Hamiltonian paths containing a given arc, in almost regular bipartite tournaments

Lutz Volkmann
Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany

Received 8 July 2002; received in revised form 4 September 2003; accepted 9 February 2004

Abstract

A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation of a complete c-partite graph. If x is a vertex of a digraph D, then we denote by $d^{+}(x)$ and $d^{-}(x)$ the outdegree and indegree of x, respectively. The global irregularity of a digraph D is defined by $i_{g}(D)=\max \left\{d^{+}(x), d^{-}(x)\right\}-$ $\min \left\{d^{+}(y), d^{-}(y)\right\}$ over all vertices x and y of D (including $x=y$). If $i_{g}(D) \leqslant 1$, then D is called almost regular, and if $i_{\mathrm{g}}(D)=0$, then D is regular.

More than 10 years ago, Amar and Manoussakis and independently Wang proved that every arc of a regular bipartite tournament is contained in a directed Hamiltonian cycle. In this paper, we prove that every arc of an almost regular bipartite tournament T is contained in a directed Hamiltonian path if and only if the cardinalities of the partite sets differ by at most one and T is not isomorphic to $T_{3,3}$, where $T_{3,3}$ is an almost regular bipartite tournament with three vertices in each partite set.

As an application of this theorem and other results, we show that every arc of an almost regular c-partite tournament D with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{c}\right|$, is contained in a directed Hamiltonian path if and only if D is not isomorphic to $T_{3,3}$. (c) 2004 Elsevier B.V. All rights reserved.

Keywords: Bipartite tournaments; Multipartite tournaments; Hamiltonian path; Almost regular bipartite tournaments

1. Terminology and introduction

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite tournament with exactly c vertices. Multipartite tournaments are well studied (see e.g., $[2,4,8,11,15,17]$). In particular, Gutin [7] gave a characterization of multipartite tournaments with a Hamiltonian path, Gutin [6] and Häggkvist and Manoussakis [9] presented a characterization of Hamiltonian bipartite tournaments, and Bang-Jensen, Gutin, and Yeo [3] showed that the Hamiltonian cycle problem is polynomial time solvable for multipartite tournaments.

We shall assume that the reader is familiar with standard terminology on directed graphs (see, e.g., [2]). In this paper, all digraphs are finite without loops or multiple arcs. The vertex set and the arc set of a digraph D are denoted by $V(D)$ and $E(D)$, respectively. If $x y$ is an arc of a digraph D, then we write $x \rightarrow y$ and say x dominates y. If X and Y are two disjoint subsets of $V(D)$ or subdigraphs of D such that every vertex of X dominates every vertex of Y, then we say that X dominates Y, denoted by $X \rightarrow Y$. By $d_{D}(X, Y)=d(X, Y)$ we denote the number of arcs from X to Y, i.e., $d(X, Y)=|\{x y \in E(D): x \in X, y \in Y\}|$.

The out-neighborhood $N_{D}^{+}(x)=N^{+}(x)$ of a vertex x is the set of vertices dominated by x, and the in-neighborhood $N_{D}^{-}(x)=N^{-}(x)$ is the set of vertices dominating x. The numbers $d_{D}^{+}(x)=d^{+}(x)=\left|N^{+}(x)\right|$ and $d_{D}^{-}(x)=d^{-}(x)=\left|N^{-}(x)\right|$ are the outdegree and the indegree of x, respectively.

[^0]

Fig. 1. The almost regular bipartite tournament $T_{3,3}$.

In [16], Yeo defines the global irregularity $i_{\mathrm{g}}(D)$ of a digraph D by

$$
i_{\mathrm{g}}(D)=\max _{x \in V(D)}\left\{d_{D}^{+}(x), d_{D}^{-}(x)\right\}-\min _{y \in V(D)}\left\{d_{D}^{+}(y), d_{D}^{-}(y)\right\}
$$

If $i_{\mathrm{g}}(D) \leqslant 1$ then D is called almost regular, and if $i_{\mathrm{g}}(D)=0$, then D is regular.
By a cycle or path we mean a directed cycle or directed path. A cycle of length k is also called a k-cycle. A cycle or path in a digraph D is Hamiltonian if it includes all the vertices of D. A set $X \subseteq V(D)$ of vertices is independent if no two vertices of X are adjacent. A set of $A \subseteq E(D)$ is independent if no two arcs of A are incident.

A bipartite tournament with the partite sets X and Y such that $|X|=|Y|=m$ is also called an $m \times m$ bipartite tournament. By $H\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ we define the bipartite tournament with the four pairwise disjoint independent sets of vertices $B_{1}, B_{2}, B_{3}, B_{4}$ with $\left|B_{i}\right|=r_{i}$ for $i=1,2,3,4$ such that $B_{1} \rightarrow B_{2} \rightarrow B_{3} \rightarrow B_{4} \rightarrow B_{1}$. The class $H^{*}\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ of bipartite tournaments originates from $H\left(r_{1}, r_{2}, r_{3}, r_{4}\right)$ by reversing some arcs between B_{1} and B_{4} or B_{3} and B_{4} such that $d\left(b_{1}, B_{4}\right) \leqslant 1$ and $d\left(B_{4}, b_{3}\right) \leqslant 1$ for every $b_{1} \in B_{1}$ and $b_{3} \in B_{3}$, or by reversing all the arcs.

