
Theoretical Computer Science 410 (2009) 2174–2183

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Matrix columns allocation problems
Amos Beimel a, Boaz Ben-Moshe b, Yehuda Ben-Shimol c, Paz Carmi d, Eldad Chai c,
Itzik Kitroser c, Eran Omri a,∗
a Department of Computer Science, Ben-Gurion University, Be’er Sheva, Israel
b College of Judea & Samaria, Ariel, 44837, Israel
c Department of Communication Systems Engineering, Ben-Gurion University, Be’er Sheva, Israel
d School of Computer Science, Carleton University, Ottawa, Canada

a r t i c l e i n f o

Article history:
Received 3 January 2008
Received in revised form 29 January 2009
Accepted 1 February 2009
Communicated by G. Ausiello

Keywords:
Allocation problems
NP-completeness
inapproximability

a b s t r a c t

Orthogonal FrequencyDivisionMultipleAccess (OFDMA) transmission technique is gaining
popularity as a preferred technique in the emerging broadband wireless access standards.
Motivated by the OFDMA transmission technique we define the following problem: Let
M be a matrix (over R) of size a × b. Given a vector of non-negative integers EC =
〈c1, c2, . . . , cb〉 such that

∑
cj = a, we would like to allocate a cells in M such that (i) in

each row ofM there is a single allocation, and (ii) for each element ci ∈ EC there is a unique
column in M which contains exactly ci allocations. Our goal is to find an allocation with
minimal value, that is, the sum of all the a cells ofM which were allocated is minimal. The
nature of the suggested new problem is investigated in this paper. Efficient algorithms are
suggested for some interesting cases. For other cases of the problem, NP-hardness proofs
are given followed by inapproximability results.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The growing use of communication networks and the emerging techniques constantly developed for them require the
solution of many new algorithmic problems. Such problems are often raised by mapping and allocating optimization tasks
[4,7,8,10]. In particular, the Orthogonal Frequency Division Multiple Access (OFDMA) transmission technique introduces
such new allocation problems. In this work we introduce the Matrix Column Allocation Problem (MCAP) which models
one such problem, and present theoretical results concerning it: we construct an efficient algorithm for one version of the
problem and prove NP-hardness results for the other variants of this problem.

1.1. Background and motivation

The OFDMA modulation technique is gaining popularity as a preferred technique in the emerging broadband wireless
access standards. The IEEE802.16 standard [1] with its mobility extension IEEE802.16e-2005 [2] (also known asWiMax) is
based on OFDMA and is considered as a candidate for the next generation broad wireless access systems.
In general digital communication systems, the information is in the form of bits, or collections of bits called symbols, that

are modulated onto the carrier. The time duration of a symbol depends on the used bandwidth. As higher bandwidths (data
rates) are used, the duration of one bit or symbol of information becomes smaller. In an OFDMA modulation, the channel

∗ Corresponding author. Tel.: +972 54 8189028.
E-mail addresses: beimel@cs.bgu.ac.il (A. Beimel), benmo@yosh.ac.il (B. Ben-Moshe), benshimo@bgu.ac.il (Y. Ben-Shimol), carmip@cs.bgu.ac.il

(P. Carmi), kitroser@bgu.ac.il (I. Kitroser), omrier@cs.bgu.ac.il, omrier@gmail.com (E. Omri).

0304-3975/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2009.02.015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82609186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:beimel@cs.bgu.ac.il
mailto:benmo@yosh.ac.il
mailto:benshimo@bgu.ac.il
mailto:carmip@cs.bgu.ac.il
mailto:kitroser@bgu.ac.il
mailto:omrier@cs.bgu.ac.il
mailto:omrier@gmail.com
http://dx.doi.org/10.1016/j.tcs.2009.02.015

A. Beimel et al. / Theoretical Computer Science 410 (2009) 2174–2183 2175

Fig. 1. The slot numbering process.

bandwidth is broken into a large number of closely and equally spaced orthogonal low rate sub-carriers, hence an OFDMA
symbol duration depends directly on the number of used sub-carriers. In addition, the sub-carriers are divided into subsets
of sub-carriers where each subset represents a sub-channelwhich is the minimum transmission unit in an OFDMA symbol.
The allocation unit in such systems is a combination of OFDMA time symbol and a sub-channel and is called a slot.
We use the model for uplink resource allocations given in [1,2], which is compliant with the OFDMA slot definition. In

this model slots are indexed starting at the lowest numbered sub-channel and the first OFDMA symbol up to the last. When
the last OFDMA symbol is reached, the indexing continues from the next sub-channel and the first OFDMA symbol. At each
allocation period (time frame), the clients are allocated sets of slots which are usually successive, but may also be scattered.
The specific number of required slots per client depends on its transmission capability and the transmission rate on those
slots is set to meet the client’s needs and capabilities (i.e., packet size and available rate). In addition, scattered allocations
may imply additional cost (in term of system resources) to describe such allocations. The allocation slots and numbering
scheme in OFDMA systems are illustrated in Fig. 1.
In OFDMA based wireless systems, mapping is the process of allocating resources (slots) to clients according to their

