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Abstract

A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation
of a complete c-partite graph. If x is a vertex of a digraph D, then we denote by d+(x) and d−(x) the outdegree
and indegree of x, respectively. The global irregularity of a digraph D is de7ned by ig(D) = max{d+(x); d−(x)} −
min{d+(y); d−(y)} over all vertices x and y of D (including x = y). If ig(D)6 1, then D is called almost regular, and
if ig(D) = 0, then D is regular.

More than 10 years ago, Amar and Manoussakis and independently Wang proved that every arc of a regular bipartite
tournament is contained in a directed Hamiltonian cycle. In this paper, we prove that every arc of an almost regular
bipartite tournament T is contained in a directed Hamiltonian path if and only if the cardinalities of the partite sets di;er
by at most one and T is not isomorphic to T3;3, where T3;3 is an almost regular bipartite tournament with three vertices
in each partite set.

As an application of this theorem and other results, we show that every arc of an almost regular c-partite tournament
D with the partite sets V1; V2; : : : ; Vc such that |V1| = |V2| = · · · = |Vc|, is contained in a directed Hamiltonian path if and
only if D is not isomorphic to T3;3.
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1. Terminology and introduction

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite
tournament with exactly c vertices. Multipartite tournaments are well studied (see e.g., [2,4,8,11,15,17]). In particular,
Gutin [7] gave a characterization of multipartite tournaments with a Hamiltonian path, Gutin [6] and HBaggkvist and
Manoussakis [9] presented a characterization of Hamiltonian bipartite tournaments, and Bang-Jensen, Gutin, and Yeo [3]
showed that the Hamiltonian cycle problem is polynomial time solvable for multipartite tournaments.

We shall assume that the reader is familiar with standard terminology on directed graphs (see, e.g., [2]). In this paper,
all digraphs are 7nite without loops or multiple arcs. The vertex set and the arc set of a digraph D are denoted by V (D)
and E(D), respectively. If xy is an arc of a digraph D, then we write x → y and say x dominates y. If X and Y are
two disjoint subsets of V (D) or subdigraphs of D such that every vertex of X dominates every vertex of Y , then we
say that X dominates Y , denoted by X → Y . By dD(X; Y ) = d(X; Y ) we denote the number of arcs from X to Y , i.e.,
d(X; Y ) = |{xy∈E(D) : x∈X; y∈ Y}|.
The out-neighborhood N+

D (x) = N+(x) of a vertex x is the set of vertices dominated by x, and the in-neighborhood
N−
D (x) =N−(x) is the set of vertices dominating x. The numbers d+

D (x) = d+(x) = |N+(x)| and d−
D (x) = d−(x) = |N−(x)|

are the outdegree and the indegree of x, respectively.
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Fig. 1. The almost regular bipartite tournament T3;3.

In [16], Yeo de7nes the global irregularity ig(D) of a digraph D by

ig(D) = max
x∈V (D)

{d+
D (x); d

−
D (x)} − min

y∈V (D)
{d+

D (y); d
−
D (y)}:

If ig(D)6 1 then D is called almost regular, and if ig(D) = 0, then D is regular.
By a cycle or path we mean a directed cycle or directed path. A cycle of length k is also called a k-cycle. A cycle or

path in a digraph D is Hamiltonian if it includes all the vertices of D. A set X ⊆ V (D) of vertices is independent if no
two vertices of X are adjacent. A set of A ⊆ E(D) is independent if no two arcs of A are incident.
A bipartite tournament with the partite sets X and Y such that |X | = |Y | = m is also called an m × m bipartite

tournament. By H (r1; r2; r3; r4) we de7ne the bipartite tournament with the four pairwise disjoint independent sets of
vertices B1; B2; B3; B4 with |Bi| = ri for i = 1; 2; 3; 4 such that B1 → B2 → B3 → B4 → B1. The class H∗(r1; r2; r3; r4) of
bipartite tournaments originates from H (r1; r2; r3; r4) by reversing some arcs between B1 and B4 or B3 and B4 such that
d(b1; B4)6 1 and d(B4; b3)6 1 for every b1 ∈B1 and b3 ∈B3, or by reversing all the arcs.

