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Abstract

A tournament is an orientation of a complete graph, and in general a multipartite or c-partite tournament is an orientation
of a complete c-partite graph. If x is a vertex of a digraph D, then we denote by d'(x) and d~ (x) the outdegree
and indegree of x, respectively. The global irregularity of a digraph D is defined by i,(D) = max{d"(x),d (x)} —
min{d"(y),d " (»)} over all vertices x and y of D (including x = y). If i,(D) < 1, then D is called almost regular, and
if i;(D) =0, then D is regular.

More than 10 years ago, Amar and Manoussakis and independently Wang proved that every arc of a regular bipartite
tournament is contained in a directed Hamiltonian cycle. In this paper, we prove that every arc of an almost regular
bipartite tournament 7' is contained in a directed Hamiltonian path if and only if the cardinalities of the partite sets differ
by at most one and 7 is not isomorphic to 733, where 733 is an almost regular bipartite tournament with three vertices
in each partite set.

As an application of this theorem and other results, we show that every arc of an almost regular c-partite tournament
D with the partite sets Vi, Va,..., ¥ such that |Vi| = |V>2| =--- = |V, is contained in a directed Hamiltonian path if and
only if D is not isomorphic to 73 3.
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1. Terminology and introduction

A c-partite or multipartite tournament is an orientation of a complete c-partite graph. A tournament is a c-partite
tournament with exactly ¢ vertices. Multipartite tournaments are well studied (see e.g., [2,4,8,11,15,17]). In particular,
Gutin [7] gave a characterization of multipartite tournaments with a Hamiltonian path, Gutin [6] and Haggkvist and
Manoussakis [9] presented a characterization of Hamiltonian bipartite tournaments, and Bang-Jensen, Gutin, and Yeo [3]
showed that the Hamiltonian cycle problem is polynomial time solvable for multipartite tournaments.

We shall assume that the reader is familiar with standard terminology on directed graphs (see, e.g., [2]). In this paper,
all digraphs are finite without loops or multiple arcs. The vertex set and the arc set of a digraph D are denoted by V(D)
and E(D), respectively. If xy is an arc of a digraph D, then we write x — y and say x dominates y. If X and Y are
two disjoint subsets of V(D) or subdigraphs of D such that every vertex of X dominates every vertex of ¥, then we
say that X dominates Y, denoted by X — Y. By dp(X,Y)=d(X,Y) we denote the number of arcs from X to Y, i.e.,
dX,Y)=[{xy€E(D):x€X, yeY}|

The out-neighborhood Ny (x) = N*t(x) of a vertex x is the set of vertices dominated by x, and the in-neighborhood
N5 (x)=N"(x) is the set of vertices dominating x. The numbers d/}(x)=d"(x)=|N"(x)| and d, (x)=d ™ (x)=|N " (x)|
are the outdegree and the indegree of x, respectively.
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Fig. 1. The almost regular bipartite tournament 73 3.

In [16], Yeo defines the global irregularity iy(D) of a digraph D by
(D) = dp(x),dp — min {d}(y),dy .
i5(D) = max {dp(x).dp (x)} — min {dp(y).dp(»)}

If iy(D) < 1 then D is called almost regular, and if iy(D) =0, then D is regular.

By a cycle or path we mean a directed cycle or directed path. A cycle of length £ is also called a k-cycle. A cycle or
path in a digraph D is Hamiltonian if it includes all the vertices of D. A set X C V(D) of vertices is independent if no
two vertices of X are adjacent. A set of 4 C E(D) is independent if no two arcs of A are incident.

A Dbipartite tournament with the partite sets X and Y such that |[X| = |Y| = m is also called an m X m bipartite
tournament. By H(ri,r2,r3,74) we define the bipartite tournament with the four pairwise disjoint independent sets of
vertices B, B2, B3, Bs with |B;| =r; for i =1,2,3,4 such that By — B, — B3 — B4 — Bj. The class H*(r1,72,73,74) of
bipartite tournaments originates from H(r1,72,73,74) by reversing some arcs between B; and B4 or B3 and B4 such that
d(b1,Bs) <1 and d(Bas,b3) < 1 for every b € B; and b3 € B3, or by reversing all the arcs.