demands and is performed after the scheduling process. 1 The slots are represented by an indexed list fromwhich clients are
allocated sets of resources. Most mappingmodels do not allowmapping optimizations, thus themapping process generates
a large amount of mapping overhead and reduces the system performance. In this paper we consider a mapping model that
can be used to reduce the mapping overhead. In this model each resource is assigned a weight for every client. Each weight
represents both description cost andmapping overhead that may be generated if the resource is allocated to a certain client.
For example, in [3] the authors presented a method of persistent allocation of slots to clients. In their system, the clients
are allocated specific slots in a certain time frame without a need for description in subsequent time frames if no change
is required. Each change in allocated slots or reallocation due to other clients’ needs would result in system overhead for
description. The reallocation of slots may create high overhead since it may require reallocation to other clients as well.
Hence, weights may vary for a client,even for consecutive slots.
We define an allocation problem on a matrix to represent the suggested mapping model and the resource allocation

process in IEEE802.16. First, we define a matrix M interpreting the OFDMA resource list where there is a row for each slot
available for allocation and there is a column for each active client. The cellMi,j is the overhead if slot i is allocated to client
j. We also define a vector EC describing the slot requirements of the clients, where cj – the jth coordinate of EC – denotes the
number of slots required by client j for transmission. Given the matrixM and the vector EC , we want an allocation of slots to
the clients that minimizes the total overhead. There are two requirements: (1) we should allocate each slot to exactly one
client, and (2) we should allocate cj slots for the jth client. We consider two versions of the problem; in one version the slots
allocated to a client should be consecutive and in the other version the slots need not be consecutive.

1.2. Problem formulation

Motivated by the above discussion, we next formally define various versions of the matrix columns allocation problem.
In addition to distinguishing between allocationswhere allocated cells are consecutive or not, we also define versionswhere
the solution can apply a permutation to the vector EC . The reason for allowing the permutation is two-fold. First, we believe
that this is a natural generalization of the original problemand it is interesting to see if this generalizationmakes the problem
harder or easier. Second, we use the permutation version to present the ideas of themore complicated reduction needed for
the version without the permutation.

Definition 1.1 (The Matrix Columns Allocation Problem —MCAP). Let M be a matrix (over R) of size a × b and EC =
〈c1, c2, . . . , cb〉 be a vector of non-negative integers, called the demand vector, such that

∑
cj = a. A solution to theMCAP

is an allocation S = {〈αi, βi〉 : 1 ≤ i ≤ a} of a cells inM (i.e., αi ∈ {1, . . . , a} and βi ∈ {1, . . . , b}) such that:

Row constraint. There is exactly one cell in S from each row, and

1 Further discussion on the mapping process can be found in [3].

2176 A. Beimel et al. / Theoretical Computer Science 410 (2009) 2174–2183

Fig. 2. Example instances ofMCAP . The above tables represent the appropriate solutions of all fourMCAP cases for the same 3× 10 matrix with the
same demand vector EC = 〈5, 3, 2〉.

Column constraint. There is a permutation P : {1, . . . , b} → {1, . . . , b} of the columns of M such that in S there are
exactly cP(i) cells from the ith column ofM for every column i ∈ {1, . . . , b}.

The value of an allocation S is the sum of the values of all the cells ofM whichwere allocated. Our goal is to find an allocation
whose value is minimal.
The genericMCAP is considered with the following possible requirements:

Consecutive allocation (blocks). Here we require that, for each column, the cP(i) cells are consecutive (block constraint).
Fixed permutation. Here we require that P is the identity permutation, that is, S should contain exactly cj cells from the

jth column. In this case, we say that there is a fixed permutation.

If we remove the first requirement, then we simply allow any cP(i) cells from the ith column. Similarly, if we remove the
second requirement, we simply allow any permutation P . Considering the problemwith orwithout these two requirements,
four cases of the problem are defined.

Example 1.1. In Fig. 2 we describe anMCAP instance (a matrix and a demand vector), and show optimal allocations for
it for the four variants ofMCAP . The reader can easily verify that cells allocated (appearing in Bold-Face) in each table
indeed form a legal solution for the appropriate case.
We next briefly explain why each solution is also optimal. For case (i) (no block, any permutation), this is clear as we

cannot expect better than a zero valued solution. For case (ii) (no block, fixed permutation), it can be easily verified that our
solution is optimal (although not a unique optimal solution). For cases (iii) (block, any permutation) and (iv) (block, fixed
permutation), note that an allocation of the block of size 5 in rows r5–r9 (respectively, r2–r6) is not possible, as there will
be no way to allocate cells in row r10 (respectively, row r1). Next observe that any possible allocation of the block of size 5,
anywhere other than the choices of (iii) and (iv), will result in a solution of value at least 30. Using this observation, verifying
the optimality of our solutions is easy.