In Section 2, we prove that every arc of an almost regular bipartite tournament T with the partite sets X, Y such that $|X| \leqslant|Y|$, is contained in a Hamiltonian path if and only if $|Y| \leqslant|X|+1$ and T is not isomorphic to $T_{3,3}$ (cf. Fig. 1). As an application of this result, we show in Section 3 that every arc of an almost regular c-partite tournament D with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{c}\right|$, is contained in a Hamiltonian path if and only if D is not isomorphic to $T_{3,3}$.

2. Almost regular bipartite tournaments

The following results play an important role in the investigations of this section.
Theorem 2.1 (Amar and Manoussakis [1], Wang [13]). Every arc of a regular bipartite tournament is contained in a Hamiltonian cycle.

Theorem 2.2 (Wang [14]). Let H be an $m \times m$ bipartite tournament. If $d_{H}^{-}(u)+d_{H}^{+}(v) \geqslant m-1$ for every pair of vertices u and v satisfying $u \rightarrow v$, then H is Hamiltonian, unless H is isomorphic to $H((m+1) / 2,(m+1) / 2,(m-1) / 2,(m-1) / 2)$ when m is odd or $H(m / 2,(m-2) / 2, m / 2,(m+2) / 2)$ when m is even.

Lemma 2.3 (Guo, Pinkernell, and Volkmann [5]). Let C be an m-cycle of a strong c-partite tournament D. If there exists a vertex $y \in V(D)-V(C)$ with $N^{+}(y) \cap V(C)=\emptyset$ or $N^{-}(y) \cap V(C)=\emptyset$, then the vertex set $V(C)$ is contained in an $(m+1)$ - or $(m+2)$-cycle.

Theorem 2.4 (Zhang, Song, and Wang [18]). Let H be an $(m+2) \times(m+2)$ bipartite tournament with $m \geqslant 3$. If $d_{H}^{-}(u)+d_{H}^{+}(v) \geqslant m$ for every pair of vertices u and v satisfying $u v \notin E(H)$, then H is Hamiltonian, or H is isomorphic to $H(k+2, k+2, k, k)$ when $m=2 k$, or $H \in H^{*}(m+2-t, t+1, t, m+1-t)$ with $(m-1) / 2 \leqslant t \leqslant(m+2) / 2$.

Example 2.5. Let $T_{3,3}$ be the almost regular bipartite tournament presented in Fig. 1. Then it is straightforward to verify that the arc $u v$ is not contained in a Hamiltonian path. (Note that $T_{3,3}$ has a Hamiltonian cycle.)

Theorem 2.6. Let T be an almost regular bipartite tournament with the partite sets X, Y such that $1 \leqslant|X| \leqslant|Y|$. Every arc of T is contained in a Hamiltonian path if and only if $|Y| \leqslant|X|+1$ and T is not isomorphic to $T_{3,3}$.

Proof. Clearly, if $|Y| \geqslant|X|+2$, then T does not have any Hamiltonian path. Thus, assume that $|Y| \leqslant|X|+1$, and let $u v$ be an arbitrary arc of T.

If T is regular, then the desired result follows immediately from Theorem 2.1. So, let now $i_{\mathrm{g}}(T)=1$.
Firstly, assume that $|Y|=|X|+1$. If $|X|=1$, then the result is obvious. Let now $|Y|=|X|+1=m+1 \geqslant 3, X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$, and $Y=\left\{y_{1}, y_{2}, \ldots, y_{m+1}\right\}$, and, without loss of generality, $u=y_{m+1}$ or $v=y_{m+1}$. The digraph $H=T-\left\{y_{m+1}\right\}$ is an $m \times m$ bipartite tournament, and since $i_{\mathrm{g}}(T)=1$, it is easy to see that $d_{H}^{-}(w)+d_{H}^{+}(z) \geqslant m-1$ for every pair of vertices w and z satisfying $w \rightarrow z$. Hence, by Theorem $2.2, H$ is Hamiltonian, unless H is isomorphic to $H((m+1) / 2,(m+$ $1) / 2,(m-1) / 2,(m-1) / 2)$ when m is odd or $H(m / 2,(m-2) / 2, m / 2,(m+2) / 2)$ when m is even. If H is Hamiltonian, then T contains a Hamiltonian path with the initial arc $u v$ if $u=y_{m+1}$ and with the terminal arc $u v$ if $v=y_{m+1}$.

If $m=2 p+1$ is odd and $H=H(p+1, p+1, p, p)$ then let, without loss of generality, $B_{1}=\left\{y_{1}, y_{2}, \ldots, y_{p+1}\right\}, B_{3}=$ $\left\{y_{p+2}, y_{p+3}, \ldots, y_{2 p+1}\right\}, B_{2}=\left\{x_{1}, x_{2}, \ldots, x_{p+1}\right\}$, and $B_{4}=\left\{x_{p+2}, x_{p+3}, \ldots, x_{2 p+1}\right\}$. Because of $d_{T}^{+}\left(x_{i}\right)=d_{T}^{-}\left(x_{i}\right)=p+1$ for $i=1,2, \ldots, 2 p+1=m$, we deduce that $B_{2} \rightarrow y_{m+1} \rightarrow B_{4}$. If, without loss of generality, $u=x_{1}$, if $v=y_{m+1}$ and $v=x_{p+2}$, if $u=y_{m+1}$, then

