

Available online at www.sciencedirect.com

Discrete Mathematics 285 (2004) 359-364

www.elsevier.com/locate/disc

MATHEMATICS

DISCRETE

Hamiltonian paths containing a given arc, in almost regular bipartite tournaments

Note

Lutz Volkmann

Lehrstuhl II für Mathematik, RWTH Aachen, 52056 Aachen, Germany

Received 8 July 2002; received in revised form 4 September 2003; accepted 9 February 2004

Abstract

A tournament is an orientation of a complete graph, and in general a multipartite or *c*-partite tournament is an orientation of a complete *c*-partite graph. If *x* is a vertex of a digraph *D*, then we denote by $d^+(x)$ and $d^-(x)$ the outdegree and indegree of *x*, respectively. The global irregularity of a digraph *D* is defined by $i_g(D) = \max\{d^+(x), d^-(x)\} - \min\{d^+(y), d^-(y)\}$ over all vertices *x* and *y* of *D* (including x = y). If $i_g(D) \leq 1$, then *D* is called almost regular, and if $i_g(D) = 0$, then *D* is regular.

More than 10 years ago, Amar and Manoussakis and independently Wang proved that every arc of a regular bipartite tournament is contained in a directed Hamiltonian cycle. In this paper, we prove that every arc of an almost regular bipartite tournament T is contained in a directed Hamiltonian path if and only if the cardinalities of the partite sets differ by at most one and T is not isomorphic to $T_{3,3}$, where $T_{3,3}$ is an almost regular bipartite tournament with three vertices in each partite set.

As an application of this theorem and other results, we show that every arc of an almost regular *c*-partite tournament D with the partite sets V_1, V_2, \ldots, V_c such that $|V_1| = |V_2| = \cdots = |V_c|$, is contained in a directed Hamiltonian path if and only if D is not isomorphic to $T_{3,3}$.

© 2004 Elsevier B.V. All rights reserved.

Keywords: Bipartite tournaments; Multipartite tournaments; Hamiltonian path; Almost regular bipartite tournaments

1. Terminology and introduction

A *c-partite* or *multipartite tournament* is an orientation of a complete *c*-partite graph. A *tournament* is a *c*-partite tournament with exactly *c* vertices. Multipartite tournaments are well studied (see e.g., [2,4,8,11,15,17]). In particular, Gutin [7] gave a characterization of multipartite tournaments with a Hamiltonian path, Gutin [6] and Häggkvist and Manoussakis [9] presented a characterization of Hamiltonian bipartite tournaments, and Bang-Jensen, Gutin, and Yeo [3] showed that the Hamiltonian cycle problem is polynomial time solvable for multipartite tournaments.

We shall assume that the reader is familiar with standard terminology on directed graphs (see, e.g., [2]). In this paper, all digraphs are finite without loops or multiple arcs. The vertex set and the arc set of a digraph *D* are denoted by V(D) and E(D), respectively. If *xy* is an arc of a digraph *D*, then we write $x \to y$ and say *x* dominates *y*. If *X* and *Y* are two disjoint subsets of V(D) or subdigraphs of *D* such that every vertex of *X* dominates every vertex of *Y*, then we say that *X* dominates *Y*, denoted by $X \to Y$. By $d_D(X, Y) = d(X, Y)$ we denote the number of arcs from *X* to *Y*, i.e., $d(X, Y) = |\{xy \in E(D) : x \in X, y \in Y\}|$.

The *out-neighborhood* $N_D^+(x) = N^+(x)$ of a vertex x is the set of vertices dominated by x, and the *in-neighborhood* $N_D^-(x) = N^-(x)$ is the set of vertices dominating x. The numbers $d_D^+(x) = d^+(x) = |N^+(x)|$ and $d_D^-(x) = d^-(x) = |N^-(x)|$ are the *outdegree* and the *indegree* of x, respectively.

E-mail address: volkm@math2.rwth-aachen.de (L. Volkmann).

Fig. 1. The almost regular bipartite tournament $T_{3,3}$.

In [16], Yeo defines the global irregularity $i_g(D)$ of a digraph D by

$$i_{g}(D) = \max_{x \in V(D)} \{ d_{D}^{+}(x), d_{D}^{-}(x) \} - \min_{y \in V(D)} \{ d_{D}^{+}(y), d_{D}^{-}(y) \}.$$

If $i_g(D) \leq 1$ then D is called *almost regular*, and if $i_g(D) = 0$, then D is *regular*.