In Section 2, we prove that every arc of an almost regular bipartite tournament T with the partite sets X; Y such that
|X |6 |Y |, is contained in a Hamiltonian path if and only if |Y |6 |X | + 1 and T is not isomorphic to T3;3 (cf. Fig. 1).
As an application of this result, we show in Section 3 that every arc of an almost regular c-partite tournament D with
the partite sets V1; V2; : : : ; Vc such that |V1| = |V2| = · · · = |Vc|, is contained in a Hamiltonian path if and only if D is not
isomorphic to T3;3.

2. Almost regular bipartite tournaments

The following results play an important role in the investigations of this section.

Theorem 2.1 (Amar and Manoussakis [1], Wang [13]). Every arc of a regular bipartite tournament is contained in a
Hamiltonian cycle.

Theorem 2.2 (Wang [14]). Let H be an m×m bipartite tournament. If d−
H (u)+d+

H (v)¿m−1 for every pair of vertices
u and v satisfying u → v, then H is Hamiltonian, unless H is isomorphic to H ((m+1)=2; (m+1)=2; (m−1)=2; (m−1)=2)
when m is odd or H (m=2; (m − 2)=2; m=2; (m+ 2)=2) when m is even.

Lemma 2.3 (Guo, Pinkernell, and Volkmann [5]). Let C be an m-cycle of a strong c-partite tournament D. If there
exists a vertex y∈V (D) − V (C) with N+(y) ∩ V (C) = ∅ or N−(y) ∩ V (C) = ∅, then the vertex set V (C) is contained
in an (m+ 1)- or (m+ 2)-cycle.

Theorem 2.4 (Zhang, Song, and Wang [18]). Let H be an (m + 2) × (m + 2) bipartite tournament with m¿ 3. If
d−
H (u)+d+

H (v)¿m for every pair of vertices u and v satisfying uv 
∈ E(H), then H is Hamiltonian, or H is isomorphic
to H (k + 2; k + 2; k; k) when m= 2k, or H ∈H∗(m+ 2 − t; t + 1; t; m+ 1 − t) with (m − 1)=26 t6 (m+ 2)=2.

Example 2.5. Let T3;3 be the almost regular bipartite tournament presented in Fig. 1. Then it is straightforward to verify
that the arc uv is not contained in a Hamiltonian path. (Note that T3;3 has a Hamiltonian cycle.)

Theorem 2.6. Let T be an almost regular bipartite tournament with the partite sets X; Y such that 16 |X |6 |Y |. Every
arc of T is contained in a Hamiltonian path if and only if |Y |6 |X | + 1 and T is not isomorphic to T3;3.

Proof. Clearly, if |Y |¿ |X | + 2, then T does not have any Hamiltonian path. Thus, assume that |Y |6 |X | + 1, and let
uv be an arbitrary arc of T .
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If T is regular, then the desired result follows immediately from Theorem 2.1. So, let now ig(T ) = 1.
Firstly, assume that |Y |=|X |+1. If |X |=1, then the result is obvious. Let now |Y |=|X |+1=m+1¿ 3; X={x1; x2; : : : ; xm},

and Y = {y1; y2; : : : ; ym+1}, and, without loss of generality, u = ym+1 or v = ym+1. The digraph H = T − {ym+1} is an
m × m bipartite tournament, and since ig(T ) = 1, it is easy to see that d−

H (w) + d+
H (z)¿m − 1 for every pair of vertices

w and z satisfying w → z. Hence, by Theorem 2.2, H is Hamiltonian, unless H is isomorphic to H ((m + 1)=2; (m +
1)=2; (m − 1)=2; (m − 1)=2) when m is odd or H (m=2; (m − 2)=2; m=2; (m + 2)=2) when m is even. If H is Hamiltonian,
then T contains a Hamiltonian path with the initial arc uv if u= ym+1 and with the terminal arc uv if v = ym+1.