$$
y_{1} x_{1} y_{m+1} x_{p+2} y_{2} x_{2} y_{p+2} x_{p+3} \ldots x_{2 p} y_{p} x_{p} y_{2 p} x_{2 p+1} y_{p+1} x_{p+1} y_{2 p+1}
$$

is a Hamiltonian path, containing $u v$.
If $m=2 p$ is even and $H=H(p, p-1, p, p+1)$, then because of $d_{T}^{+}\left(y_{i}\right)=d_{T}^{-}\left(y_{i}\right)=p$ for $i=1,2, \ldots, 2 p+1=m+1$ and $p \leqslant d_{T}^{+}\left(x_{i}\right), d_{T}^{-}\left(x_{i}\right) \leqslant p+1$ for $i=1,2, \ldots, 2 p=m$, it follows that $X=B_{1} \cup B_{3}, Y=B_{2} \cup B_{4} \cup\left\{y_{m+1}\right\}$, and $B_{1} \rightarrow y_{m+1} \rightarrow B_{3}$. Let $B_{4}=\left\{y_{1}, y_{2}, \ldots, y_{p+1}\right\}, B_{2}=\left\{y_{p+2}, y_{p+3}, \ldots, y_{2 p}\right\}, B_{1}=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}$, and $B_{3}=\left\{x_{p+1}, x_{p+2}, \ldots, x_{2 p}\right\}$. If, without loss of generality, $u=x_{1}$, if $v=y_{m+1}$ and $v=x_{p+1}$, if $u=y_{m+1}$, then

```
\mp@subsup{y}{1}{}\mp@subsup{x}{1}{}\mp@subsup{y}{m+1}{}\mp@subsup{x}{p+1}{}\mp@subsup{y}{2}{}\mp@subsup{x}{2}{}\mp@subsup{y}{p+2}{}\mp@subsup{x}{p+2}{}\mp@subsup{y}{3}{}\ldots\mp@subsup{y}{p}{}\mp@subsup{x}{p}{}\mp@subsup{y}{2p}{}\mp@subsup{x}{2p}{}\mp@subsup{y}{p+1}{}
```

is a Hamiltonian path, containing $u v=x_{1} y_{m+1}$.
Secondly, assume that $|X|=|Y|$. Since $i_{\mathrm{g}}(T)=1$, we deduce that $|X|$ is odd, say $|X|=|Y|=2 p+1$. If $|X|=|Y|=1$, then there is nothing to prove. If $|X|=|Y|=3$, then it is straightforward to verify that there exists only one exception, namely $T_{3,3}$.

Case 1: Let next $|X|=|Y|=5, X=\left\{u, x_{1}, x_{2}, x_{3}, x_{4}\right\}, Y=\left\{v, y_{1}, y_{2}, y_{3}, y_{4}\right\}$, and $H=T-\{u, v\}$. Since T is almost regular, we observe that $d_{T}^{+}(x), d_{T}^{-}(x) \geqslant 2$ for $x \in V(T)$.

Subcase 1.1: Assume that H is not strongly connected. We deduce that H has exactly two 4-cycles T_{1} and T_{2} as strong components such that, without loss of generality, there is no arc from T_{2} to T_{1}. Since T is strongly connected, there exists an arc from v to T_{1}. Consequently, T contains a Hamiltonian path, starting with the arc $u v$.

Subcase 1.2: Assume that H is strongly connected. This implies that $d_{H}^{+}(x), d_{H}^{-}(x) \geqslant 1$ for $x \in V(H)$.
Subcase 1.2.1: Assume that H is Hamiltonian. It follows that T contains a Hamiltonian path, starting with the arc $u v$.
Subcase 1.2.2: Assume that the longest cycle in H has length 6 . Let, without loss of generality, $x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} x_{1}$ be such a longest cycle.

Subcase 1.2.2.1: Let $x_{4} \rightarrow y_{4}$. If $v \rightarrow x_{4}$ or $y_{4} \rightarrow u$, then it is no problem to find a Hamiltonian path through the arc $u v$ in T. Therefore, assume now that $u \rightarrow y_{4}$ and $x_{4} \rightarrow v$. Since v has at least two positive neighbors, assume, without loss of generality, that $v \rightarrow\left\{x_{1}, x_{2}\right\}$. If $y_{1} \rightarrow x_{4}$, then $u v x_{2} y_{2} x_{3} y_{3} x_{1} y_{1} x_{4} y_{4}$ is a Hamiltonian path through $u v$. It remains to consider the case that $x_{4} \rightarrow y_{1}$. This yields $\left\{y_{2}, y_{3}\right\} \rightarrow x_{4}$, and then $u v x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} x_{4} y_{4}$ is the desired Hamiltonian path.

Subcase 1.2.2.2: Let $y_{4} \rightarrow x_{4}$. Assume, without loss of generality, that $x_{4} \rightarrow y_{1}$. Since H has no Hamiltonian cycle, it follows that $y_{4} \rightarrow x_{1}$.