By a *cycle* or *path* we mean a directed cycle or directed path. A cycle of length k is also called a k-cycle. A cycle or path in a digraph D is *Hamiltonian* if it includes all the vertices of D. A set $X \subseteq V(D)$ of vertices is *independent* if no two vertices of X are adjacent. A set of $A \subseteq E(D)$ is *independent* if no two arcs of A are incident.

A bipartite tournament with the partite sets X and Y such that |X| = |Y| = m is also called an $m \times m$ bipartite tournament. By $H(r_1, r_2, r_3, r_4)$ we define the bipartite tournament with the four pairwise disjoint independent sets of vertices B_1, B_2, B_3, B_4 with $|B_i| = r_i$ for i = 1, 2, 3, 4 such that $B_1 \rightarrow B_2 \rightarrow B_3 \rightarrow B_4 \rightarrow B_1$. The class $H^*(r_1, r_2, r_3, r_4)$ of bipartite tournaments originates from $H(r_1, r_2, r_3, r_4)$ by reversing some arcs between B_1 and B_4 or B_3 and B_4 such that $d(b_1, B_4) \leq 1$ and $d(B_4, b_3) \leq 1$ for every $b_1 \in B_1$ and $b_3 \in B_3$, or by reversing all the arcs.

In Section 2, we prove that every arc of an almost regular bipartite tournament T with the partite sets X, Y such that $|X| \leq |Y|$, is contained in a Hamiltonian path if and only if $|Y| \leq |X| + 1$ and T is not isomorphic to $T_{3,3}$ (cf. Fig. 1). As an application of this result, we show in Section 3 that every arc of an almost regular *c*-partite tournament D with the partite sets V_1, V_2, \ldots, V_c such that $|V_1| = |V_2| = \cdots = |V_c|$, is contained in a Hamiltonian path if and only if D is not isomorphic to $T_{3,3}$.

2. Almost regular bipartite tournaments

The following results play an important role in the investigations of this section.

Theorem 2.1 (Amar and Manoussakis [1], Wang [13]). Every arc of a regular bipartite tournament is contained in a Hamiltonian cycle.

Theorem 2.2 (Wang [14]). Let H be an $m \times m$ bipartite tournament. If $d_H^-(u) + d_H^+(v) \ge m-1$ for every pair of vertices u and v satisfying $u \to v$, then H is Hamiltonian, unless H is isomorphic to H((m+1)/2, (m+1)/2, (m-1)/2) when m is odd or H(m/2, (m-2)/2, m/2, (m+2)/2) when m is even.

Lemma 2.3 (Guo, Pinkernell, and Volkmann [5]). Let C be an m-cycle of a strong c-partite tournament D. If there exists a vertex $y \in V(D) - V(C)$ with $N^+(y) \cap V(C) = \emptyset$ or $N^-(y) \cap V(C) = \emptyset$, then the vertex set V(C) is contained in an (m + 1)- or (m + 2)-cycle.

Theorem 2.4 (Zhang, Song, and Wang [18]). Let *H* be an $(m + 2) \times (m + 2)$ bipartite tournament with $m \ge 3$. If $d_H^-(u) + d_H^+(v) \ge m$ for every pair of vertices *u* and *v* satisfying $uv \notin E(H)$, then *H* is Hamiltonian, or *H* is isomorphic to H(k + 2, k + 2, k, k) when m = 2k, or $H \in H^*(m + 2 - t, t + 1, t, m + 1 - t)$ with $(m - 1)/2 \le t \le (m + 2)/2$.

Example 2.5. Let $T_{3,3}$ be the almost regular bipartite tournament presented in Fig. 1. Then it is straightforward to verify that the arc *uv* is not contained in a Hamiltonian path. (Note that $T_{3,3}$ has a Hamiltonian cycle.)

Theorem 2.6. Let T be an almost regular bipartite tournament with the partite sets X, Y such that $1 \le |X| \le |Y|$. Every arc of T is contained in a Hamiltonian path if and only if $|Y| \le |X| + 1$ and T is not isomorphic to $T_{3,3}$.

Proof. Clearly, if $|Y| \ge |X| + 2$, then T does not have any Hamiltonian path. Thus, assume that $|Y| \le |X| + 1$, and let uv be an arbitrary arc of T.

If T is regular, then the desired result follows immediately from Theorem 2.1. So, let now $i_g(T) = 1$.