If m= 2p+ 1 is odd and H = H (p+ 1; p+ 1; p; p) then let, without loss of generality, B1 = {y1; y2; : : : ; yp+1}; B3 =
{yp+2; yp+3; : : : ; y2p+1}; B2 = {x1; x2; : : : ; xp+1}, and B4 = {xp+2; xp+3; : : : ; x2p+1}. Because of d+

T (xi) = d−
T (xi) = p + 1 for

i= 1; 2; : : : ; 2p+ 1=m, we deduce that B2 → ym+1 → B4. If, without loss of generality, u= x1, if v= ym+1 and v= xp+2,
if u= ym+1, then

y1x1ym+1xp+2y2x2yp+2xp+3 : : : x2pypxpy2px2p+1yp+1xp+1y2p+1

is a Hamiltonian path, containing uv.
If m=2p is even and H =H (p; p−1; p; p+1), then because of d+

T (yi)=d−
T (yi)=p for i=1; 2; : : : ; 2p+1=m+1 and

p6d+
T (xi); d

−
T (xi)6p+1 for i=1; 2; : : : ; 2p=m, it follows that X =B1∪B3, Y =B2∪B4∪{ym+1}, and B1 → ym+1 → B3.

Let B4 = {y1; y2; : : : ; yp+1}, B2 = {yp+2; yp+3; : : : ; y2p}; B1 = {x1; x2; : : : ; xp}, and B3 = {xp+1; xp+2; : : : ; x2p}. If, without loss
of generality, u= x1, if v = ym+1 and v = xp+1, if u= ym+1, then

y1x1ym+1xp+1y2x2yp+2xp+2y3 : : : ypxpy2px2pyp+1

is a Hamiltonian path, containing uv = x1ym+1.
Secondly, assume that |X | = |Y |. Since ig(T ) = 1, we deduce that |X | is odd, say |X | = |Y | = 2p+ 1. If |X | = |Y | = 1,

then there is nothing to prove. If |X | = |Y | = 3, then it is straightforward to verify that there exists only one exception,
namely T3;3.
Case 1: Let next |X | = |Y | = 5; X = {u; x1; x2; x3; x4}; Y = {v; y1; y2; y3; y4}, and H = T − {u; v}. Since T is almost

regular, we observe that d+
T (x); d

−
T (x)¿ 2 for x∈V (T ).

Subcase 1.1: Assume that H is not strongly connected. We deduce that H has exactly two 4-cycles T1 and T2 as strong
components such that, without loss of generality, there is no arc from T2 to T1. Since T is strongly connected, there exists
an arc from v to T1. Consequently, T contains a Hamiltonian path, starting with the arc uv.
Subcase 1.2: Assume that H is strongly connected. This implies that d+

H (x); d
−
H (x)¿ 1 for x∈V (H).

Subcase 1.2.1: Assume that H is Hamiltonian. It follows that T contains a Hamiltonian path, starting with the arc uv.
Subcase 1.2.2: Assume that the longest cycle in H has length 6. Let, without loss of generality, x1y1x2y2x3y3x1 be

such a longest cycle.
Subcase 1.2.2.1: Let x4 → y4. If v → x4 or y4 → u, then it is no problem to 7nd a Hamiltonian path through the arc

uv in T . Therefore, assume now that u → y4 and x4 → v. Since v has at least two positive neighbors, assume, without
loss of generality, that v → {x1; x2}. If y1 → x4, then uvx2y2x3y3x1y1x4y4 is a Hamiltonian path through uv. It remains to
consider the case that x4 → y1. This yields {y2; y3} → x4, and then uvx1y1x2y2x3y3x4y4 is the desired Hamiltonian path.
Subcase 1.2.2.2: Let y4 → x4. Assume, without loss of generality, that x4 → y1. Since H has no Hamiltonian cycle, it

follows that y4 → x1.
Subcase 1.2.2.2.1: Let v → x4. If y4 → u, then y4uvx4y1x2y2x3y3x1 is the desired Hamiltonian path. So, let u → y4.

If u → y1, then y3 → u, and y4x1y1x2y2x3y3uvx4 is a Hamiltonian path. Thus, it remains y1 → u. If y4 → x2, then
y4x2y2x3y3x1y1uvx4 is a Hamiltonian path. Let now x2 → y4. If v → x2, then y4x4y1uvx2y2x3y3x1 is a Hamiltonian path.
Thus, let x2 → v. This leads to y3 → x2. If v → x1, then y2x3y3x2y4x4y1uvx1 is a Hamiltonian path. Otherwise, x1 → v,
and this implies v → x3. If y2 → u, then y4x4y1x2y2uvx3y3x1 is a Hamiltonian path. Thus, let 7nally u → y2. This leads
to y3 → u, and we obtain the desired Hamiltonian path y4x1y1x2y2x3y3uvx4.
Subcase 1.2.2.2.2: Let x4 → v → x1. We deduce that x1 → y2. If y3 → u, then y4x4y1x2y2x3y3uvx1 is a Hamiltonian