In Section 2, we prove that every arc of an almost regular bipartite tournament 7 with the partite sets X, Y such that
|X| < |Y], is contained in a Hamiltonian path if and only if |Y| < |X|+ 1 and T is not isomorphic to 733 (cf. Fig. 1).
As an application of this result, we show in Section 3 that every arc of an almost regular c-partite tournament D with
the partite sets V1, V2,..., ¥ such that |Vi| = |V2| =--- = |K], is contained in a Hamiltonian path if and only if D is not
isomorphic to 73 3.

2. Almost regular bipartite tournaments
The following results play an important role in the investigations of this section.

Theorem 2.1 (Amar and Manoussakis [1], Wang [13]). Every arc of a regular bipartite tournament is contained in a
Hamiltonian cycle.

Theorem 2.2 (Wang [14]). Let H be an m X m bipartite tournament. If d; (u)+dj;(v) = m—1 for every pair of vertices
u and v satisfying u — v, then H is Hamiltonian, unless H is isomorphic to H((m+1)/2,(m+1)/2,(m—1)/2,(m—1)/2)
when m is odd or H(m/2,(m — 2)/2,m/2,(m + 2)/2) when m is even.

Lemma 2.3 (Guo, Pinkernell, and Volkmann [5]). Let C be an m-cycle of a strong c-partite tournament D. If there
exists a vertex y € V(D) — V(C) with N"(y)NV(C)=0 or N~ (y)NV(C)=W0, then the vertex set V(C) is contained
inan (m+ 1)- or (m+ 2)-cycle.

Theorem 2.4 (Zhang, Song, and Wang [18]). Let H be an (m + 2) x (m + 2) bipartite tournament with m = 3. If
dy (u)+d(v) = m for every pair of vertices u and v satisfying uv € E(H), then H is Hamiltonian, or H is isomorphic
to H(k + 2,k + 2,k, k) when m =2k, or HEH (m+2 —t,t + L,t,m+ 1 —t) with (m — 1)/2 <t < (m+2)/2.

Example 2.5. Let 733 be the almost regular bipartite tournament presented in Fig. 1. Then it is straightforward to verify
that the arc uv is not contained in a Hamiltonian path. (Note that 733 has a Hamiltonian cycle.)

Theorem 2.6. Let T be an almost regular bipartite tournament with the partite sets X,Y such that 1 < |X| < |Y|. Every
arc of T is contained in a Hamiltonian path if and only if |Y| < |X|+ 1 and T is not isomorphic to Ts3.

Proof. Clearly, if |Y| > |X| + 2, then 7 does not have any Hamiltonian path. Thus, assume that |Y| < |X| + 1, and let
uv be an arbitrary arc of 7.
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If T is regular, then the desired result follows immediately from Theorem 2.1. So, let now iy (7) = 1.

Firstly, assume that |Y|=|X|+1. If |[X|=1, then the result is obvious. Let now |Y|=|X|+1=m+1 =3, X={x1,x2,...,Xn},
and ¥ ={y1,2,..., yms1}, and, without loss of generality, u = ym+1 orf v = yui1. The digraph H =T — {ymus1} is an
m x m bipartite tournament, and since ix(T) = 1, it is easy to see that d,;(w) + dj;(z) = m — 1 for every pair of vertices
w and z satisfying w — z. Hence, by Theorem 2.2, H is Hamiltonian, unless H is isomorphic to H((m + 1)/2,(m +
1)/2,(m — 1)/2,(m — 1)/2) when m is odd or H(m/2,(m — 2)/2,m/2,(m + 2)/2) when m is even. If H is Hamiltonian,
then 7 contains a Hamiltonian path with the initial arc uv if ¥ = y,,+1 and with the terminal arc uv if v = y,11.

Ifm=2p+1isoddand H=H(p+1,p+1, p, p) then let, without loss of generality, Bi = {y1, ¥2,..., Vps1}, B3 =
{Vp42s Ypi3seeos Vo1 s Bo = {x1,%2,...,xp11}, and Bs = {Xp12,Xp43, ..., %241 }. Because of df(x;) =d7(x;)=p+ 1 for
i=1,2,...,2p+ 1 =m, we deduce that B, — y,1 — Bs. If, without loss of generality, u =xi, if v= yuq1 and v =x,2,
if u= ymi1, then

V1X1 Ym+1X p+2 V2 X2 Yp+2X p43 « « - X2p VpX p Y2pX2p+1 Vp+1X p+1 Y2p+1

is a Hamiltonian path, containing uv.