Firstly, assume that |Y| = |X|+1. If |X|=1, then the result is obvious. Let now $|Y| = |X|+1 = m+1 \ge 3$, $X = \{x_1, x_2, \dots, x_m\}$, and $Y = \{y_1, y_2, \dots, y_{m+1}\}$, and, without loss of generality, $u = y_{m+1}$ or $v = y_{m+1}$. The digraph $H = T - \{y_{m+1}\}$ is an $m \times m$ bipartite tournament, and since $i_g(T) = 1$, it is easy to see that $d_H^-(w) + d_H^+(z) \ge m-1$ for every pair of vertices w and z satisfying $w \to z$. Hence, by Theorem 2.2, H is Hamiltonian, unless H is isomorphic to H((m + 1)/2, (m + 1)/2, (m - 1)/2) when m is odd or H(m/2, (m - 2)/2, m/2, (m + 2)/2) when m is even. If H is Hamiltonian, then T contains a Hamiltonian path with the initial arc uv if $u = y_{m+1}$ and with the terminal arc uv if $v = y_{m+1}$.

If m = 2p + 1 is odd and H = H(p + 1, p + 1, p, p) then let, without loss of generality, $B_1 = \{y_1, y_2, ..., y_{p+1}\}$, $B_3 = \{y_{p+2}, y_{p+3}, ..., y_{2p+1}\}$, $B_2 = \{x_1, x_2, ..., x_{p+1}\}$, and $B_4 = \{x_{p+2}, x_{p+3}, ..., x_{2p+1}\}$. Because of $d_T^+(x_i) = d_T^-(x_i) = p + 1$ for i = 1, 2, ..., 2p + 1 = m, we deduce that $B_2 \rightarrow y_{m+1} \rightarrow B_4$. If, without loss of generality, $u = x_1$, if $v = y_{m+1}$ and $v = x_{p+2}$, if $u = y_{m+1}$, then

 $y_1x_1y_{m+1}x_{p+2}y_2x_2y_{p+2}x_{p+3}\dots x_{2p}y_px_py_{2p}x_{2p+1}y_{p+1}x_{p+1}y_{2p+1}$

is a Hamiltonian path, containing uv.

If m = 2p is even and H = H(p, p-1, p, p+1), then because of $d_T^+(y_i) = d_T^-(y_i) = p$ for i = 1, 2, ..., 2p+1 = m+1 and $p \leq d_T^+(x_i), d_T^-(x_i) \leq p+1$ for i = 1, 2, ..., 2p = m, it follows that $X = B_1 \cup B_3$, $Y = B_2 \cup B_4 \cup \{y_{m+1}\}$, and $B_1 \rightarrow y_{m+1} \rightarrow B_3$. Let $B_4 = \{y_1, y_2, ..., y_{p+1}\}$, $B_2 = \{y_{p+2}, y_{p+3}, ..., y_{2p}\}$, $B_1 = \{x_1, x_2, ..., x_p\}$, and $B_3 = \{x_{p+1}, x_{p+2}, ..., x_{2p}\}$. If, without loss of generality, $u = x_1$, if $v = y_{m+1}$ and $v = x_{p+1}$, if $u = y_{m+1}$, then

 $y_1x_1y_{m+1}x_{p+1}y_2x_2y_{p+2}x_{p+2}y_3\dots y_px_py_{2p}x_{2p}y_{p+1}$

is a Hamiltonian path, containing $uv = x_1 y_{m+1}$.

Secondly, assume that |X| = |Y|. Since $i_g(T) = 1$, we deduce that |X| is odd, say |X| = |Y| = 2p + 1. If |X| = |Y| = 1, then there is nothing to prove. If |X| = |Y| = 3, then it is straightforward to verify that there exists only one exception, namely $T_{3,3}$.

Case 1: Let next |X| = |Y| = 5, $X = \{u, x_1, x_2, x_3, x_4\}$, $Y = \{v, y_1, y_2, y_3, y_4\}$, and $H = T - \{u, v\}$. Since T is almost regular, we observe that $d_T^+(x), d_T^-(x) \ge 2$ for $x \in V(T)$.

Subcase 1.1: Assume that H is not strongly connected. We deduce that H has exactly two 4-cycles T_1 and T_2 as strong components such that, without loss of generality, there is no arc from T_2 to T_1 . Since T is strongly connected, there exists an arc from v to T_1 . Consequently, T contains a Hamiltonian path, starting with the arc uv.

Subcase 1.2: Assume that H is strongly connected. This implies that $d_H^+(x), d_H^-(x) \ge 1$ for $x \in V(H)$.

Subcase 1.2.1: Assume that H is Hamiltonian. It follows that T contains a Hamiltonian path, starting with the arc uv. Subcase 1.2.2: Assume that the longest cycle in H has length 6. Let, without loss of generality, $x_1y_1x_2y_2x_3y_3x_1$ be such a longest cycle.

