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a b s t r a c t

The power graph of a group is the graph whose vertex set is the group, two elements being
adjacent if one is a power of the other. We observe that non-isomorphic finite groups
may have isomorphic power graphs, but that finite abelian groups with isomorphic power
graphs must be isomorphic. We conjecture that two finite groups with isomorphic power
graphs have the same number of elements of each order. We also show that the only finite
groupwhose automorphism group is the same as that of its power graph is the Klein group
of order 4.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

There are a number of constructions of graphs from groups or semigroups in the literature: among these are intersection
graphs of subsemigroups or subgroups [1,7], and of course Cayley graphs, which have a long history.

The directed power graph of a semigroup S was defined by Kelarev and Quinn [4,5] as the digraph G⃗(S)with vertex set S, in
which there is an arc from x to y if and only if x ≠ y and y = xm for some positive integerm. Motivated by this, Chakrabarty
et al. [2] defined the (undirected) power graph G(S), in which distinct x and y are joined if one is a power of the other. This
paper concerns the general question:what information does the power graph of S give us about S?We refer to the cited papers
for earlier work on this question.

An element e ∈ S is called an idempotent if e2 = e. If S is finite, then for each a ∈ S, there exists a natural numberm such
that am is an idempotent. Define a binary relation ρ on S by aρb ⇔ am = bm for some natural number m. Clearly ρ is an
equivalence relation on S. In [2], it was shown that, for any a ≠ b in S, there is a path from a to b in G(S) if and only if aρb. So
every vertex in G(S) is adjacent to one and only one idempotent in S, and no two idempotents are connected by a path. Thus
the components of G(S) are precisely the equivalence classes of ρ, and each component contains a unique idempotent to
which every other vertices of that component are adjacent. In particular, G(G) is connected for any finite group G. Moreover
in [2], it is shown that for a finite group G, G(G) is complete if and only if G is a cyclic group of order 1 or pm, for some prime
number p and for some natural numberm.

2. The power graph of a group

In this paper we restrict our attention to groups. Two natural questions are:

• Clearly G1 ∼= G2 implies G(G1) ∼= G(G2). Does the converse hold?
• Clearly the automorphism group of G is contained in the automorphism group of G(G). When does equality hold?
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The answer to the first question is negative for infinite abelian groups. Let Cp∞ be the group Qp/Z, where Qp is the group
of rational numberswith p-power denominators (p prime). ThenG(Cp∞) is a countably infinite complete graph, independent
of the chosen prime.

It is false for finite groups in general. LetG be a finite group of exponent 3, that is, satisfying x3 = 1 for all x ∈ G. ThenG(G)
consists of (|G| − 1)/2 triangles sharing a common vertex (the identity). The elementary abelian group (the direct product
of cyclic groups of order 3) has exponent 3, but there are non-abelian groups as well: the smallest is the group of order 27
with presentation

G = ⟨x, y | x3 = y3 = [x, y]3 = 1⟩,
where [x, y] is the commutator x−1y−1xy.

In fact, the phenomenon is not uncommon. A short calculationwith GAP [3] and its package GRAPE [6] revealed that there
are two pairs of groups of order 16 with isomorphic power graphs, and two pairs of groups of order 27. The phenomenon
becomes more common; for order 32 there are one quadruple, two triples, and eight pairs.

However, we have a positive result for finite abelian groups.

Theorem 1. Let G1 and G2 be finite abelian groups with G(G1) ∼= G(G2). Then G1 ∼= G2.

We begin the proof with the following key result. The closed neighbourhood of a vertex in a graph consists of the vertex
and all its neighbours.

Proposition 2. Suppose that x and y are elements of an abelian group G. Then x and y have the same closed neighbourhoods in
the power graph G(G) if and only if one of the following holds:
(a) ⟨x⟩ = ⟨y⟩;
(b) G is cyclic, and one of x and y is a generator of G and the other is the identity;
(c) G is cyclic of prime power order (and x and y are arbitrary).

Proof. It is clear that, in each of the cases (a)–(c), x and y have the same closed neighbourhoods. (If G is cyclic of prime power
order, then G(G) is complete.) So suppose that x and y have the same closed neighbourhoods.

Without loss of generality, the order of x divides that of y; suppose these orders are k and kl respectively. Replacing x by
a power of x having the same order, we may assume that x = yl.

Now every element z of ⟨y⟩ is in the closed neighbourhood of x, and so either z is a power of x, or x is a power of z. Since
there are elements of z of every order dividing kl, we see that

for each divisorm of kl, either m divides k or k divides m.
We claim that just three cases are possible:
(a) l = 1;
(b) k = 1;
(c) k and l are powers of the same prime.
For suppose that none of these conditions holds. Then at least two primes divide kl. If there is a prime p such that the power
of p dividing k is positive, and a prime q ≠ p such that the power of q dividing l is positive, then the number m = qk/p
violates the displayed condition. So if p divides k, then l is a power of p, and vice versa; but then both k and l are powers of
p, a contradiction.