Subcase 1.2.2.2.1: Let $v \rightarrow x_{4}$. If $y_{4} \rightarrow u$, then $y_{4} u v x_{4} y_{1} x_{2} y_{2} x_{3} y_{3} x_{1}$ is the desired Hamiltonian path. So, let $u \rightarrow y_{4}$. If $u \rightarrow y_{1}$, then $y_{3} \rightarrow u$, and $y_{4} x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} u v x_{4}$ is a Hamiltonian path. Thus, it remains $y_{1} \rightarrow u$. If $y_{4} \rightarrow x_{2}$, then $y_{4} x_{2} y_{2} x_{3} y_{3} x_{1} y_{1} u v x_{4}$ is a Hamiltonian path. Let now $x_{2} \rightarrow y_{4}$. If $v \rightarrow x_{2}$, then $y_{4} x_{4} y_{1} u v x_{2} y_{2} x_{3} y_{3} x_{1}$ is a Hamiltonian path. Thus, let $x_{2} \rightarrow v$. This leads to $y_{3} \rightarrow x_{2}$. If $v \rightarrow x_{1}$, then $y_{2} x_{3} y_{3} x_{2} y_{4} x_{4} y_{1} u v x_{1}$ is a Hamiltonian path. Otherwise, $x_{1} \rightarrow v$, and this implies $v \rightarrow x_{3}$. If $y_{2} \rightarrow u$, then $y_{4} x_{4} y_{1} x_{2} y_{2} u v x_{3} y_{3} x_{1}$ is a Hamiltonian path. Thus, let finally $u \rightarrow y_{2}$. This leads to $y_{3} \rightarrow u$, and we obtain the desired Hamiltonian path $y_{4} x_{1} y_{1} x_{2} y_{2} x_{3} y_{3} u v x_{4}$.

Subcase 1.2.2.2.2: Let $x_{4} \rightarrow v \rightarrow x_{1}$. We deduce that $x_{1} \rightarrow y_{2}$. If $y_{3} \rightarrow u$, then $y_{4} x_{4} y_{1} x_{2} y_{2} x_{3} y_{3} u v x_{1}$ is a Hamiltonian path. So, we assume $u \rightarrow y_{3}$. Now, $y_{4} \rightarrow u$ implies $x_{2} \rightarrow y_{4}$, and we have the Hamiltonian path $x_{4} y_{1} x_{2} y_{4} u v x_{1} y_{2} x_{3} y_{3}$. The case $u \rightarrow y_{4}$ yields $\left\{y_{1}, y_{2}\right\} \rightarrow u$. If $y_{3} \rightarrow x_{2}$, then $y_{4} x_{4} y_{1} u v x_{1} y_{2} x_{3} y_{3} x_{2}$ is a Hamiltonian path. If we assume that $x_{2} \rightarrow y_{3}$, then it follows $y_{3} \rightarrow x_{4}$. In the case $v \rightarrow x_{3}$, we find the Hamiltonian path $y_{4} x_{4} y_{1} x_{2} y_{2} u v x_{3} y_{3} x_{1}$. Thus, let finally $x_{3} \rightarrow v$. This leads to $v \rightarrow x_{2}$, and we obtain the desired Hamiltonian path $y_{4} x_{4} y_{1} u v x_{2} y_{2} x_{3} y_{3} x_{1}$.

Subcase 1.2.2.2.3: Let $x_{4} \rightarrow v$ and $x_{1} \rightarrow v$. It follows that $v \rightarrow\left\{x_{2}, x_{3}\right\}$. If $y_{1} \rightarrow u$, then $y_{4} x_{4} y_{1} u v x_{2} y_{2} x_{3} y_{3} x_{1}$ is a Hamiltonian path through $u v$. In the other case that $u \rightarrow y_{1}$, we deduce that $y_{1} \rightarrow x_{3}$. If $y_{2} \rightarrow u$, then $y_{4} x_{4} y_{1} x_{2} y_{2} u v x_{3} y_{3} x_{1}$ is a Hamiltonian path. Thus, we assume that $u \rightarrow y_{2}$. This implies $\left\{y_{3}, y_{4}\right\} \rightarrow u$ and this leads to $\left\{x_{2}, x_{3}\right\} \rightarrow y_{4}$. If $x_{4} \rightarrow y_{3}$, then $x_{4} y_{3} u v x_{3} y_{4} x_{1} y_{1} x_{2} y_{2}$ is a Hamiltonian path. In the last case that $y_{3} \rightarrow x_{4}$, we observe that $x_{2} \rightarrow y_{3}$. If $x_{4} \rightarrow y_{2}$, then $x_{1} y_{1} x_{2} y_{4} u v x_{3} y_{3} x_{4} y_{2}$ is a Hamiltonian path, and if $y_{2} \rightarrow x_{4}$, then $y_{4} u v x_{2} y_{2} x_{4} y_{1} x_{3} y_{3} x_{1}$ is a Hamiltonian path through $u v$.

Subcase 1.2.3: Assume that the longest cycle in H has length 4. Let, without loss of generality, $C=x_{1} y_{1} x_{2} y_{2} x_{1}$ be such a longest cycle. According to Lemma 2.3, each of the vertices $x_{3}, y_{3}, x_{4}, y_{4}$ has exactly one positive and one negative neighbor in C.