If m=2p is even and H=H(p, p— 1, p, p+1), then because of d5(y;)=d7 (yi)=p fori=1,2,...,2p+1=m+1 and
p <dj(xi),dr (x) < p+1fori=1,2,...,2p=m, it follows that X =B1UB;, Y =B, UBsU{yn+1}, and B = yu+1 — Bs.
Let B4 = {yl,yz,.. .,yp+|}, B, = {yp+2,yp+3,...,y2p}, B = {x1,xZ,. ..,x,,}, and B; = {xp+|,xp+2,.. .,XQP}. If, without loss
of generality, u =xi, if v = yu41 and v =xp41, if 4 = Y41, then

V1X1 Y4 1X p1 Y2X2 Vp4+2X p42 V3 -+« VpX p Y2pXop Vp+1

is a Hamiltonian path, containing uv = X1 V11.

Secondly, assume that |[X|=|Y|. Since iy(T) =1, we deduce that |[X| is odd, say |[X|=|Y|=2p+ 1. If | X|=|Y|=1,
then there is nothing to prove. If |[X| = |Y| =3, then it is straightforward to verify that there exists only one exception,
namely 73 3.

Case 1: Let next |X|=1Y|=5, X = {u,x1,x2,x3,x4}, ¥ ={v,y1, 12, ¥3, va}, and H =T — {u,v}. Since T is almost
regular, we observe that d7(x),d7 (x) = 2 for x€ V(T).

Subcase 1.1: Assume that H is not strongly connected. We deduce that H has exactly two 4-cycles 7} and 7 as strong
components such that, without loss of generality, there is no arc from 7> to Tj. Since T is strongly connected, there exists
an arc from v to 7j. Consequently, 7 contains a Hamiltonian path, starting with the arc wuv.

Subcase 1.2: Assume that H is strongly connected. This implies that d};(x),dy; (x) = 1 for x € V(H).

Subcase 1.2.1: Assume that H is Hamiltonian. It follows that 7" contains a Hamiltonian path, starting with the arc wuv.

Subcase 1.2.2: Assume that the longest cycle in H has length 6. Let, without loss of generality, x; yix2y2x3y3x1 be
such a longest cycle.

Subcase 1.2.2.1: Let x4 — y4. If v = x4 or y4 — u, then it is no problem to find a Hamiltonian path through the arc
uv in T. Therefore, assume now that ¥ — y4 and x4 — v. Since v has at least two positive neighbors, assume, without
loss of generality, that v — {x1,x2}. If y1 — x4, then uvx, y2x3y3x1y1x4y4 is @ Hamiltonian path through wv. It remains to
consider the case that x4 — y;. This yields {2, y3} — x4, and then uvx| y1x2y2X3 y3x4ys is the desired Hamiltonian path.

Subcase 1.2.2.2: Let y4s — x4. Assume, without loss of generality, that x4 — y;. Since A has no Hamiltonian cycle, it
follows that y; — x;.

Subcase 1.2.2.2.1: Let v — x4. If y4 — u, then ysuvxsyix;y:x3ysx; is the desired Hamiltonian path. So, let u — yj.
If u — yi, then y3 — u, and ysx; yix2y2x3y3uvxs is a Hamiltonian path. Thus, it remains y; — u. If y4 — x;, then
VaX2 2X3 y3X1 y1uvxs is a Hamiltonian path. Let now x; — ys. If v — x, then yaxs yiuvx; yox3y3x1 is a Hamiltonian path.
Thus, let x, — v. This leads to y3 — x2. If v — x1, then y,x3y3x2 yaxs yiuvx; is a Hamiltonian path. Otherwise, x; — v,
and this implies v — x3. If y» — u, then ysxayix2youvx3ysx; is a Hamiltonian path. Thus, let finally u — y,. This leads
to y3 — u, and we obtain the desired Hamiltonian path ysx; yix2 yox3 ysuvxs.