It is quite straightforward that the value of an optimal allocation for the no block, any permutation version for a given
instance ofMCAP is at most the value of an optimal allocation for any of the other threeMCAP versions. Conversely,
the value of an optimal allocation for the block, fixed permutation version for a given instance ofMCAP is at least the value
of an optimal allocation for any of the other threeMCAP versions. However, for a given instance the value of an optimal
allocation for the no block, fixed permutation instance can be less, equal, or more than the value of an optimal allocation for
the block, any permutation version.
Our main result in this paper is a proof that three versions ofMCAP – block, fixed permutationMCAP , no block, any

permutationMCAP , and block, any permutationMCAP – are NP-hard, and, in fact, they cannot be efficiently approximated
within any factor unless P = NP. To prove theNP-completenesswe construct two reductions from the vertex cover problem,
which was proved to be NP-complete by Karp [5]. The generalization of the hardness results to inapproximability results

A. Beimel et al. / Theoretical Computer Science 410 (2009) 2174–2183 2177

is quite simple and does not use the PCP theorem. The proofs are similar to the proof that the traveling sales person (TSP)
problem (without the triangular inequality) cannot be approximated [9].
To complement our results, we present efficient exact algorithms for one version and a few restrictions of theMCAP .

First, we construct a polynomial-time algorithm for the no block, fixed permutationMCAP using the algorithm forminimum
perfect matching [6]. We then show, using dynamic programming, that the block, fixed permutationMCAP and the block,
any permutationMCAP have polynomial-time algorithms if the number of columns in the matrix is at most logarithmic in
the number of rows.
The positive results presented in this paper (i.e., the polynomial-time algorithms) can be used for improving performance

in OFDMA systems implementing the suggested mapping model where clients can be allocated any set of resources.
Furthermore, the negative results presented in this paper suggest that optimizing the mapping process in OFDMA systems,
in particular minimizing the mapping overhead, is infeasible. Therefore, if such optimization is desired, then a heuristic
approach should be considered.

Related work. The problems that are considered in this work are a generalization of simple assignment problems [6],
where we want an allocation with exactly one cell from each row and exactly one cell from each column (that is, find
a minimum weighted perfect matching in a bipartite graph). Indeed, our polynomial-time solution for the no block, fixed
permutationMCAP is by a reduction to this problem. Generalizations of the simple assignment problem (different than
the ones considered in this paper) appear in the literature (e.g., [11]).

Organization. Section 2 shows that theno block, fixed permutationMCAP has a polynomial-time algorithm, followedwith
a set of special cases for which the other versions ofMCAP also have polynomial-time algorithm. Section 3 contains the
main part of this paper; NP hardness proofs for versions (#2−#4) of the problem are given, followedwith inapproximability
results.

2. Positive results

We next prove that no block, fixed permutationMCAP has a polynomial-time algorithm. We then show that the block,
fixed permutation MCAP and the block, any permutation MCAP have a polynomial-time algorithm if the number of
columns in the matrix is logarithmic in the number of rows.

Lemma 2.1. The no block, fixed permutationMCAP has a polynomial-time algorithm.

Proof. The proof is by reduction to the minimum weight perfect matching problem. Given an instance (M, EC) ofMCAP
(whereM has a rows and b columns), we first construct a newmatrixM ′ of size a×awhere every column i inM is duplicated
ci times inM ′, and a new demand vector EC ′ := E1 (i.e., c ′i = 1 for all 1 ≤ i ≤ a). Notice that the number of columns inM

′ is∑b
i=1 ci, which is the number of rows in M . Thus, constructing (M

′, EC ′) can be done in polynomial time. Now, a solution S ′

for the instance (M ′, EC ′) straightforwardly implies a solution S for the original instance (M, EC)with the same value, where
for every column i inM , we select all cells which are taken from the ci copies of that column inM ′. Similarly, a solution S for
(M, EC) implies a solution S ′ for (M, EC ′)with the same value.
Observe that such a solution for (M ′, EC ′) takes exactly one cell in each row and one cell in each column, that is, it is a

matching between the rows and the columns. Thus, to find a minimum solution to (M, EC), we need to solve the minimum
weighted perfect matching problem on the bipartite graph described by the matrix M ′. The latter task can be solved in
polynomial-time [6]. �

We next show that when the number of columns is small we can solve the two versions of the block constraintMCAP
in polynomial time. In contrast, we will prove that without this restriction the problem is NP-hard.

Lemma 2.2. The block, fixed permutationMCAP and the block, any permutationMCAP can be solved in time a · 2O(b),
where a is the number of rows in the input matrix, and b is the number of columns in the input matrix.

Proof. We first present an algorithm for block, fixed permutation MCAP . Later, we show how this algorithm may be
modified to solve the block, any permutationMCAP . The idea of the algorithm is to apply a divide and conquer technique.
Assume we have an instance (M, EC) and a ‘‘guess’’ EC1, EC2, where EC1 contains half of the coordinates of EC and EC2 contains the
other half. This guess states that all the coordinates of EC1 should be allocated higher inM than all coordinates of EC2. We then
obtain two independent instances of the problem.We solve each instance recursively, and combine the minimum solutions
of these instances into aminimum solution for the original instance. As we do not know how tomake such guesses of EC1, EC2,
we check all possible partitions of EC and take the minimum solution over all partitions.
Formally, given an instance (M, EC), the algorithm goes over all possible partition sets I ⊂ {1, . . . , b} of size b/2. For each

such I , the algorithm constructs two independent instances (M I1,
EC I1) and (M

I
2,
EC I2) as follows: First, denote a1 :=

∑
i∈I ci.