Subcase 1.2.2.1: Let $x_4 \to y_4$. If $v \to x_4$ or $y_4 \to u$, then it is no problem to find a Hamiltonian path through the arc uv in T. Therefore, assume now that $u \to y_4$ and $x_4 \to v$. Since v has at least two positive neighbors, assume, without loss of generality, that $v \to \{x_1, x_2\}$. If $y_1 \to x_4$, then $uvx_2y_2x_3y_3x_1y_1x_4y_4$ is a Hamiltonian path through uv. It remains to consider the case that $x_4 \to y_1$. This yields $\{y_2, y_3\} \to x_4$, and then $uvx_1y_1x_2y_2x_3y_3x_4y_4$ is the desired Hamiltonian path.

Subcase 1.2.2.2: Let $y_4 \rightarrow x_4$. Assume, without loss of generality, that $x_4 \rightarrow y_1$. Since *H* has no Hamiltonian cycle, it follows that $y_4 \rightarrow x_1$.

Subcase 1.2.2.2.1: Let $v \to x_4$. If $y_4 \to u$, then $y_4ux_4y_1x_2y_2x_3y_3x_1$ is the desired Hamiltonian path. So, let $u \to y_4$. If $u \to y_1$, then $y_3 \to u$, and $y_4x_1y_1x_2y_2x_3y_3uv_4$ is a Hamiltonian path. Thus, it remains $y_1 \to u$. If $y_4 \to x_2$, then $y_4x_2y_2x_3y_3x_1y_1uvx_4$ is a Hamiltonian path. Let now $x_2 \to y_4$. If $v \to x_2$, then $y_4x_4y_1uvx_2y_2x_3y_3x_1$ is a Hamiltonian path. Thus, let $x_2 \to v$. This leads to $y_3 \to x_2$. If $v \to x_1$, then $y_2x_3y_3x_2y_4x_4y_1uvx_1$ is a Hamiltonian path. Otherwise, $x_1 \to v$, and this implies $v \to x_3$. If $y_2 \to u$, then $y_4x_4y_1x_2y_2ux_3y_3x_1$ is a Hamiltonian path. Thus, let finally $u \to y_2$. This leads to $y_3 \to u$, and we obtain the desired Hamiltonian path $y_4x_1y_1x_2y_2x_3y_3uvx_4$.

Subcase 1.2.2.2.2: Let $x_4 \rightarrow v \rightarrow x_1$. We deduce that $x_1 \rightarrow y_2$. If $y_3 \rightarrow u$, then $y_4x_4y_1x_2y_2x_3y_3uvx_1$ is a Hamiltonian path. So, we assume $u \rightarrow y_3$. Now, $y_4 \rightarrow u$ implies $x_2 \rightarrow y_4$, and we have the Hamiltonian path $x_4y_1x_2y_4uvx_1y_2x_3y_3$. The case $u \rightarrow y_4$ yields $\{y_1, y_2\} \rightarrow u$. If $y_3 \rightarrow x_2$, then $y_4x_4y_1uvx_1y_2x_3y_3x_2$ is a Hamiltonian path. If we assume that $x_2 \rightarrow y_3$, then it follows $y_3 \rightarrow x_4$. In the case $v \rightarrow x_3$, we find the Hamiltonian path $y_4x_4y_1x_2y_2uvx_3y_3x_1$. Thus, let finally $x_3 \rightarrow v$. This leads to $v \rightarrow x_2$, and we obtain the desired Hamiltonian path $y_4x_4y_1uvx_2y_2x_3y_3x_1$.

Subcase 1.2.2.2.3: Let $x_4 \rightarrow v$ and $x_1 \rightarrow v$. It follows that $v \rightarrow \{x_2, x_3\}$. If $y_1 \rightarrow u$, then $y_4x_4y_1ux_2y_2x_3y_3x_1$ is a Hamiltonian path through uv. In the other case that $u \rightarrow y_1$, we deduce that $y_1 \rightarrow x_3$. If $y_2 \rightarrow u$, then $y_4x_4y_1x_2y_2ux_3y_3x_1$ is a Hamiltonian path. Thus, we assume that $u \rightarrow y_2$. This implies $\{y_3, y_4\} \rightarrow u$ and this leads to $\{x_2, x_3\} \rightarrow y_4$. If $x_4 \rightarrow y_3$, then $x_4y_3ux_3y_4x_1y_1x_2y_2$ is a Hamiltonian path. In the last case that $y_3 \rightarrow x_4$, we observe that $x_2 \rightarrow y_3$. If $x_4 \rightarrow y_2$, then $x_1y_1x_2y_4ux_3y_3x_4y_2$ is a Hamiltonian path, and if $y_2 \rightarrow x_4$, then $y_4ux_2y_2x_4y_1x_3y_3x_1$ is a Hamiltonian path through uv.