Subcase 1.2.2.2.2: Let x4 — v — x;. We deduce that x; — y,. If y3 — u, then ysx4yi1x2y2x3y3uvx; is a Hamiltonian
path. So, we assume u — y3. Now, y4s — u implies x — y4, and we have the Hamiltonian path x4y x2 yauvx) y2x3 y3.
The case u — y4 yields {y1, 12} — u. If y3 — x2, then yaxsyiuvx; y2x3y3x2 is a Hamiltonian path. If we assume that
X2 — y3, then it follows y3 — x4. In the case v — x3, we find the Hamiltonian path yixsyix2 youvxs ysx;. Thus, let finally
x3 — v. This leads to v — x2, and we obtain the desired Hamiltonian path yix4yiuvx: y2x3 y3xi.

Subcase 1.2.2.2.3: Let x4 — v and x; — v. It follows that v — {x2,x3}. If y1 — u, then yaxsyiuvxryrx3y3x; is a
Hamiltonian path through uv. In the other case that u — y;, we deduce that y; — x3. If y» — u, then yax4y1x0 youvxs ysx;
is a Hamiltonian path. Thus, we assume that u — y,. This implies {y3, 2} — u and this leads to {x2,x3} — ya.
If x4 — ys3, then x4y3uvxsysx1y1x2y2 is a Hamiltonian path. In the last case that y3 — x4, we observe that x; — ys.
If x4 — y», then x) y1x2yauvxs3 y3xay, is a Hamiltonian path, and if y, — x4, then ysuvx; yoxsyi1x3ysx; is a Hamiltonian
path through uv.
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Subcase 1.2.3: Assume that the longest cycle in /A has length 4. Let, without loss of generality, C = x| y1x2)2x; be
such a longest cycle. According to Lemma 2.3, each of the vertices xs, y3, x4, y4 has exactly one positive and one negative
neighbor in C.

Subcase 1.2.3.1: Let x4 y1x3y2x4 and x; yax2 y3x; are both 4-cycles. This implies x4 — y4, because otherwise there exists
the 6-cycle yaxsyix2yaxiyvs, yas— x3, because otherwise there exists the 6-cycle x3yaxz2y2x1yix3. It follows that x4 — ys,
because otherwise there exists the 8-cycle y3xayax3 y2xi1 yix2 ys. This yields v — x4 and uvxs yaxs y2x1 y1x2 3 is a Hamiltonian
path, containing the arc uv.

Subcase 1.2.3.2: Let x4y1x3y2x4 be a 4-cycle, and let x;ysx2y3x; be not a 4-cycle. We can assume, without loss
of generality, that x; — y4 — x> and x; — y3 —x;. This implies x4 — y4, because otherwise there exists the 6-cycle
VaX4Y1X2)2X1 Vs, X4 — V3, because otherwise there exists the 6-cycle y3xsyix2y2x1ys3, and ys4 — x3, because otherwise there
exists the 6-cycle x3 yaxz yox1 yixs. It follows that y3 — x3, because otherwise there exists the 6-cycle x3 y3x2 y2x4 yaxs. This
yields v — xa.

If y3 — u, then ysuvxsysxzyox1y1x2 is a Hamiltonian path, containing the arc uv. If y4 — u, then yiuvxsy3x; yoxi yixz
is a Hamiltonian path, containing the arc uv. However, if u — {y3, ys4}, then we deduce that y; — u, and we arrive at
the Hamiltonian path y3x; yoxi yiuvxs yaxs through wo.

Subcase 1.2.3.3: Let neither x;y1x3y2x4 nor xjysxzy3x; be a 4-cycle. We can assume, without loss of generality,
that y, = x4 — y1, Y2 —=x3— Vi, X1 = y4 —x2, and x; — y3 —x2. This implies x4 — y4, because otherwise there ex-
ists the 6-cycle ysxayixzy,xiys and x3 — ys, because otherwise there exists the 6-cycle yax3yixzyaxiys. It follows
that x4 — y3, because otherwise there exists the 6-cycle y3x4yax2y2x1y3. This yields x3 — y3, because otherwise there exists
the 6-cycle x4y3x3 y1x2 y2x4. We deduce that ys — u and v — x;, and this leads to the Hamiltonian path x4 ysuvx; y1x2 y2x3 33,
containing the arc uv.