The matrix M I1 contains the a1 top rows of the columns indexed by I in M , and the matrix M
I
2 contains the a − a1 bottom

rows of the columns not indexed by I inM . Finally, define EC I1 := 〈ci〉i∈I and
EC I2 := 〈ci〉i/∈I . Notice that every pair of solutions

S I1 and S
I
2, for (M

I
1,
EC I1) and (M

I
2,
EC I2) respectively, implies a solution S

I to (M, EC)whose value is the sum of the values of the

2178 A. Beimel et al. / Theoretical Computer Science 410 (2009) 2174–2183

solutions S I1 and S
I
2. The algorithm, therefore, sets the solution S for (M, EC) to be min(S

I). Furthermore, any solution S ′ to
(M, EC), defines a partition set I: Take I to be the set of indices such that the consecutive blocks in the columns in I are the
b/2 top blocks S ′ allocates inM . Thus S is optimal.
There are at most

(b
b/2

)
< 2b ways of choosing a set I ⊂ {1, . . . , b} of size b/2. For each such I , the algorithm computes

its minimal value recursively, and the total value is the sum of this two values. Denote the running time of this recursive
algorithm on an instance with a rows and b columns by T (a, b). Thus, T (a, b) ≤ 2b · 2 · T (a, b/2) (since the algorithm
constructs two instances, each with b/2 columns and less than a rows), and T (a, 1) = O(a). Thus, solving this recursion
yields T (a, b) ≤ O(a

∏log b
i=1 2

1+b/2i) = O(a · 22b).
To solve the block, any permutationMCAP , we can apply the above algorithm for every permutation, and taking the

solution whose value is minimum over all permutations. We get an algorithm whose complexity is O(a · 22b · b!). A more
efficient algorithmwith complexity O(a · 22b) is obtained by modifying the above recursive algorithm. In the recursive step,
in addition to the choice of the partition of the columns to the top and bottommatrices, we also need to partition the demand
vector. Formally, to define a partition of an instance (M, EC) into two instances, we choose two sets I, J ⊂ {1, . . . , b} of size

b/2 each. We define the two instances (M I1,
EC J1) and (M

I
2,
EC J2), where the matricesM

I
1 andM

I
2 are as above and

EC J1 := 〈ci〉i∈J
and EC J2 := 〈ci〉i/∈J . A similar analysis shows that the resulting algorithm is correct and that its running time is a · 2

O(b). �

3. Hardness and inapproximability results

To prove the hardness (and inapproximability) of the three remaining versions of MCAP , we present two related
reductions from the Vertex-Cover problem, one of the original problems proved to be NP-complete by Karp [5]. The first
reduction proves that the no block, any permutationMCAP is NP-Hard. The second reduction uses similar ideas, however
with a more complicated construction, and proves that the block, fixed permutationMCAP and the block, any permutation
MCAP are NP-hard.

3.1. Hardness of the no block, any permutationMCAP

Lemma 3.1. The no block, any permutationMCAP is NP-Hard.

Proof. Given an instance G, k of the vertex cover problem, we construct an instance (M, EC) of the no block, any permutation
MCAP such that G has a vertex cover of size k iff (M, EC) has an allocation whose value is zero.
We start by describing a construction that does not have this property and then we ‘‘fix’’ it. Given a graph G = 〈V , E〉

with n vertices, we construct a matrix M over {0, 1}, in which each column represents a vertex in V and each row stands
for an edge in E. For the row representing e = (v, u), we assign the value 0 to the cells of the columns representing v and u,
and 1 to all other cells. We observe that, by the row constraints,

Observation 3.2. Every allocation whose value is 0must choose in the row representing e = (v, u) either the cell in the column
representing v or the cell in the column representing u.

Now, given an allocation whose value is 0, consider the set of vertices corresponding to columns having at least one cell
in an allocation. By Observation 3.2, this set is a vertex cover of the graph G. Thus, the graph G has a vertex cover of size k iff
there exists a demand vector EC with k non-zero entries such that (M, EC) has an allocation whose value is 0.
Trying to apply this approach we face two hurdles in constructing the vector EC . The first is that we must allow two

adjacent vertices to be chosen in the vertex cover, and therefore, allow two cells to be taken from the same row. The second
hurdle is that we only know that EC should contain k non-zero entries, but we do not know their values as each coordinate
in EC should correspond to the number of edges covered by each vertex in the cover. Hence, we have no good way to define
the number of edges that are covered by a given vertex, without knowing the solution.
We use a rather simple approach to overcome both hurdles. We add padding rows, in which all cells have zero values,

and then set the demand vector EC to be nk · 0n−k, where n is the number of vertices in the graph G. As the number of rows
inM should be