Subcase 1.2.3: Assume that the longest cycle in H has length 4. Let, without loss of generality, $C = x_1 y_1 x_2 y_2 x_1$ be such a longest cycle. According to Lemma 2.3, each of the vertices x_3 , y_3 , x_4 , y_4 has exactly one positive and one negative neighbor in C.

Subcase 1.2.3.1: Let $x_4y_1x_3y_2x_4$ and $x_1y_4x_2y_3x_1$ are both 4-cycles. This implies $x_4 \rightarrow y_4$, because otherwise there exists the 6-cycle $y_4x_4y_1x_2y_2x_1y_4$, $y_4 \rightarrow x_3$, because otherwise there exists the 6-cycle $x_3y_4x_2y_2x_1y_1x_3$. It follows that $x_4 \rightarrow y_3$, because otherwise there exists the 8-cycle $y_3x_4y_4x_3y_2x_1y_1x_2y_3$. This yields $v \rightarrow x_4$ and $uvx_4y_4x_3y_2x_1y_1x_2y_3$ is a Hamiltonian path, containing the arc uv.

Subcase 1.2.3.2: Let $x_4y_1x_3y_2x_4$ be a 4-cycle, and let $x_1y_4x_2y_3x_1$ be not a 4-cycle. We can assume, without loss of generality, that $x_1 \rightarrow y_4 \rightarrow x_2$ and $x_1 \rightarrow y_3 \rightarrow x_2$. This implies $x_4 \rightarrow y_4$, because otherwise there exists the 6-cycle $y_4x_4y_1x_2y_2x_1y_4$, $x_4 \rightarrow y_3$, because otherwise there exists the 6-cycle $y_3x_4y_1x_2y_2x_1y_3$, and $y_4 \rightarrow x_3$, because otherwise there exists the 6-cycle $x_3y_4x_2y_2x_1y_1x_3$. It follows that $y_3 \rightarrow x_3$, because otherwise there exists the 6-cycle $x_3y_3x_2y_2x_4y_4x_3$. This yields $v \rightarrow x_4$.

If $y_3 \rightarrow u$, then $y_3uvx_4y_4x_3y_2x_1y_1x_2$ is a Hamiltonian path, containing the arc uv. If $y_4 \rightarrow u$, then $y_4uvx_4y_3x_3y_2x_1y_1x_2$ is a Hamiltonian path, containing the arc uv. However, if $u \rightarrow \{y_3, y_4\}$, then we deduce that $y_1 \rightarrow u$, and we arrive at the Hamiltonian path $y_3x_2y_2x_1y_1uvx_4y_4x_3$ through uv.

Subcase 1.2.3.3: Let neither $x_4y_1x_3y_2x_4$ nor $x_1y_4x_2y_3x_1$ be a 4-cycle. We can assume, without loss of generality, that $y_2 \rightarrow x_4 \rightarrow y_1$, $y_2 \rightarrow x_3 \rightarrow y_1$, $x_1 \rightarrow y_4 \rightarrow x_2$, and $x_1 \rightarrow y_3 \rightarrow x_2$. This implies $x_4 \rightarrow y_4$, because otherwise there exists the 6-cycle $y_4x_4y_1x_2y_2x_1y_4$ and $x_3 \rightarrow y_4$, because otherwise there exists the 6-cycle $y_4x_3y_1x_2y_2x_1y_4$. It follows that $x_4 \rightarrow y_3$, because otherwise there exists the 6-cycle $y_3x_4y_4x_2y_2x_1y_3$. This yields $x_3 \rightarrow y_3$, because otherwise there exists the 6-cycle $x_4y_3x_3y_1x_2y_2x_4$. We deduce that $y_4 \rightarrow u$ and $v \rightarrow x_1$, and this leads to the Hamiltonian path $x_4y_4uvx_1y_1x_2y_2x_3y_3$, containing the arc uv.