Case 2: Let [X|=|Y|=2p+1=m+3>27, H=T — {u,v}, X ={u,x1,%2,...,%m2}, and ¥ = {v, y1, y2,..., Yms2}
As T is almost regular, we observe that p < d7(x),d; (x) < p+ 1 for all x€ V(T). If we define H =T — {u,v}, then
p—1<d(x),d;(x) < p+1 for all x€ V(H), and therefore dj;(w) + dj;(z) = 2p — 2 =m for every pair of vertices
w and z satisfying wz ¢ E(H). It follows, according to Theorem 2.4, that H is Hamiltonian, or H is isomorphic to
Hp+1L,p+1l,p—Lp—1)or HEH (p+ 1,p,p—1,p). If H is Hamiltonian, then T contains a Hamiltonian path
with the terminal arc wuv.

If H=H(p+1,p+1,p—1,p—1), then because of p < df(x),d;(x) < p+ 1 for all xe V(T), it follows that
X=B UB}U{u}, Y:BzUB4U{D}, By — u — B4, and B; — v — B;. IfB1:{x1,xZ,...,xp+1}, BzZ{y|,y2,...,yp+1}, B3;=
{Xp+2,Xpt3,-. ., X2}, and Bs = {Yp42, Yp+3,---> V2p}, then

X1 VIUUX2 V2 X pi2 Vp4+2X3 « o . X p VpX2p VopX pt1 Vp+1

is a Hamiltonian path containing the arc uv.

Subcase 2.1: Let HE H*(p+1, p, p— 1, p) such that B, = {yl,yz, .. ,yp+1}, B, = {xl,xz,A . .,xp}, B;= {yp+2, Vp+3s-es
Y}, and Ba={xp+1,Xp12,...,%2 . Because of p < dF(x),d; (x) < p+1 for all x € V(T), we conclude that B, — v — Ba,
and there exists a vertex, say y,+1 € Bi, with the property that y,.; — u.

Subcase 2.1.1: Assume that dy(x, By —{yp+1}) = 1 for all x € B4. In this case, the hypothesis dy(b1,B4) < 1 for every
by € By and the Marriage Theorem yield p independent arcs, say x,4;y; for i =1,2,..., p, from B4 to B;. Furthermore,
the hypothesis dp(Bs,b3) < 1 for every b3 € Bz leads easily to p — 1 independent arcs, say y,+iX,+i for i=2,3,..., p,
from B3 to Bs. Altogether, we see that

Vp+1UUX p11 Y1X1 Vp+2Xp4+2 V2 X2 -« Vp—1Xp—1)2pX2p VpX p

is a Hamiltonian path through wuv.

Subcase 2.1.2: Assume next that there exists a vertex, say x,.1 € B4, such that dy(xpi1,B1 — {yp+1})=0. This implies
((B1 —{yp+1 HU{v}) = xp41. Because of p < df(x),dy (x) < p+1 for all x € V(T), it follows that x,+1 — (BsU{yp+1}),
u — (Bi—{yp+1}), and B3 — u. In addition, in view of the hypotheses dx(b1,Bs) < 1 for every b) € By and dy(Bs, b3) < 1
for every bs € Bs, we deduce that (B4 — {xp+1}) = (B1 — {¥p+1}) and B3 — (B4 — {xp+1}). This shows that

V1X1 Yp+2UUX p12 V2 X p+-1 Yp+1X2 Yp+3X p+3 V3X3 Vptd o« Vp—1Xp—1YV2pX2p YVpXp

is a Hamiltonian path through wuv.

Subcase 2.2: Let HE H*(p+1, p, p—1, p) such that By ={x1,x2,...,Xp11}, Bo={y1,¥2,--, Vo }» B3={Xp12,Xp13,.-.,
X2}, and Bs = {Vp+1, Yp+2,---» Y2 }. Because of p < df(x),dy (x) < p+ 1 for all x€ V(T), we have B, — u, and there
exists a vertex, say x,+1 € B, with the property v — x,1.