path. So, we assume u → y3. Now, y4 → u implies x2 → y4, and we have the Hamiltonian path x4y1x2y4uvx1y2x3y3.
The case u → y4 yields {y1; y2} → u. If y3 → x2, then y4x4y1uvx1y2x3y3x2 is a Hamiltonian path. If we assume that
x2 → y3, then it follows y3 → x4. In the case v → x3, we 7nd the Hamiltonian path y4x4y1x2y2uvx3y3x1. Thus, let 7nally
x3 → v. This leads to v → x2, and we obtain the desired Hamiltonian path y4x4y1uvx2y2x3y3x1.
Subcase 1.2.2.2.3: Let x4 → v and x1 → v. It follows that v → {x2; x3}. If y1 → u, then y4x4y1uvx2y2x3y3x1 is a

Hamiltonian path through uv. In the other case that u → y1, we deduce that y1 → x3. If y2 → u, then y4x4y1x2y2uvx3y3x1
is a Hamiltonian path. Thus, we assume that u → y2. This implies {y3; y4} → u and this leads to {x2; x3} → y4.
If x4 → y3, then x4y3uvx3y4x1y1x2y2 is a Hamiltonian path. In the last case that y3 → x4, we observe that x2 → y3.
If x4 → y2, then x1y1x2y4uvx3y3x4y2 is a Hamiltonian path, and if y2 → x4, then y4uvx2y2x4y1x3y3x1 is a Hamiltonian
path through uv.
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Subcase 1.2.3: Assume that the longest cycle in H has length 4. Let, without loss of generality, C = x1y1x2y2x1 be
such a longest cycle. According to Lemma 2.3, each of the vertices x3; y3; x4; y4 has exactly one positive and one negative
neighbor in C.
Subcase 1.2.3.1: Let x4y1x3y2x4 and x1y4x2y3x1 are both 4-cycles. This implies x4 → y4, because otherwise there exists

the 6-cycle y4x4y1x2y2x1y4; y4 → x3, because otherwise there exists the 6-cycle x3y4x2y2x1y1x3. It follows that x4 → y3,
because otherwise there exists the 8-cycle y3x4y4x3y2x1y1x2y3. This yields v → x4 and uvx4y4x3y2x1y1x2y3 is a Hamiltonian
path, containing the arc uv.
Subcase 1.2.3.2: Let x4y1x3y2x4 be a 4-cycle, and let x1y4x2y3x1 be not a 4-cycle. We can assume, without loss

of generality, that x1 → y4 → x2 and x1 → y3 → x2. This implies x4 → y4, because otherwise there exists the 6-cycle
y4x4y1x2y2x1y4; x4 → y3, because otherwise there exists the 6-cycle y3x4y1x2y2x1y3, and y4 → x3, because otherwise there
exists the 6-cycle x3y4x2y2x1y1x3. It follows that y3 → x3, because otherwise there exists the 6-cycle x3y3x2y2x4y4x3. This
yields v → x4.

If y3 → u, then y3uvx4y4x3y2x1y1x2 is a Hamiltonian path, containing the arc uv. If y4 → u, then y4uvx4y3x3y2x1y1x2
is a Hamiltonian path, containing the arc uv. However, if u → {y3; y4}, then we deduce that y1 → u, and we arrive at
the Hamiltonian path y3x2y2x1y1uvx4y4x3 through uv.
Subcase 1.2.3.3: Let neither x4y1x3y2x4 nor x1y4x2y3x1 be a 4-cycle. We can assume, without loss of generality,

that y2 → x4 → y1; y2 → x3 → y1, x1 → y4 → x2, and x1 → y3 → x2. This implies x4 → y4, because otherwise there ex-
ists the 6-cycle y4x4y1x2y2x1y4 and x3 → y4, because otherwise there exists the 6-cycle y4x3y1x2y2x1y4. It follows
that x4 → y3, because otherwise there exists the 6-cycle y3x4y4x2y2x1y3. This yields x3 → y3, because otherwise there exists
the 6-cycle x4y3x3y1x2y2x4. We deduce that y4 → u and v → x1, and this leads to the Hamiltonian path x4y4uvx1y1x2y2x3y3,
containing the arc uv.
Case 2: Let |X | = |Y | = 2p + 1 = m + 3¿ 7; H = T − {u; v}; X = {u; x1; x2; : : : ; xm+2}, and Y = {v; y1; y2; : : : ; ym+2}.