Case 2: Let $|X| = |Y| = 2p + 1 = m + 3 \ge 7$, $H = T - \{u, v\}$, $X = \{u, x_1, x_2, \dots, x_{m+2}\}$, and $Y = \{v, y_1, y_2, \dots, y_{m+2}\}$. As *T* is almost regular, we observe that $p \le d_T^+(x), d_T^-(x) \le p + 1$ for all $x \in V(T)$. If we define $H = T - \{u, v\}$, then $p - 1 \le d_H^+(x), d_H^-(x) \le p + 1$ for all $x \in V(H)$, and therefore $d_H^-(w) + d_H^+(z) \ge 2p - 2 = m$ for every pair of vertices *w* and *z* satisfying $wz \notin E(H)$. It follows, according to Theorem 2.4, that *H* is Hamiltonian, or *H* is isomorphic to H(p + 1, p + 1, p - 1, p - 1) or $H \in H^*(p + 1, p, p - 1, p)$. If *H* is Hamiltonian, then *T* contains a Hamiltonian path with the terminal arc *uv*.

If H = H(p + 1, p + 1, p - 1, p - 1), then because of $p \le d_T^+(x), d_T^-(x) \le p + 1$ for all $x \in V(T)$, it follows that $X = B_1 \cup B_3 \cup \{u\}, Y = B_2 \cup B_4 \cup \{v\}, B_2 \to u \to B_4$, and $B_3 \to v \to B_1$. If $B_1 = \{x_1, x_2, \dots, x_{p+1}\}, B_2 = \{y_1, y_2, \dots, y_{p+1}\}, B_3 = \{x_{p+2}, x_{p+3}, \dots, x_{2p}\}$, and $B_4 = \{y_{p+2}, y_{p+3}, \dots, y_{2p}\}$, then

 $x_1 y_1 u v x_2 y_2 x_{p+2} y_{p+2} x_3 \dots x_p y_p x_{2p} y_{2p} x_{p+1} y_{p+1}$

is a Hamiltonian path containing the arc uv.

Subcase 2.1: Let $H \in H^*(p+1, p, p-1, p)$ such that $B_1 = \{y_1, y_2, \dots, y_{p+1}\}$, $B_2 = \{x_1, x_2, \dots, x_p\}$, $B_3 = \{y_{p+2}, y_{p+3}, \dots, y_{2p}\}$, and $B_4 = \{x_{p+1}, x_{p+2}, \dots, x_{2p}\}$. Because of $p \leq d_T^+(x), d_T^-(x) \leq p+1$ for all $x \in V(T)$, we conclude that $B_2 \to v \to B_4$, and there exists a vertex, say $y_{p+1} \in B_1$, with the property that $y_{p+1} \to u$.

Subcase 2.1.1: Assume that $d_H(x, B_1 - \{y_{p+1}\}) \ge 1$ for all $x \in B_4$. In this case, the hypothesis $d_H(b_1, B_4) \le 1$ for every $b_1 \in B_1$ and the Marriage Theorem yield p independent arcs, say $x_{p+i}y_i$ for i = 1, 2, ..., p, from B_4 to B_1 . Furthermore, the hypothesis $d_H(B_4, b_3) \le 1$ for every $b_3 \in B_3$ leads easily to p - 1 independent arcs, say $y_{p+i}x_{p+i}$ for i = 2, 3, ..., p, from B_3 to B_4 . Altogether, we see that

 $y_{p+1}uvx_{p+1}y_1x_1y_{p+2}x_{p+2}y_2x_2\dots y_{p-1}x_{p-1}y_{2p}x_{2p}y_px_p$

is a Hamiltonian path through uv.

Subcase 2.1.2: Assume next that there exists a vertex, say $x_{p+1} \in B_4$, such that $d_H(x_{p+1}, B_1 - \{y_{p+1}\}) = 0$. This implies $((B_1 - \{y_{p+1}\}) \cup \{v\}) \rightarrow x_{p+1}$. Because of $p \leq d_T^+(x), d_T^-(x) \leq p+1$ for all $x \in V(T)$, it follows that $x_{p+1} \rightarrow (B_3 \cup \{y_{p+1}\})$, $u \rightarrow (B_1 - \{y_{p+1}\})$, and $B_3 \rightarrow u$. In addition, in view of the hypotheses $d_H(b_1, B_4) \leq 1$ for every $b_1 \in B_1$ and $d_H(B_4, b_3) \leq 1$ for every $b_3 \in B_3$, we deduce that $(B_4 - \{x_{p+1}\}) \rightarrow (B_1 - \{y_{p+1}\})$ and $B_3 \rightarrow (B_4 - \{x_{p+1}\})$. This shows that

 $y_1x_1y_{p+2}uvx_{p+2}y_2x_{p+1}y_{p+1}x_2y_{p+3}x_{p+3}y_3x_3y_{p+4}\dots y_{p-1}x_{p-1}y_{2p}x_{2p}y_px_p$

is a Hamiltonian path through uv.