Subcase 1.2.3.1: Let $x_{4} y_{1} x_{3} y_{2} x_{4}$ and $x_{1} y_{4} x_{2} y_{3} x_{1}$ are both 4-cycles. This implies $x_{4} \rightarrow y_{4}$, because otherwise there exists the 6 -cycle $y_{4} x_{4} y_{1} x_{2} y_{2} x_{1} y_{4}, y_{4} \rightarrow x_{3}$, because otherwise there exists the 6 -cycle $x_{3} y_{4} x_{2} y_{2} x_{1} y_{1} x_{3}$. It follows that $x_{4} \rightarrow y_{3}$, because otherwise there exists the 8-cycle $y_{3} x_{4} y_{4} x_{3} y_{2} x_{1} y_{1} x_{2} y_{3}$. This yields $v \rightarrow x_{4}$ and $u v x_{4} y_{4} x_{3} y_{2} x_{1} y_{1} x_{2} y_{3}$ is a Hamiltonian path, containing the arc $u v$.

Subcase 1.2.3.2: Let $x_{4} y_{1} x_{3} y_{2} x_{4}$ be a 4-cycle, and let $x_{1} y_{4} x_{2} y_{3} x_{1}$ be not a 4-cycle. We can assume, without loss of generality, that $x_{1} \rightarrow y_{4} \rightarrow x_{2}$ and $x_{1} \rightarrow y_{3} \rightarrow x_{2}$. This implies $x_{4} \rightarrow y_{4}$, because otherwise there exists the 6 -cycle $y_{4} x_{4} y_{1} x_{2} y_{2} x_{1} y_{4}, x_{4} \rightarrow y_{3}$, because otherwise there exists the 6-cycle $y_{3} x_{4} y_{1} x_{2} y_{2} x_{1} y_{3}$, and $y_{4} \rightarrow x_{3}$, because otherwise there exists the 6 -cycle $x_{3} y_{4} x_{2} y_{2} x_{1} y_{1} x_{3}$. It follows that $y_{3} \rightarrow x_{3}$, because otherwise there exists the 6 -cycle $x_{3} y_{3} x_{2} y_{2} x_{4} y_{4} x_{3}$. This yields $v \rightarrow x_{4}$.

If $y_{3} \rightarrow u$, then $y_{3} u v x_{4} y_{4} x_{3} y_{2} x_{1} y_{1} x_{2}$ is a Hamiltonian path, containing the arc $u v$. If $y_{4} \rightarrow u$, then $y_{4} u v x_{4} y_{3} x_{3} y_{2} x_{1} y_{1} x_{2}$ is a Hamiltonian path, containing the arc $u v$. However, if $u \rightarrow\left\{y_{3}, y_{4}\right\}$, then we deduce that $y_{1} \rightarrow u$, and we arrive at the Hamiltonian path $y_{3} x_{2} y_{2} x_{1} y_{1} u v x_{4} y_{4} x_{3}$ through $u v$.

Subcase 1.2.3.3: Let neither $x_{4} y_{1} x_{3} y_{2} x_{4}$ nor $x_{1} y_{4} x_{2} y_{3} x_{1}$ be a 4 -cycle. We can assume, without loss of generality, that $y_{2} \rightarrow x_{4} \rightarrow y_{1}, \quad y_{2} \rightarrow x_{3} \rightarrow y_{1}, x_{1} \rightarrow y_{4} \rightarrow x_{2}$, and $x_{1} \rightarrow y_{3} \rightarrow x_{2}$. This implies $x_{4} \rightarrow y_{4}$, because otherwise there exists the 6 -cycle $y_{4} x_{4} y_{1} x_{2} y_{2} x_{1} y_{4}$ and $x_{3} \rightarrow y_{4}$, because otherwise there exists the 6 -cycle $y_{4} x_{3} y_{1} x_{2} y_{2} x_{1} y_{4}$. It follows that $x_{4} \rightarrow y_{3}$, because otherwise there exists the 6-cycle $y_{3} x_{4} y_{4} x_{2} y_{2} x_{1} y_{3}$. This yields $x_{3} \rightarrow y_{3}$, because otherwise there exists the 6 -cycle $x_{4} y_{3} x_{3} y_{1} x_{2} y_{2} x_{4}$. We deduce that $y_{4} \rightarrow u$ and $v \rightarrow x_{1}$, and this leads to the Hamiltonian path $x_{4} y_{4} u v x_{1} y_{1} x_{2} y_{2} x_{3} y_{3}$, containing the arc $u v$.

Case 2: Let $|X|=|Y|=2 p+1=m+3 \geqslant 7, H=T-\{u, v\}, X=\left\{u, x_{1}, x_{2}, \ldots, x_{m+2}\right\}$, and $Y=\left\{v, y_{1}, y_{2}, \ldots, y_{m+2}\right\}$. As T is almost regular, we observe that $p \leqslant d_{T}^{+}(x), d_{T}^{-}(x) \leqslant p+1$ for all $x \in V(T)$. If we define $H=T-\{u, v\}$, then $p-1 \leqslant d_{H}^{+}(x), d_{H}^{-}(x) \leqslant p+1$ for all $x \in V(H)$, and therefore $d_{H}^{-}(w)+d_{H}^{+}(z) \geqslant 2 p-2=m$ for every pair of vertices w and z satisfying $w z \notin E(H)$. It follows, according to Theorem 2.4, that H is Hamiltonian, or H is isomorphic to $H(p+1, p+1, p-1, p-1)$ or $H \in H^{*}(p+1, p, p-1, p)$. If H is Hamiltonian, then T contains a Hamiltonian path with the terminal arc $u v$.