As T is almost regular, we observe that p6d+
T (x); d

−
T (x)6p + 1 for all x∈V (T ). If we de7ne H = T − {u; v}, then

p − 16d+
H (x); d

−
H (x)6p + 1 for all x∈V (H), and therefore d−

H (w) + d+
H (z)¿ 2p − 2 = m for every pair of vertices

w and z satisfying wz 
∈ E(H). It follows, according to Theorem 2.4, that H is Hamiltonian, or H is isomorphic to
H (p + 1; p + 1; p − 1; p − 1) or H ∈H∗(p + 1; p; p − 1; p). If H is Hamiltonian, then T contains a Hamiltonian path
with the terminal arc uv.
If H = H (p + 1; p + 1; p − 1; p − 1), then because of p6d+

T (x); d
−
T (x)6p + 1 for all x∈V (T ), it follows that

X=B1∪B3∪{u}, Y=B2∪B4∪{v}; B2 → u → B4, and B3 → v → B1. If B1={x1; x2; : : : ; xp+1}; B2={y1; y2; : : : ; yp+1}; B3=
{xp+2; xp+3; : : : ; x2p}, and B4 = {yp+2; yp+3; : : : ; y2p}, then

x1y1uvx2y2xp+2yp+2x3 : : : xpypx2py2pxp+1yp+1

is a Hamiltonian path containing the arc uv.
Subcase 2.1: Let H ∈H∗(p+1; p; p−1; p) such that B1 ={y1; y2; : : : ; yp+1}; B2 ={x1; x2; : : : ; xp}; B3 ={yp+2; yp+3; : : : ;

y2p}, and B4={xp+1; xp+2; : : : ; x2p}. Because of p6d+
T (x); d

−
T (x)6p+1 for all x∈V (T ), we conclude that B2 → v → B4,

and there exists a vertex, say yp+1 ∈B1, with the property that yp+1 → u.
Subcase 2.1.1: Assume that dH (x; B1 −{yp+1})¿ 1 for all x∈B4. In this case, the hypothesis dH (b1; B4)6 1 for every

b1 ∈B1 and the Marriage Theorem yield p independent arcs, say xp+iyi for i = 1; 2; : : : ; p, from B4 to B1. Furthermore,
the hypothesis dH (B4; b3)6 1 for every b3 ∈B3 leads easily to p − 1 independent arcs, say yp+ixp+i for i = 2; 3; : : : ; p,
from B3 to B4. Altogether, we see that

yp+1uvxp+1y1x1yp+2xp+2y2x2 : : : yp−1xp−1y2px2pypxp

is a Hamiltonian path through uv.
Subcase 2.1.2: Assume next that there exists a vertex, say xp+1 ∈B4, such that dH (xp+1; B1 − {yp+1})= 0. This implies

((B1−{yp+1})∪{v}) → xp+1. Because of p6d+
T (x); d

−
T (x)6p+1 for all x∈V (T ), it follows that xp+1 → (B3∪{yp+1}),

u → (B1−{yp+1}), and B3 → u. In addition, in view of the hypotheses dH (b1; B4)6 1 for every b1 ∈B1 and dH (B4; b3)6 1
for every b3 ∈B3, we deduce that (B4 − {xp+1}) → (B1 − {yp+1}) and B3 → (B4 − {xp+1}). This shows that

y1x1yp+2uvxp+2y2xp+1yp+1x2yp+3xp+3y3x3yp+4 : : : yp−1xp−1y2px2pypxp

is a Hamiltonian path through uv.
Subcase 2.2: Let H ∈H∗(p+1; p; p−1; p) such that B1 ={x1; x2; : : : ; xp+1}; B2 ={y1; y2; : : : ; yp}; B3 ={xp+2; xp+3; : : : ;

x2p}, and B4 = {yp+1; yp+2; : : : ; y2p}. Because of p6d+
T (x); d

−
T (x)6p + 1 for all x∈V (T ), we have B2 → u, and there

exists a vertex, say xp+1 ∈B1, with the property v → xp+1.
Subcase 2.2.1: Assume that dH (y; B1 −{xp+1})¿ 1 for all y∈B4. In this case, the hypothesis dH (b1; B4)6 1 for every