Subcase 2.2: Let $H \in H^*(p+1, p, p-1, p)$ such that $B_1 = \{x_1, x_2, \dots, x_{p+1}\}$, $B_2 = \{y_1, y_2, \dots, y_p\}$, $B_3 = \{x_{p+2}, x_{p+3}, \dots, x_{2p}\}$, and $B_4 = \{y_{p+1}, y_{p+2}, \dots, y_{2p}\}$. Because of $p \leq d_T^+(x), d_T^-(x) \leq p+1$ for all $x \in V(T)$, we have $B_2 \to u$, and there exists a vertex, say $x_{p+1} \in B_1$, with the property $v \to x_{p+1}$.

Subcase 2.2.1: Assume that $d_H(y, B_1 - \{x_{p+1}\}) \ge 1$ for all $y \in B_4$. In this case, the hypothesis $d_H(b_1, B_4) \le 1$ for every $b_1 \in B_1$ and the Marriage Theorem yield p independent arcs, say $y_{p+i}x_i$ for i = 1, 2, ..., p, from B_4 to B_1 . Furthermore,

the hypothesis $d_H(B_4, b_3) \leq 1$ for every $b_3 \in B_3$ leads easily to p-1 independent arcs, say $x_{p+i}y_{p+i}$ for i = 2, 3, ..., p, from B_3 to B_4 . This implies that

 $y_{p+1}x_1y_1uvx_{p+1}y_2x_{p+2}y_{p+2}x_2y_3x_{p+3}y_{p+3}x_3y_4...x_{p-1}y_px_{2p}y_{2p}x_p$

is a Hamiltonian path through uv.

Subcase 2.2.2: Next, assume that there exists a vertex, say $y_{p+1} \in B_4$, such that $d_H(y_{p+1}, B_1 - \{x_{p+1}\}) = 0$. Because of $p \leq d_T^+(x), d_T^-(x) \leq p+1$ for all $x \in V(T)$, it follows that $v \to B_1$. In addition, the fact that $(B_1 - \{x_{p+1}\}) \to (B_2 - \{y_{p+1}\})$ leads to $(B_4 - \{y_{p+1}\}) \to (B_1 - \{x_{p+1}\})$.

Subcase 2.2.2.1: Let $y_{p+1} \rightarrow x_{p+1}$. Since y_{p+1} has at least p-2 positive neighbors in B_3 , the condition $d_H(B_4, b_3) \leq 1$ for every $b_3 \in B_3$ leads easily to p-1 independent arcs, say $x_{p+i}y_{p+i}$ for $i=2,3,\ldots,p$, from B_3 to $B_4 - \{y_{p+1}\}$. Thus,

 $x_1 y_{p+1} x_{p+1} y_1 u v x_2 y_2 x_{p+2} y_{p+2} x_3 y_3 x_{p+3} y_{p+3} \dots x_{p-1} y_{p-1} x_{2p-1} y_{2p-1} x_p y_p x_{2p} y_{2p}$

is a Hamiltonian path through uv.

Subcase 2.2.2.2: Let $x_{p+1} \to y_{p+1}$. We deduce that $y_{p+1} \to (B_3 \cup \{u\}), v \to B_1, B_3 \to (B_4 - \{y_{p+1}\})$, and $(B_4 - \{y_{p+1}\}) \to B_1$. Consequently,

 $x_{p+1}y_{p+1}uvx_1y_1x_{p+2}y_{p+2}x_2y_2x_{p+3}y_{p+3}\dots x_{p-1}y_{p-1}x_{2p}y_{2p}x_py_p$

is a Hamiltonian path through uv.

If we finally reserve all arcs of H(p+1, p, p-1, p), then we arrive at a symmetric situation, and the proof of Theorem 2.6 is complete. \Box

3. Almost regular multipartite tournaments

Theorem 3.1 (Volkmann, Yeo [12]). Every arc of a regular c-partite tournament D is contained in a Hamiltonian path of D.

Theorem 3.2 (Volkmann, Yeo [12]). Let D be a c-partite tournament with partite sets V_1, V_2, \ldots, V_c such that $|V_1| \le |V_2| \le \cdots \le |V_c|$, and let P be a path of length q in D. If

 $|V(D)| \ge 2i_{g}(D) + 3q + 2|V_{c}| + |V_{c-1}| - 2,$

then there exists a Hamiltonian path in D, starting with the path P.

Theorem 3.3 (Jakobsen [10]). If T is an almost regular tournament of order $n \ge 8$, then every arc of T is contained in an m-cycle for each $m \in \{4, 5, ..., n\}$.