If $H=H(p+1, p+1, p-1, p-1)$, then because of $p \leqslant d_{T}^{+}(x), d_{T}^{-}(x) \leqslant p+1$ for all $x \in V(T)$, it follows that $X=B_{1} \cup B_{3} \cup\{u\}, Y=B_{2} \cup B_{4} \cup\{v\}, B_{2} \rightarrow u \rightarrow B_{4}$, and $B_{3} \rightarrow v \rightarrow B_{1}$. If $B_{1}=\left\{x_{1}, x_{2}, \ldots, x_{p+1}\right\}, B_{2}=\left\{y_{1}, y_{2}, \ldots, y_{p+1}\right\}, B_{3}=$ $\left\{x_{p+2}, x_{p+3}, \ldots, x_{2 p}\right\}$, and $B_{4}=\left\{y_{p+2}, y_{p+3}, \ldots, y_{2 p}\right\}$, then

$$
x_{1} y_{1} u v x_{2} y_{2} x_{p+2} y_{p+2} x_{3} \ldots x_{p} y_{p} x_{2 p} y_{2 p} x_{p+1} y_{p+1}
$$

is a Hamiltonian path containing the arc $u v$.
Subcase 2.1: Let $H \in H^{*}(p+1, p, p-1, p)$ such that $B_{1}=\left\{y_{1}, y_{2}, \ldots, y_{p+1}\right\}, B_{2}=\left\{x_{1}, x_{2}, \ldots, x_{p}\right\}, B_{3}=\left\{y_{p+2}, y_{p+3}, \ldots\right.$, $\left.y_{2 p}\right\}$, and $B_{4}=\left\{x_{p+1}, x_{p+2}, \ldots, x_{2 p}\right\}$. Because of $p \leqslant d_{T}^{+}(x), d_{T}^{-}(x) \leqslant p+1$ for all $x \in V(T)$, we conclude that $B_{2} \rightarrow v \rightarrow B_{4}$, and there exists a vertex, say $y_{p+1} \in B_{1}$, with the property that $y_{p+1} \rightarrow u$.

Subcase 2.1.1: Assume that $d_{H}\left(x, B_{1}-\left\{y_{p+1}\right\}\right) \geqslant 1$ for all $x \in B_{4}$. In this case, the hypothesis $d_{H}\left(b_{1}, B_{4}\right) \leqslant 1$ for every $b_{1} \in B_{1}$ and the Marriage Theorem yield p independent arcs, say $x_{p+i} y_{i}$ for $i=1,2, \ldots, p$, from B_{4} to B_{1}. Furthermore, the hypothesis $d_{H}\left(B_{4}, b_{3}\right) \leqslant 1$ for every $b_{3} \in B_{3}$ leads easily to $p-1$ independent arcs, say $y_{p+i} x_{p+i}$ for $i=2,3, \ldots, p$, from B_{3} to B_{4}. Altogether, we see that

$$
y_{p+1} u v x_{p+1} y_{1} x_{1} y_{p+2} x_{p+2} y_{2} x_{2} \ldots y_{p-1} x_{p-1} y_{2 p} x_{2 p} y_{p} x_{p}
$$

is a Hamiltonian path through $u v$.
Subcase 2.1.2: Assume next that there exists a vertex, say $x_{p+1} \in B_{4}$, such that $d_{H}\left(x_{p+1}, B_{1}-\left\{y_{p+1}\right\}\right)=0$. This implies $\left(\left(B_{1}-\left\{y_{p+1}\right\}\right) \cup\{v\}\right) \rightarrow x_{p+1}$. Because of $p \leqslant d_{T}^{+}(x), d_{T}^{-}(x) \leqslant p+1$ for all $x \in V(T)$, it follows that $x_{p+1} \rightarrow\left(B_{3} \cup\left\{y_{p+1}\right\}\right)$, $u \rightarrow\left(B_{1}-\left\{y_{p+1}\right\}\right)$, and $B_{3} \rightarrow u$. In addition, in view of the hypotheses $d_{H}\left(b_{1}, B_{4}\right) \leqslant 1$ for every $b_{1} \in B_{1}$ and $d_{H}\left(B_{4}, b_{3}\right) \leqslant 1$ for every $b_{3} \in B_{3}$, we deduce that $\left(B_{4}-\left\{x_{p+1}\right\}\right) \rightarrow\left(B_{1}-\left\{y_{p+1}\right\}\right)$ and $B_{3} \rightarrow\left(B_{4}-\left\{x_{p+1}\right\}\right)$. This shows that

$$
y_{1} x_{1} y_{p+2} u v x_{p+2} y_{2} x_{p+1} y_{p+1} x_{2} y_{p+3} x_{p+3} y_{3} x_{3} y_{p+4} \ldots y_{p-1} x_{p-1} y_{2 p} x_{2 p} y_{p} x_{p}
$$