∑
ci = nk, the number of padding rows that we add is nk− |E| ≥ 0.2

Before proving that a solution whose value is zero exists iff there is a vertex cover for G of size k, we first describe the
reduction formally. Given a graph G = 〈V , E〉with n vertices and a natural number k, we construct a matrixM of size nk×n.
We tag each column 1 ≤ i ≤ n by the vertex vi. Let

{
e1, e2, . . . , e|E|

}
be some ordering on the edges of G. We tag each row

1 ≤ i ≤ |E| by ei andwe tag each row |E|+1 ≤ i ≤ kn by ri. In a row tagged by the edge e = (vi, vj), the cells in the columns
tagged by vi and vj are set to 0, and all other cells in this row are set to 1. In a row tagged by ri, all cells are set to 0. Finally,
we set the demand vector EC := 〈c1, c2, . . . , cn〉, where ci = n for 1 ≤ i ≤ k and ci = 0 otherwise. For example, a graph and
the corresponding instance of theMCAP are described in Fig. 3. Clearly, M and EC can be constructed in polynomial time

2 If nk < |E|, then no vertex cover of size k exists and the reduction outputs a fixed instance of theMCAP whose minimal allocation has value greater
than 0.

A. Beimel et al. / Theoretical Computer Science 410 (2009) 2174–2183 2179

Fig. 3. A graph with a vertex cover of size 2 and the corresponding instance for theMCAP , where the demand vector is 〈4, 4, 0, 0〉. The vertex cover is
composed of the two black vertices and the allocation contains all bold-face cells.

from G and k. We next argue the validity of the reduction, that is, (M, EC) has an allocation whose value is zero iff G has a
vertex cover of size k.
First, assume there exists a zero valued solution S for the allocation problem (M, EC). Let P be the permutation implied

by S and let H := {vi ∈ V : 1 ≤ P(i) ≤ k} (that is, H is the set of the k vertices tagging columns which have n cells in the
allocation S). We next argue that H is a vertex cover of size k. Clearly, |H| = k since P is a permutation. Now, for every edge
ej = (u, v) in E, by the row constraints, one cell in the row tagged ej is in S. Since the value assigned to all cells in S is 0
and since the only two 0 valued cells in the row tagged ej appear in the column tagged u and in the column tagged v, one of
these two cells is in S. Since cells in S are only taken from columns vi such that 1 ≤ P(i) ≤ k, it holds that at least one of u
and v is in H .
Second, assumeH ⊆ V is a vertex cover for G, where |H| = k. We claim that (M, EC) has a solution S whose value is 0. This

solution takes cells only in the k columns which are tagged by vertices from H . For each edge e = (u, v) such that exactly
one of u and v is in H , the cell in the row tagged by e and in the column tagged by this vertex is in the allocation S. For each
edge e = (u, v) such that both vertices u and v are in H , we arbitrarily decide to select the zero valued cell in the column
tagged by the smallest vertex between u and v. To guarantee that exactly n cells are selected from each column tagged by
a vertex from H , we augment the above cells by cells from padding rows such that exactly one cell is selected from each
padding row. Since there are kn− |E| padding rows, such augmentation is possible. �

3.2. Hardness of block constraintMCAP

In this section we prove that the two versions of the block constraint MCAP (with or without the permutation
constraint) are NP-hard.We prove the NP-hardness of the twoMCAP version by presenting a reduction from vertex cover.
For clarity, we first describe a first attempt of constructing the reduction, and explain why it fails. We then show a second
attempt fixing the shortcoming of the first attempt.

First attempt. In the first attempt, we slightly change our approach in overcoming the first hurdle described earlier (that
is, the problem of choosing two end-points of an edge). This new approach would enable us to kill two birds with one stone
– overcoming the first hurdle and enabling the selection of cells from each column to be in one block. Instead of adding
padding rows (as in the proof of Lemma 3.1), we represent each edge ei = (v, u) by two directed edges ev,u = (v, u) and
eu,v = (u, v) and assign a row to each of them. Furthermore, we add a column representing ei. The row representing ev,u
has a 0 value only in the column representing v and in the column representing ei. The row representing eu,v has a 0 value
only in the column representing u and in the column representing ei. Observe that any selection of vertices which cover at
least one of ev,u and eu,v , for every such ei, is a vertex cover for G.
Now, any two columns representing two adjacent vertices may both be chosen with all their zero cells as they do not

collide. Moreover, we may reorder the rows of the matrix so that all rows corresponding to the same column form a single
consequent segment inM ′.While this helps us overcome the first hurdle, it presumably sets the bar for the second one a little
higher. It seems wemust be able to predict the number of vertices in the cover that touch each edge as well as the degree of
each vertex. In fact, this is not true, as we may apply the same method as we did in the first reduction, namely add padding
rows to the matrix and demand d cells from each column representing a vertex, where d > 1 is at least the maximum
degree of any vertex in G. More specifically, we add d − degree(v) rows in the bottom of the block of rows corresponding
to the vertex v, each such row having zero value cells only in the column representing v. We finally add ‘‘padding’’ columns
to enable d(n − k) more cells to be allocated, that is, to ensure that for every padding row we can choose one cell. These
‘‘padding’’ columns have zero cells only in the padding rows. The demand vector EC ′ is chosen to be dk · 1d·(n−k) · 0|V |−k. An
example of the reduction is given in Fig. 4.
Thus far, we described the first attempt of the reduction. The resulting matrix and vector (M ′, EC ′) of this first attempt

almost form a reduction to the block, any permutationMCAP . First, it can be checked that if G has a cover of size k, then

2180 A. Beimel et al. / Theoretical Computer Science 410 (2009) 2174–2183

Fig. 4. The matrixM ′ that the reduction of the first attempt outputs for the graph described in Fig. 3 with k = 2. The demand vector EC is 〈3, 3, 16, 06〉. The
cells in bold-face are an allocation corresponding to the vertex cover {v2, v4}.