In case (a) we have conclusion (a) of the theorem. We have to look at the other two cases.
Suppose that (b) holds, so that x is the identity. Then y is joined to every element of G. If G is not cyclic, then it contains

two elements u, v generating distinct subgroups of some prime order p; but y cannot be joined to both u and v. So G is cyclic.
If its order is not a prime power, then the only elements joined to all others are the identity and the generators. So (b) or (c)
of the theorem holds.

If (c) holds, then k and l are powers of a prime p, but G is not a cyclic p-group. If the Sylow p-subgroup of G is non-cyclic,
then there is an element z of order p which is not a power of y. Then (yz)l = x, so x is joined to yz, but y is not. Otherwise,
there is an element z of prime order q ≠ p; then x is joined to xz, but y is not. In each case we have a contradiction. �

Corollary 3. If G is an abelian group, then G(G) has more than one vertex which is joined to all others if and only if G is cyclic.

Now we can give the proof of the Theorem. The preceding Corollary shows that the Theorem is true if one of G1 and G2
is cyclic. So suppose not. Then the power graph of G1 determines the equivalence relation ≡ in which two elements are
equivalent if and only if they generate the same cyclic subgroup. We can recognise the identity element, as the only one
joined to all others in the power graph.

Let p be the smallest primedivisor of |G1|. Then the elements of order p are those lying in classes of order p−1. Inductively,
we recognise the elements of order pi, as those lying in classes of size pi−1(p − 1) and having pi−1 neighbours among the
elements of order pi−1 already found.

Hence we know (as a set of elements) the Sylow p-subgroup P of G1. Knowing the numbers of elements of each order in P
determines P up to isomorphism. Now the unique complement H of p consists of those elements which have no neighbour
in P apart from the identity. The induced subgraph on H is G(H). By induction, we can determine H (and hence G1) up to
isomorphism. Clearly this shows that G1 ∼= G2.
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In view of the fact that Theorem 1 fails for arbitrary finite groups, we replace the first question with another:

Conjecture 1. Let G1 and G2 be finite groups with G(G1) ∼= G(G2). Then G1 and G2 have the same numbers of elements of each
order.

This has been tested computationally for all groups of order up to 511 by John Bray; it is true in all these cases. We note
that the converse fails for groups of order 16. In addition, we have the following result.

Proposition 4. Let G1 and G2 be finite groups with G⃗(G1) ∼= G⃗(G2). Then G1 and G2 have the same numbers of elements of each
order.

Proof. In the directed power graph of G, the maximal complete digraphs (sets of vertices joined by arcs in both directions)
are clearly the equivalence classes of the relation ≡ described earlier (where x ≡ y if and only if ⟨x⟩ = ⟨y⟩). The equivalence
classes are partially ordered by the relation [y] ≤ [x] if there is an arc from x to y. A minimal non-identity equivalence class
consists of elements of prime order p, and has cardinality p−1. For any equivalence class [x], we can now determine the set
of primes dividing the order of x from the set of minimal classes below [x] in the partial order. If x has order n = pa11 · · · parr ,
we now know the primes p1, . . . , pr and the value of φ(n) = |[x]|. The exponent ai is one more than the exponent of the
power of pi dividing |[x]|. So the order of x is determined. �

For the second question, we have a complete answer for finite groups.

Theorem 5. The only finite group G for which Aut(G) = Aut(G(G)) is the Klein group C2 × C2.

Proof. Let G satisfy the condition of the proposition. First note that the map x → x−1 is always an automorphism of G(G),
but is an automorphism of G if and only if G is abelian. So our group G is abelian.

If x is an element of order greater than 2, and y an non-identity element not in ⟨x⟩whose order divides that of x, then there
is a graph automorphism fixing x and y and mapping xy to its inverse; no group automorphism can do this. We conclude
that G is either cyclic or an elementary abelian 2-group.

Suppose that G is cyclic of order m. If m is composite and greater than 4, let k be a divisor of m such that m/k > 2.
There is a graph automorphism fixing the generator x of G and mapping xk to its inverse, which is impossible for a group
automorphism. Ifm is a prime power, then G(G) is a complete graph and has an automorphism moving the identity, which
no group automorphism can do.

Let G be an elementary abelian 2-group of order 2a. Then G is a star K1,2a−1, then Aut(G(G)) is the symmetric group of
degree 2a

− 1, while Aut(G) is the general linear group GL(a, 2); these groups are equal if and only if a = 2. �

Added in proof. The first author has subsequently shown that two finite groups which have isomorphic undirected power
graphs must have isomorphic directed power graphs. The proof will appear elsewhere.
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