is a Hamiltonian path through $u v$.
Subcase 2.2: Let $H \in H^{*}(p+1, p, p-1, p)$ such that $B_{1}=\left\{x_{1}, x_{2}, \ldots, x_{p+1}\right\}, B_{2}=\left\{y_{1}, y_{2}, \ldots, y_{p}\right\}, B_{3}=\left\{x_{p+2}, x_{p+3}, \ldots\right.$, $\left.x_{2 p}\right\}$, and $B_{4}=\left\{y_{p+1}, y_{p+2}, \ldots, y_{2 p}\right\}$. Because of $p \leqslant d_{T}^{+}(x), d_{T}^{-}(x) \leqslant p+1$ for all $x \in V(T)$, we have $B_{2} \rightarrow u$, and there exists a vertex, say $x_{p+1} \in B_{1}$, with the property $v \rightarrow x_{p+1}$.

Subcase 2.2.1: Assume that $d_{H}\left(y, B_{1}-\left\{x_{p+1}\right\}\right) \geqslant 1$ for all $y \in B_{4}$. In this case, the hypothesis $d_{H}\left(b_{1}, B_{4}\right) \leqslant 1$ for every $b_{1} \in B_{1}$ and the Marriage Theorem yield p independent arcs, say $y_{p+i} x_{i}$ for $i=1,2, \ldots, p$, from B_{4} to B_{1}. Furthermore,
the hypothesis $d_{H}\left(B_{4}, b_{3}\right) \leqslant 1$ for every $b_{3} \in B_{3}$ leads easily to $p-1$ independent arcs, say $x_{p+i} y_{p+i}$ for $i=2,3, \ldots, p$, from B_{3} to B_{4}. This implies that

```
\mp@subsup{y}{p+1}{}\mp@subsup{x}{1}{}\mp@subsup{y}{1}{}uv\mp@subsup{x}{p+1}{}\mp@subsup{y}{2}{}\mp@subsup{x}{p+2}{}\mp@subsup{y}{p+2}{}\mp@subsup{x}{2}{}\mp@subsup{y}{3}{}\mp@subsup{x}{p+3}{}\mp@subsup{y}{p+3}{}\mp@subsup{x}{3}{}\mp@subsup{y}{4}{}\ldots\mp@subsup{x}{p-1}{}\mp@subsup{y}{p}{}\mp@subsup{x}{2p}{}\mp@subsup{y}{2p}{}\mp@subsup{x}{p}{}
```

is a Hamiltonian path through $u v$.
Subcase 2.2.2: Next, assume that there exists a vertex, say $y_{p+1} \in B_{4}$, such that $d_{H}\left(y_{p+1}, B_{1}-\left\{x_{p+1}\right\}\right)=0$. Because of $p \leqslant d_{T}^{+}(x), d_{T}^{-}(x) \leqslant p+1$ for all $x \in V(T)$, it follows that $v \rightarrow B_{1}$. In addition, the fact that $\left(B_{1}-\left\{x_{p+1}\right\}\right) \rightarrow\left(B_{2}-\left\{y_{p+1}\right\}\right)$ leads to $\left(B_{4}-\left\{y_{p+1}\right\}\right) \rightarrow\left(B_{1}-\left\{x_{p+1}\right\}\right)$.

Subcase 2.2.2.1: Let $y_{p+1} \rightarrow x_{p+1}$. Since y_{p+1} has at least $p-2$ positive neighbors in B_{3}, the condition $d_{H}\left(B_{4}, b_{3}\right) \leqslant 1$ for every $b_{3} \in B_{3}$ leads easily to $p-1$ independent arcs, say $x_{p+i} y_{p+i}$ for $i=2,3, \ldots, p$, from B_{3} to $B_{4}-\left\{y_{p+1}\right\}$. Thus,

$$
x_{1} y_{p+1} x_{p+1} y_{1} u v x_{2} y_{2} x_{p+2} y_{p+2} x_{3} y_{3} x_{p+3} y_{p+3} \ldots x_{p-1} y_{p-1} x_{2 p-1} y_{2 p-1} x_{p} y_{p} x_{2 p} y_{2 p}
$$

is a Hamiltonian path through $u v$.
Subcase 2.2.2.2: Let $x_{p+1} \rightarrow y_{p+1}$. We deduce that $y_{p+1} \rightarrow\left(B_{3} \cup\{u\}\right), v \rightarrow B_{1}, B_{3} \rightarrow\left(B_{4}-\left\{y_{p+1}\right\}\right)$, and ($B_{4}-$ $\left.\left\{y_{p+1}\right\}\right) \rightarrow B_{1}$. Consequently,

$$
x_{p+1} y_{p+1} u v x_{1} y_{1} x_{p+2} y_{p+2} x_{2} y_{2} x_{p+3} y_{p+3} \ldots x_{p-1} y_{p-1} x_{2 p} y_{2 p} x_{p} y_{p}
$$

is a Hamiltonian path through $u v$.
If we finally reserve all arcs of $H(p+1, p, p-1, p)$, then we arrive at a symmetric situation, and the proof of Theorem 2.6 is complete.

3. Almost regular multipartite tournaments

Theorem 3.1 (Volkmann, Yeo [12]). Every arc of a regular c-partite tournament D is contained in a Hamiltonian path of D.