(M ′, EC ′) has a solution whose value is 0. We would like to claim that if the input (M ′, EC ′) has a solution whose value is 0,
then G has a vertex cover of size k. In an allocation whose value is zero, there are exactly k columns with a block of d cells in
the assignment; these columnsmust be labeled by vertices. We would like to argue that the set of vertices labeling columns
with a block of d cells in the assignment is a cover. This is true if no column labeled by a vertex is assigned a single cell (as
opposed to d or 0 cells) in the solution. However, if this is not the case, there might not be a cover of size k in G and the
reduction is not valid. To fix this reduction we need to ensure that in each column labeled by a vertex, either 0 or d cells are
allocated. Furthermore, we want the reduction to also work for theMCAP version where the permutation is fixed.

3.2.1. The correct reduction
Lemma 3.3. The block, any permutationMCAP and the block, fixed permutationMCAP are NP-Hard.

Proof. We present a reduction from vertex cover that outputs the pair (M, EC). The matrixM is a column-wise compression
of thematrixM ′ constructed in the first attempt. InM ′, every vertex v ∈ V is represented by a column inM ′ and by a segment
of rows. All cells within the column of v which do not appear within the segment of rows representing v have a non-zero
value and, thus, can never be allocated in a 0 valued solution. We compress these n columns into a single column that no
longer represents a single vertex, but rather has a segment of cells (rows) representing each vertex in V . Thus, every vertex
is now represented only by a segment of rows and no longer by a column. We also add a ‘‘separation’’ row between any 2
segments of different vertices; this separation row has non-zero entries (except for 1 columnwe add). That is, a compressed
columnhas n segments; each segment represents a different vertex and it contains d zero entries followed by an entrywhose
value is 1.
In any zero-value allocation exactly n cells from one segment may be allocated in each compressed column. In this case

wewill take the vertex labeling this segment to the vertex cover. Since every such compressed column allows an allocation of
any segment of rows representing any vertex in V , it suffices to have exactly k such columns. The padding columns ofM ′ are
compressed in the following manner. Each of the (first) |E| columns which represents an edge e = (v, u), namely, had only
two zero valued cells, will now have zero valued cells in all the d−degree(w) complementary rows of the segment of every
vertexw different from v and u. The rest of the padding columnswill stay the same as inM ′. Finally, we set EC := dk ·1d(n−k)+n.
We now describe the reduction formally and show that there is a vertex cover of size k for G iff there is an optimal

solution of value 0 for (M, EC). The illustration of the reduction in Fig. 5 can help understanding the reduction. Given a graph
G = 〈V , E〉 with |V | = n and |E| = m, and a number k, let dmax be the maximum degree of any vertex in V and set
d = max {dmax, dm/(n− k)e} . Assume, w.l.o.g., that the degree of every vertex in V is at least 1. We define a matrixM with
(d+ 1)n rows and (d+ 1)n− (d− 1)k columns. Let {e1, e1, . . . , em} be some ordering on the edges of G.
For convenience, we tag rows and columns ofM by names (instead of indices). Let us begin with the rows. We divide the

rows of the matrix into n segments of d+ 1 rows each, where the `th segment contains rows corresponding to v` which are
tagged as follows. Let d` be the degree of v` ∈ V and let ei1 , . . . , eid` be the edges touching v`. Given the tth row of the `th
segment, we tag it r`,eit if 1 ≤ t ≤ d`, we tag it r`,t if d` + 1 ≤ t ≤ d, and we tag it Sep` if t = d+ 1.
We next explain howwe tag the columns. The first k columns are the ‘‘compressed’’ vertex columns.We tag each column

1 ≤ j ≤ k by hj. The nextm columns are the ‘‘edge’’ columns. We tag each column k+ 1 ≤ j ≤ k+m by ej−k. The following
d(n− k)−m columns are the ‘‘padding’’ columns. We tag each column k+m+1 ≤ j ≤ k+d(n− k) by Paddj−(k+m). Finally,

A. Beimel et al. / Theoretical Computer Science 410 (2009) 2174–2183 2181

Fig. 5. The matrix that the reduction outputs for the graph described in Fig. 3 with k = 2. The demand vector is EC = 〈3, 3, 110〉. The cells in bold-face are
an allocation corresponding to the vertex cover {v2, v4}.

the last n columns are the ‘‘extra’’ columns which are used for allocation of cells in the separating rows. We tag each column
k+ d(n− k)+ 1 ≤ j ≤ k+ d(n− k)+ n by Extraj−(k+d(n−k)). From here on we use the tags instead of indices, e.g., we write
M(Sepi, ej) instead ofMdi,j+k.
We next describe the entries ofM . All row segments are of the same form, thus we confine our description to the ith row

segment (which represents vi ∈ V). In the separation row Sepi we set the cell of the column tagged Extrai to 0 and we set all
other cells to zero. We next describe the first d rows. The reader is encouraged to look at the example in Fig. 5 while reading
the construction.