b1 ∈B1 and the Marriage Theorem yield p independent arcs, say yp+ixi for i = 1; 2; : : : ; p, from B4 to B1. Furthermore,
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the hypothesis dH (B4; b3)6 1 for every b3 ∈B3 leads easily to p − 1 independent arcs, say xp+iyp+i for i = 2; 3; : : : ; p,
from B3 to B4. This implies that

yp+1x1y1uvxp+1y2xp+2yp+2x2y3xp+3yp+3x3y4 : : : xp−1ypx2py2pxp

is a Hamiltonian path through uv.
Subcase 2.2.2: Next, assume that there exists a vertex, say yp+1 ∈B4, such that dH (yp+1; B1 − {xp+1}) = 0. Because of

p6d+
T (x); d

−
T (x)6p+1 for all x∈V (T ), it follows that v → B1. In addition, the fact that (B1−{xp+1}) → (B2−{yp+1})

leads to (B4 − {yp+1}) → (B1 − {xp+1}).
Subcase 2.2.2.1: Let yp+1 → xp+1. Since yp+1 has at least p− 2 positive neighbors in B3, the condition dH (B4; b3)6 1

for every b3 ∈B3 leads easily to p − 1 independent arcs, say xp+iyp+i for i = 2; 3; : : : ; p, from B3 to B4 − {yp+1}. Thus,
x1yp+1xp+1y1uvx2y2xp+2yp+2x3y3xp+3yp+3 : : : xp−1yp−1x2p−1y2p−1xpypx2py2p

is a Hamiltonian path through uv.
Subcase 2.2.2.2: Let xp+1 → yp+1. We deduce that yp+1 → (B3 ∪ {u}); v → B1; B3 → (B4 − {yp+1}), and (B4 −

{yp+1}) → B1. Consequently,

xp+1yp+1uvx1y1xp+2yp+2x2y2xp+3yp+3 : : : xp−1yp−1x2py2pxpyp

is a Hamiltonian path through uv.
If we 7nally reserve all arcs of H (p+1; p; p−1; p), then we arrive at a symmetric situation, and the proof of Theorem

2.6 is complete.

3. Almost regular multipartite tournaments

Theorem 3.1 (Volkmann, Yeo [12]). Every arc of a regular c-partite tournament D is contained in a Hamiltonian path
of D.

Theorem 3.2 (Volkmann, Yeo [12]). Let D be a c-partite tournament with partite sets V1; V2; : : : ; Vc such that |V1|6
|V2|6 · · ·6 |Vc|, and let P be a path of length q in D. If

|V (D)|¿ 2ig(D) + 3q + 2|Vc| + |Vc−1| − 2;

then there exists a Hamiltonian path in D, starting with the path P.

Theorem 3.3 (Jakobsen [10]). If T is an almost regular tournament of order n¿ 8, then every arc of T is contained in
an m-cycle for each m∈ {4; 5; : : : ; n}.

Theorem 3.4. Let D be an almost regular c-partite tournament with the partite sets V1; V2; : : : ; Vc such that |V1| =
|V2| = · · · = |Vc|. Then each arc of D is contained in a Hamiltonian path if and only if D is not isomorphic to T3;3.

Proof. If D is regular, then we deduce from Theorem 3.1 that every arc is contained in a Hamiltonian path. In the
remaining case that ig(D) = 1, it follows, because of |V1|= |V2|= · · ·= |Vc|= r, that c is even and r is odd. If c=2, then
Theorem 2.6 yields the desired result. In the case c¿ 4 and r¿ 3, we observe that

|V (D)| = |V1| + |V2| + · · · + |Vc|
¿ |Vc−3| + |Vc−2| + |Vc−1| + |Vc|
¿ 2 − 2 + 3 + 2|Vc| + |Vc−1|
= 2ig(D) + 3 + 2|Vc| + |Vc−1| − 2:

Applying Theorem 3.2 with q=1, we see that there exists a Hamiltonian path in D, starting with an arbitrary arc. Finally,
let D be a tournament. If c¿ 8, then, according to Theorem 3.3, every arc is even contained in a Hamiltonian cycle. If
c = 6, then we can apply again Theorem 3.2, and if c = 4, then it is a simple matter to obtain the desired result.
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