Theorem 3.2 (Volkmann, Yeo [12]). Let D be a c-partite tournament with partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $\left|V_{1}\right| \leqslant$ $\left|V_{2}\right| \leqslant \cdots \leqslant\left|V_{c}\right|$, and let P be a path of length q in D. If

$$
|V(D)| \geqslant 2 i_{\mathrm{g}}(D)+3 q+2\left|V_{c}\right|+\left|V_{c-1}\right|-2
$$

then there exists a Hamiltonian path in D, starting with the path P.
Theorem 3.3 (Jakobsen [10]). If T is an almost regular tournament of order $n \geqslant 8$, then every arc of T is contained in an m-cycle for each $m \in\{4,5, \ldots, n\}$.

Theorem 3.4. Let D be an almost regular c-partite tournament with the partite sets $V_{1}, V_{2}, \ldots, V_{c}$ such that $\left|V_{1}\right|=$ $\left|V_{2}\right|=\cdots=\left|V_{c}\right|$. Then each arc of D is contained in a Hamiltonian path if and only if D is not isomorphic to $T_{3,3}$.

Proof. If D is regular, then we deduce from Theorem 3.1 that every arc is contained in a Hamiltonian path. In the remaining case that $i_{\mathrm{g}}(D)=1$, it follows, because of $\left|V_{1}\right|=\left|V_{2}\right|=\cdots=\left|V_{c}\right|=r$, that c is even and r is odd. If $c=2$, then Theorem 2.6 yields the desired result. In the case $c \geqslant 4$ and $r \geqslant 3$, we observe that

$$
\begin{aligned}
|V(D)| & =\left|V_{1}\right|+\left|V_{2}\right|+\cdots+\left|V_{c}\right| \\
& \geqslant\left|V_{c-3}\right|+\left|V_{c-2}\right|+\left|V_{c-1}\right|+\left|V_{c}\right| \\
& \geqslant 2-2+3+2\left|V_{c}\right|+\left|V_{c-1}\right| \\
& =2 i_{\mathrm{g}}(D)+3+2\left|V_{c}\right|+\left|V_{c-1}\right|-2 .
\end{aligned}
$$

Applying Theorem 3.2 with $q=1$, we see that there exists a Hamiltonian path in D, starting with an arbitrary arc. Finally, let D be a tournament. If $c \geqslant 8$, then, according to Theorem 3.3, every arc is even contained in a Hamiltonian cycle. If $c=6$, then we can apply again Theorem 3.2, and if $c=4$, then it is a simple matter to obtain the desired result.

Acknowledgements

The author would like to thank the two referees for their hints and suggestions.

References

[1] D. Amar, Y. Manoussakis, Cycles and paths of many lengths in bipartite digraphs, J. Combin. Theory Ser. B 50 (1990) 254-264.
[2] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000.
[3] J. Bang-Jensen, G. Gutin, A. Yeo, A polynomial algorithm for the Hamiltonian cycle problem in semicomplete multipartite digraphs, J. Graph Theory 29 (1998) 111-132.
[4] Y. Guo, Semicomplete Multipartite Digraphs: a Generalization of Tournaments, Habilitation thesis, RWTH Aachen, 1998.
[5] Y. Guo, A. Pinkernell, L. Volkmann, On cycles through a given vertex in multipartite tournaments, Discrete Math. 164 (1997) 165-170.
[6] G. Gutin, A criterion for complete bipartite digraphs to be Hamiltonian, Vestsi. Acad. Navuk BSSR Ser. Fiz.-Mat. Navuk No. 1 (1984) 99-100 (in Russian).
[7] G. Gutin, A characterization of complete n-partite digraphs that have a Hamiltonian path, Kybernetica No. 1 (1988) 107-108 (in Russian).
[8] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey, J. Graph Theory 19 (1995) 481-505.
[9] R. Häggkvist, Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33-38.
[10] O.S. Jakobsen, Cycles and Paths in Tournaments, Ph.D. Thesis, University of Aarhus, 1972.
[11] L. Volkmann, Cycles in multipartite tournaments: results and problems, Discrete Math. 245 (2002) 19-53.
[12] L. Volkmann, A. Yeo, Hamiltonian paths, containing a given path or collection of arcs, in close to regular multipartite tournaments, Discrete Math. 281 (2004) 267-276.
[13] J.Z. Wang, Cycles of all possible lengths in diregular bipartite tournaments, Ars. Combin. 32 (1991) 279-288.
[14] J.Z. Wang, A sufficient condition for Hamiltonian cycles in bipartite tournaments, Austral. J. Combin. 5 (1992) 299-304.
[15] A. Yeo, Semicomplete Multipartite Digraphs, Ph.D. thesis, University of Odense, 1998.
[16] A. Yeo, How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity? Graphs Combin. 15 (1999) 481-493.
[17] K.M. Zhang, Z.M. Song, Cycles in digraphs-a survey, J. Nanjing Univ. Nat. Sci. Ed. 27 (1991) 188-215.
[18] K.M. Zhang, Z.M. Song, J.Z. Wang, Hamiltonian bipartite tournaments, Nanjing Daxue Xuebao Shuxue Bannian Kan 8 (1991) (1) 6-10 (in Chinese).

[^0]: E-mail address: volkm@math2.rwth-aachen.de (L. Volkmann).

