCA is a well-established method for dimensionality re-
duction. PCA finds an orthogonal transformation where the features (eigenvectors) are linearly
uncorrelated. The new features can be sorted according to the amount of variance that it is
explained from the data. Data dimensionality is reduced by reconstructing using only the most
meaningful eigenvectors. We test the methodology proposed in Section 2.2 replacing NMF by
PCA, and using different values of K. The best performance is obtained using K = 10, i.e.,
preserving ten eigenvalues per dictionary, similarly to what was obtained with NMF.

Figure 3 shows a comparison between the best NMF model, the best PCA model and a
classifier trained with the raw images as input (all-pixel model), i.e. no dimensionality reduction
is performed in the latter case. The results show that the best classification performance is
obtained by NMF, followed by PCA. This holds for both SNR regimes. If we consider a FPR of
0.1%, using NMF only a 4% of the true cases is miss-classified. On the other hand, for PCA and
the all-pixel model, a 10.0% and a 15.6% is lost, respectively. For the faintest stars (low SNR),
FNRs of 15.4%, 29.1% and 38.6% are obtained (at 0.1% FPR) for NMF, PCA and the all-pixel
model, respectively. Note that in the final stage of the HiTS pipeline a team of astronomers
manually inspect the classifier output for the positive class. False positives must be minimized,
otherwise the manual inspection will be unmanageable. The trade-off of choosing a low FPR
operation point, is that the faintest and most interesting events will be lost. The results show
that the NMF model obtains the best results on both SNR scenarios, and incurs in the smallest
classification performance penalty when the SNR decreases.

Figure 4 shows the 10 prototypes obtained by PCA (a) and NMF (b) in the SNR image
dictionary. Figure 5 shows histograms of the most significant prototype for each sample. The
first and second row correspond to PCA and NMF, respectively. The first and second column
correspond to negative and positive samples, respectively. For PCA we can see that both
distributions are very similar. Most of the samples are highly represented by the first and second
prototype, which are the ones that explain the largest amount of variance in the model. For
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Figure 3: Classification performance in the test database of the proposed methodology based
on NMF compared with similar implementations in which NMF is replaced by PCA (dashed
line) and where no dimensionality reduction is performed, i.e all the pixels are used as features.
Figures (a) and (b) correspond to high and low SNR regimes, respectively.

NMF, it can be observed that the distributions associated to the positive and negative samples
are notably different. Most of the negative samples are represented by the first prototype,
while the other prototypes follow an almost uniform distribution (except for the seventh and
the ninth). Most of the positive samples are represented by the second, third, seventh and
ninth. Even though, NMF is an unsupervised method, i.e. labels are not used, we observe that
there is significant class separability in the features alone. This yields a better classification
accuracy as shown before. The results observed for SNR image dictionary hold for the other
dictionaries, but due to space limitations these results are omitted.

3.3 Dealing with large volumes of data

The HiTS transient candidate database contains roughly a hundred million samples. In order
to apply the proposed method on the full HiTS database the issue of the scalability of the
computations in terms of processing time and memory usage needs to be addressed. By using
NMF we compress the data into low rank approximations, retaining only the most meaningful
features. This improves the classification accuracy and also reduces the memory and time
required to train and evaluate the classifier. In our case, using K = 10 we are reducing the
required memory in almost two orders of magnitude. The Fast HALS method optimizes the
NMF factors in a column-by-column way and employs by-products that depend on K [3].
Compared to other NMF implementation Fast HALS is faster and less memory-bound. To
further decrease computational time we compute matrix operations using optimized multi-core
linear algebra libraries (OpenBLAS). It is also worth noting that projecting samples to an
already trained dictionary has a low computational cost. Hence, testing subsets that are much
larger than the training set can still be evaluated very efficiently. For very large databases
one may train the NMF models with several relatively small but representative subsets of the
database, using resampling techniques [8]. Distributed NMF implementations [10] that follow
the MapReduce model are tailored for this kind of scenario and will be studied in the future.
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(a)

(b)

Figure 4: Ten prototypes obtained using PCA (a) and NMF (b). The PCA prototypes are more
“holistic”, i.e. they contain information of the whole image. The NMF prototypes represent
parts of the images, such as structures near the borders, center and halos.

4 Conclusions

Astronomical surveys such as HiTS are generating several TeraBytes of image and catalog
data. Within a few years, the LSST will be operational generating even more data and millions
of transient alerts per night. Methods from the computational intelligence field are key to
detect events on these large streams of data that otherwise might go unnoticed by human
experts. The contribution of this paper is an autonomous and efficient methodology for stellar
transient discrimination from images of the HiTS survey. This methodology relies on a feature
extraction scheme based on NMF. The best classification performance is obtained using ten
prototypes per dictionary, reducing the dimensionality from 1323 to 36. By inspecting the
NMF prototypes we can appreciate that they represent parts of the images, which is due the
non-negative constraints. This property is also responsible for the inherent class separability
at feature level that is observed. For a given FPR, the NMF features achieve a lower FNR
than PCA and the raw-pixel model. Particularly, when the NMF features are used, less than
4% of the true stellar transients are lost, at a manageable FPR of 0.1%. The NMF features
are also more robust at lower SNR, which favors the detection of fainter transients. Once
the dictionaries have been obtained, the computational cost of projecting new data is very
low. Future work includes implementing an optimized HPC version of the codes to run on
distributed environments in order to test the full extent of the HiTS survey, comparing with
other feature extraction schemes, and testing additional supervised classifiers and deep learning
based approaches.
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Figure 5: Histograms of the most significant prototype for each sample using PCA (a and b)
and NMF (c and d). The first and second column correspond to the distribution of negative
and positive samples, respectively. NMF is able to cluster the samples such that the classes are
easier to separate. On the other hand the PCA distributions look very similar.
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