Subcase 2.2.1: Assume that d(y,B1 —{xp11}) =1 for all y € B4. In this case, the hypothesis du(b1,B4) < 1 for every
b1 € By and the Marriage Theorem yield p independent arcs, say y,ix; for i =1,2,..., p, from B4 to B;. Furthermore,
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the hypothesis dy(Bs,b3) < 1 for every b3 € B3 leads easily to p — 1 independent arcs, say x,4;yp+i for i =2,3,..., p,
from B3 to Bs. This implies that

Yp+1X1 VIUUX p1 V2 X p42 Vp+2X2 V3X pi3 Vp+3X3 V4 - o . X p—1 VpXop YVopX p

is a Hamiltonian path through wuv.
Subcase 2.2.2: Next, assume that there exists a vertex, say .1 € Bs, such that dy(ypi1,B81 — {xp+1}) = 0. Because of
p <dj(x),dy (x) < p+1 for all x € V(T), it follows that v — By. In addition, the fact that (B —{xp41}) — (Bo—{¥yp+1})

leads to (Bs — {yp+1}) = (B1 — {xp+41})-
Subcase 2.2.2.1: Let yp+1 — Xp+1. Since y,+; has at least p — 2 positive neighbors in B3, the condition d(Bs,b3) < 1
for every b3 € B3 leads easily to p — 1 independent arcs, say x,4;yp; for i =2,3,..., p, from B3 to B4 — {y,+1}. Thus,

X1 Vp+1X p+1 VIUVX2 V2 X p12 Vp+2X3 V3X p43 Vp+3 + - - X p—1 Vp—1X2p—1V2p—1X p VpX2p V2p

is a Hamiltonian path through wuv.
Subcase 2.2.2.2: Let xp11 — ypr1. We deduce that y,.1 — (B3 U {u}), v — Bi, Bs = (B4 — {yp11}), and (B4 —
{¥p+1}) — Bi. Consequently,

Xp+1YVp+1UVXT Y1X p12 Vp+2X2 V2 X pt3 Vp+3 « - X p—1 Vp—1X2p Y2pX p Vp

is a Hamiltonian path through uv.
If we finally reserve all arcs of H(p+1, p, p—1, p), then we arrive at a symmetric situation, and the proof of Theorem
2.6 is complete. [

3. Almost regular multipartite tournaments

Theorem 3.1 (Volkmann, Yeo [12]). Every arc of a regular c-partite tournament D is contained in a Hamiltonian path
of D.

Theorem 3.2 (Volkmann, Yeo [12]). Let D be a c-partite tournament with partite sets Vi,Va,..., V. such that || <
[Va| < -+ < |¥|, and let P be a path of length q in D. If

[V(D)| = 2ig(D) + 3q +2|¥| + |Veer| — 2,
then there exists a Hamiltonian path in D, starting with the path P.

Theorem 3.3 (Jakobsen [10]). If' T is an almost regular tournament of order n = 8, then every arc of T is contained in
an m-cycle for each m € {4,5,...,n}.

Theorem 3.4. Let D be an almost regular c-partite tournament with the partite sets Vi,Va,..., V. such that || =
[Va| =---=1|W|. Then each arc of D is contained in a Hamiltonian path if and only if D is not isomorphic to Ts3.

Proof. If D is regular, then we deduce from Theorem 3.1 that every arc is contained in a Hamiltonian path. In the
remaining case that i,(D) =1, it follows, because of |Vi|=|V2|=---=|W|=r, that ¢ is even and r is odd. If ¢ =2, then
Theorem 2.6 yields the desired result. In the case ¢ > 4 and r > 3, we observe that

V(D) = Vil + V2l + -+ ||
> V| + [ + [ + ||
>2— 24342\ + Vo]

= 2iy(D) + 3 4 2|V| + [W—1] — 2.

Applying Theorem 3.2 with g=1, we see that there exists a Hamiltonian path in D, starting with an arbitrary arc. Finally,
let D be a tournament. If ¢ > 8, then, according to Theorem 3.3, every arc is even contained in a Hamiltonian cycle. If
¢ =6, then we can apply again Theorem 3.2, and if ¢ =4, then it is a simple matter to obtain the desired result. [
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