Theorem 3.4. Let D be an almost regular c-partite tournament with the partite sets $V_1, V_2, ..., V_c$ such that $|V_1| = |V_2| = \cdots = |V_c|$. Then each arc of D is contained in a Hamiltonian path if and only if D is not isomorphic to $T_{3,3}$.

Proof. If D is regular, then we deduce from Theorem 3.1 that every arc is contained in a Hamiltonian path. In the remaining case that $i_g(D) = 1$, it follows, because of $|V_1| = |V_2| = \cdots = |V_c| = r$, that c is even and r is odd. If c = 2, then Theorem 2.6 yields the desired result. In the case $c \ge 4$ and $r \ge 3$, we observe that

$$|V(D)| = |V_1| + |V_2| + \dots + |V_c|$$

$$\ge |V_{c-3}| + |V_{c-2}| + |V_{c-1}| + |V_c|$$

$$\ge 2 - 2 + 3 + 2|V_c| + |V_{c-1}|$$

$$= 2i_g(D) + 3 + 2|V_c| + |V_{c-1}| - 2.$$

Applying Theorem 3.2 with q = 1, we see that there exists a Hamiltonian path in D, starting with an arbitrary arc. Finally, let D be a tournament. If $c \ge 8$, then, according to Theorem 3.3, every arc is even contained in a Hamiltonian cycle. If c = 6, then we can apply again Theorem 3.2, and if c = 4, then it is a simple matter to obtain the desired result.

Acknowledgements

The author would like to thank the two referees for their hints and suggestions.

References

- [1] D. Amar, Y. Manoussakis, Cycles and paths of many lengths in bipartite digraphs, J. Combin. Theory Ser. B 50 (1990) 254–264. [2] J. Bang-Jensen, G. Gutin, Digraphs: Theory, Algorithms and Applications, Springer, London, 2000.
- [2] J. Barg-Jensen, O. Outin, Digraphis. Theory, Algorithms and Apprications, Springer, London, 2000.
- [3] J. Bang-Jensen, G. Gutin, A. Yeo, A polynomial algorithm for the Hamiltonian cycle problem in semicomplete multipartite digraphs, J. Graph Theory 29 (1998) 111–132.
- [4] Y. Guo, Semicomplete Multipartite Digraphs: a Generalization of Tournaments, Habilitation thesis, RWTH Aachen, 1998.
- [5] Y. Guo, A. Pinkernell, L. Volkmann, On cycles through a given vertex in multipartite tournaments, Discrete Math. 164 (1997) 165–170.
- [6] G. Gutin, A criterion for complete bipartite digraphs to be Hamiltonian, Vestsi. Acad. Navuk BSSR Ser. Fiz.-Mat. Navuk No. 1 (1984) 99–100 (in Russian).
- [7] G. Gutin, A characterization of complete *n*-partite digraphs that have a Hamiltonian path, Kybernetica No. 1 (1988) 107–108 (in Russian).
- [8] G. Gutin, Cycles and paths in semicomplete multipartite digraphs, theorems and algorithms: a survey, J. Graph Theory 19 (1995) 481–505.
- [9] R. Häggkvist, Y. Manoussakis, Cycles and paths in bipartite tournaments with spanning configurations, Combinatorica 9 (1989) 33-38.
- [10] O.S. Jakobsen, Cycles and Paths in Tournaments, Ph.D. Thesis, University of Aarhus, 1972.
- [11] L. Volkmann, Cycles in multipartite tournaments: results and problems, Discrete Math. 245 (2002) 19-53.
- [12] L. Volkmann, A. Yeo, Hamiltonian paths, containing a given path or collection of arcs, in close to regular multipartite tournaments, Discrete Math. 281 (2004) 267–276.
- [13] J.Z. Wang, Cycles of all possible lengths in diregular bipartite tournaments, Ars. Combin. 32 (1991) 279-288.
- [14] J.Z. Wang, A sufficient condition for Hamiltonian cycles in bipartite tournaments, Austral. J. Combin. 5 (1992) 299-304.
- [15] A. Yeo, Semicomplete Multipartite Digraphs, Ph.D. thesis, University of Odense, 1998.
- [16] A. Yeo, How close to regular must a semicomplete multipartite digraph be to secure Hamiltonicity? Graphs Combin. 15 (1999) 481–493.
- [17] K.M. Zhang, Z.M. Song, Cycles in digraphs-a survey, J. Nanjing Univ. Nat. Sci. Ed. 27 (1991) 188-215.
- [18] K.M. Zhang, Z.M. Song, J.Z. Wang, Hamiltonian bipartite tournaments, Nanjing Daxue Xuebao Shuxue Bannian Kan 8 (1991) (1) 6–10 (in Chinese).