• For 1 ≤ j ≤ k (the compressed vertex columns), we set all cells to 0 (namely,M(ri,x, hj) := 0 for all x).
• For an edge column tagged by e = (vi, v′) or e = (v′, vi), we setM(ri,e, e) := 0. We set all other cells within this column
to 1.
• For an edge column tagged by e = (v′, v′′) where v′, v′′ 6= vi, we set all padding rows (that is, rows tagged ri,t) within
the segment of vi to 0 and all other (edge) rows to 1.
• We set cells of columns tagged by Paddj for some j to 1 if the row they are in represents an edge and 0 otherwise.
• Finally, we set all entries within the last segment of columns (tagged Extraj for some j) to 1.

If we examine the patterns of the columns of M , we find that the compressed columns are made of n blocks of d zeros,
each followed by a single one value. On the other hand, there are no blocks of d consecutive zeros in any other type of column
inM . Thus, the following observation can be made.

Observation 3.4. blocks of d consecutive cells of value 0 appear only within the first k columns and only within a segment of
rows of some vertex, namely rows tagged ri,x for some 1 ≤ i ≤ n.

We set the demand vector to be EC =
〈
c1, c2, . . . , c(d+1)n−(d−1)k

〉
, where ci = d if 1 ≤ i ≤ k and ci = 1 otherwise.

We now show that there is a vertex cover of size k for G iff there is an optimal solution of value 0 for (M, EC). By
Observation 3.4 every zero valued solution for the any permutation MCAP is also a valid zero valued solution for the
fixed permutationMCAP , thus it suffices to only consider fixed permutationMCAP in our proof. Assume there exists a
zero valued solution S for (M, EC). Let

H := {vi ∈ V : M(ri,x, hj) ∈ S for some x and some 1 ≤ j ≤ k}.

We claim that H is a vertex cover of size k for G. Clearly, |H| = k. Note that by Observation 3.4, for every 1 ≤ j ≤ k, all cells
allocated in the column tagged hj are within a single segment of rows. Namely, there exists some 1 ≤ i ≤ n such that all
d allocated cells are of the form M(ri,x, hj). Moreover, no cell M(ri′,x, hj) for i′ 6= i is in S. Now, given an edge e = (vs, vt),

2182 A. Beimel et al. / Theoretical Computer Science 410 (2009) 2174–2183

assume vs /∈ H . Hence no cell is allocated in the row tagged rs,e within the first k columns. Since the only other zero valued
cell of this row is M(rs,e, e), it has to be allocated. Therefore, the cell M(rt,e, e) which appears in the same column is not in
S. Thus, since S must contain a zero valued cell from the row tagged rs,e and since all other zero cells in this row (other than
the on in column e) appear within the first k columns, there is one which is allocated within the columns tagged by hj. In
other words, there exists a 0 ≤ j ≤ k such thatM(rt,e, hj) ∈ S and, hence, vt ∈ H , that is, the edge e is covered.
For the other direction, assume H =

{
vi1 , vi1 , . . . , vik

}
⊆ V is a vertex cover for G. We construct a legal zero value

allocation for (M, EC). First, we set SExtra := {M(Sepi, Extrai) : 1 ≤ i ≤ n}, covering all separating rows. Next, we set
Sht :=

{
M(rit ,x, ht)

}
for 1 ≤ t ≤ k, that is, Sht is the zero-segment representing vit in ht , and we set SV :=

⋃
Sht . We

also set SE := {M(ri,e, e) : vi /∈ H and e = (vi, v) for some v ∈ V }. Note that if e = (vi, v), where vi /∈ H , then v ∈ H and SE
contains at most one cell from each column tagged by an edge.
We have covered all rows except for padding rows of vertices not in the cover H , that is, rows tagged by ri,j for vi /∈ H

and di + 1 ≤ j ≤ d. Furthermore, we have covered all columns except for columns tagged by Paddj and columns tagged
by edges e = (u, v) where both u and v are in H (otherwise one of the cells in the column is in SE). However, for every
row tagged ri,t where vi /∈ H and di ≤ t ≤ d and for every column tagged by e = (u, v) where vi 6= u, v we have
M(ri,t , e) = M(ri,t , Paddj) = 0 for any j. That is, the remaining submatrix of M is a square matrix whose entries are all 0.
Thus, we can choose an allocation SPadd containing exactly one cell from each row of this submatrix and one cell from each
column. Clearly, all cells in S := SV ∪ SE ∪ SPadd ∪ SExtra have 0 value and, therefore, the total value of this solution is 0.
Finally, we show that S is a legal solution. One can easily observe that no row in M has more than one cell allocated in

it and, since the number of allocated cells is exactly the number of rows, in each row there is exactly one cell. From the
definition of S it follows that in each of the first k columns of M there are d consecutive cells allocated and in any other
column exactly one cell is allocated. �

3.3. Hardness of approximation

The zero-one matrices constructed in the reductions of Lemmas 3.1 and 3.3 yield a somewhat trivial multiplicative
inapproximability result. Naturally, any multiplicative approximation algorithm must always return a zero valued solution
whenever such solutions exist. Thus, our reductions imply that any such algorithm would solve the Vertex-Cover problem.
In the following lemmawe show that the inapproximability ofMCAP is not only a trivial result of the zero valued solutions
defined in the aforementioned reductions. The proof of the lemma is similar to the proof that the traveling sales person (TSP)
problem (without the triangular inequality) cannot be approximated [9].

Lemma 3.5. Let ρ(a) ≤ 2poly(a). If P 6= NP, then for the no block, any permutation MCAP , the block, any permutation
MCAP , and the block, fixed permutationMCAP , there is no polynomial-time algorithm that ρ(a)-approximates the problem
on instances (M, EC) where M has a rows.

Proof. Take the instance (M, EC) generated by the reduction in Lemma 3.1 or Lemma 3.3 and replace any 0 entry by 1,
and replace any non-zero entry by 2n2ρ(n). If we started with a graph G which has a vertex cover of size k, there is an
allocation whose value is at most n2. If we started with a graph Gwhich does not have a vertex cover of size k, in every legal
allocation in (M, EC) there is a non-zero cell and the value of the minimum allocation in (M, EC) is at least 2n2ρ(n). If there
is an approximation algorithm for one of the three versions ofMCAP , it would distinguish between the case that G has a
vertex cover of size k and the case that G does not have a vertex cover of size k. �

If in an instance with a rows, the matrix contains values only in the range 1, . . . ,H (for some value H), then the value of
an optimal allocation is at least a while the value of any allocation is at most aH , thus a multiplicative approximation with
ratioH is trivial. This is the reason that in our reductionwe replace 1 by a big value (namely, 2n2ρ(n)). Onemay also consider
additive approximability of the aforementioned cases ofMCAP . In instances where the matrix contains values only in the
range 1, . . . ,H (for some value H), any solution is an a · H additive approximation. On the other hand, our reductions show
that no additive approximation better than H may be achieved.

Acknowledgments

The last author’s research was partially supported by the Frankel Center for Computer Science.
Part of this workwas donewhile Amos Beimel was on sabbatical at the University of California, Davis, partially supported

by the David and Lucile Packard Foundation.

References

[1] 802.16-2004: IEEE standard for local and metropolitan area networks part 16: Air interface for fixed broadband wireless access systems (2004).
[2] 802.16e-2005: IEEE standard for local and metropolitan area networks part 16: Air interface for fixed andmobile broadband wireless access systems,
amendment 2: Physical and medium access control layers for combined fixed and mobile operation in licensed bands and corrigendum 1 (2006).

[3] Y. Ben-Shimol, E. Chai, I. Kitroser, Efficient mapping of voice calls in wireless OFDMA systems, IEEE Commun. Lett. 10 (9) (2006) 641–643.
[4] Y. Ben-Shimol, I. Kitroser, Y. Dinitz, Two dimensional mapping for wireless OFDMA systems, IEEE Trans. Broadcasting 52 (3) (2006) 388–396.

A. Beimel et al. / Theoretical Computer Science 410 (2009) 2174–2183 2183

[5] R. Karp, Reducibility among combinatorial problems, in: R. Miller, J. Thatcher (Eds.), Complexity of Computer Computations, Plenum Press, 1972,
pp. 85–103.

[6] H.W. Kuhn, The Hungarian method for assignment problem, Naval Res. Logist. Quart. 2 (1955) 83–98.
[7] N. Menakerman, R. Rom, Bin packing problems with item fragmentation, Tech. Rep. CCIT.342, Faculty of Electrical Engineering, Technion (2001).
[8] N. Naaman, R. Rom, Analysis of packet scheduling with fragmentation, in: Proceedings of Infocom’02, New York, 2002, pp. 824–831.
[9] S. Sahni, T. Gonzalez, P-complete approximation problems, J. ACM 23 (3) (1976) 555–565.
[10] H. Shachnai, T. Tamir, O. Yehezkely, Approximation schemes for packing with item fragmentation, in: Proceeding of the 3rdWAOA, in: Lecture Notes

in Computer Science, vol. 3879, 2006, pp. 334–347.
[11] D. B. Shmoys, E. Tardos, An approximation algorithm for the generalized assignment problem, Math. Program. 62 (3) (1993) 461–474.

	Matrix columns allocation problems
	Introduction
	Background and motivation
	Problem formulation

	Positive results
	Hardness and inapproximability results
	Hardness of the no block, any permutation MCAP
	Hardness of block constraint MCAP
	The correct reduction

	Hardness of approximation

	Acknowledgments
	References

