Marcinkiewicz Integrals with Rough Homogeneous Kernels of Degree Zero in Product Domains

Youngwoo Choi

Department of Mathematics, Ajou University, Suwon 442-749, Korea
E-mail: youngwoo@madang.ajou.ac.kr

Submitted by B. S. Thomson

Received July 17, 2000

The L^2-boundedness of the Marcinkiewicz integrals in product domains with component-wise homogeneous kernels which belong to a certain Orlicz space and satisfy the cancellation property is studied. © 2001 Academic Press

Key Words: Marcinkiewicz integral; Orlicz space; product domain.

1. INTRODUCTION

Stein [15] defined a higher dimensional analogue of the Marcinkiewicz integral by

$$
\mu_{\Omega f}(x) = \left(\int_0^\infty |F_s f(x)|^2 \frac{ds}{s^3} \right)^{\frac{1}{2}},
$$

where

$$
F_s f(x) = \int_{|x-y|<s} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) \, dy,
$$

and Ω is a homogeneous function of degree zero whose restriction to S^{n-1} belongs to $L^1(S^{n-1})$ and satisfies the cancellation property,

$$
\int_{S^{n-1}} \Omega(x') \, d\sigma(x') = 0.
$$

1 This work was supported by Grant 1999-2-112-004-3 from the Interdisciplinary Research program of the KOSEF.
Here, S^{n-1} denotes the unit sphere in \mathbb{R}^n. The continuity of Marcinkiewicz integrals is very useful in harmonic analysis [4–6, 16, 17, 22]. Stein [15] proved that if $\Omega|_{S^{n-1}}$ belongs to the Lipschitz space $\Lambda^\alpha(S^{n-1})$ of order $\alpha (0 < \alpha \leq 1)$, then

$$\int_{S^{n-1}} \Omega(y') \, d\sigma(y') = 0.$$

(1) If $\Omega|_{S^{n-1}} \in L(\log^+ L)^{1/2}(S^{n-1})$, then μ_Ω is bounded in $L^2(\mathbb{R}^n)$.

(2) Let $1 < p < \infty$ and let p' be the conjugate of p. If $\Omega|_{S^{n-1}} \in L(\log^+ L)^{1/2}(\log^+ \log^+ L)^{3/4}(S^{n-1})$, with $r = \min\{p, p'\}$, then μ_Ω is bounded in $L^p(\mathbb{R}^n)$.

Mapping properties of μ_Ω on other function spaces were also studied. Torchinsky and Wang [18] considered the weighted L^p-boundedness of μ_Ω and showed that if $\Omega|_{S^{n-1}} \in \Lambda^\alpha(S^{n-1})$, then for ω satisfying an A_p condition, μ_Ω is bounded on $L^p(\omega)$. Recently, this was extended to rougher kernels by Ding et al. [9]. Mapping properties of μ_Ω on BMO or Campanato spaces have been studied in [3, 7, 10, 14, 20].

On the other hand, the Marcinkiewicz integral defined on product domains has also been studied.

To be more specific, let $k \geq 1$ be an integer, $n_1, \ldots, n_k \geq 2$ be integers, and $\Omega : \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_k} \rightarrow \mathbb{C}$ be a component-wise homogeneous function of degree zero with the cancellation property:

$$\int_{S^{n_{j-1}}} \Omega(y'_1, \ldots, y'_{j-1}, y'_j, \ldots, y'_k) \, d\sigma(y'_j) = 0 \quad \text{for} \; j = 1, \ldots, k.$$

The Marcinkiewicz integral $\tilde{\mu}_\Omega$ is defined by

$$\tilde{\mu}_\Omega f(x_1, \ldots, x_k) = \left(\int_0^\infty \cdots \int_0^\infty |F_{s_1, \ldots, s_k} f(x_1, \ldots, x_k)|^2 \frac{ds_1 \cdots ds_k}{s_1^\frac{3}{2} \cdots s_k^\frac{3}{2}} \right)^{\frac{1}{2}},$$

where $F_{s_1, \ldots, s_k} f(x_1, \ldots, x_k) = \int_{S^{n_1-1}} \cdots \int_{S^{n_k-1}} f(x_1, \ldots, x_k) \chi_{B_{s_1} \times \cdots \times B_{s_k}}(y) \, d\sigma(y)$ for $s_1, \ldots, s_k > 0$. Recently, this was extended to rougher kernels by Ding et al. [9]. Mapping properties of $\tilde{\mu}_\Omega$ on BMO or Campanato spaces have been studied in [3, 7, 10, 14, 20].
where
\[
F_{s_1,\ldots,s_k} f(x_1,\ldots,x_k) = \int_{|x_1-y_1|\leq s_1} \cdots \int_{|x_k-y_k|\leq s_k} \frac{\Omega(x_1-y_1,\ldots,x_k-y_k)}{|x_1-y_1|^{s_1-1}\cdots|x_k-y_k|^{s_k-1}} x f(y_1,\ldots,y_k) dy_1 \cdots dy_k.
\]

Ding [8] showed the L^2-boundedness of $\tilde{\mu}_\Omega$ in case $k=2$ under the hypothesis of
\[
\Omega|_{S^{n-1} \times S^{n-1}} \in L(\log^+ L)^2(S^{n-1} \times S^{n-1}).
\]

In this paper, we improve the above result. Namely, we will prove:

Theorem 1.2. Let $k \geq 1$ be an integer, $n_1,\ldots,n_k \geq 2$ be integers, and $\Omega: \mathbb{R}^n_1 \times \cdots \times \mathbb{R}^n_k \to \mathbb{C}$ be a component-wise homogeneous function of degree zero with the cancellation property (1.5). If $\Omega|_{S^{n_1-1} \times \cdots \times S^{n_k-1}} \in L(\log^+ L)^{k/2}(S^{n_1-1} \times \cdots \times S^{n_k-1})$, then the Marcinkiewicz integral operator $\tilde{\mu}_\Omega$ defined by (1.6) is bounded in $L^2(\mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_k})$.

This paper is organized as follows: in Section 2, elementary properties on Orlicz spaces are discussed and the proof of the main theorem appears in Section 3.

2. PRELIMINARIES ON ORLICZ SPACES

Let $\Phi: [0,\infty) \to [0,\infty)$ be a function with the following properties:

1. Φ is convex;
2. $\Phi(0)=0$; and that
3. $\lim_{t\to \infty} \Phi(t)/t = \infty$.

Definition 2.1. (1) For a measurable function $f: \mathbb{R}^n \to \mathbb{C}$, we define $\|f\|_{L^\Phi(\mathbb{R}^n)}$ (the Luxemburg norm) by
\[
\|f\|_{L^\Phi(\mathbb{R}^n)} = \inf \left\{ \lambda \in (0,\infty) : \int_{\mathbb{R}^n} \Phi(\lambda^{-1}|f(x)|) dx \leq 1 \right\}.
\]

(2) The Orlicz space $L^\Phi(\mathbb{R}^n)$ is defined by
\[
\{ f: \mathbb{R}^n \to \mathbb{C} : f \text{ is measurable and } \|f\|_{L^\Phi(\mathbb{R}^n)} < \infty \}.
\]

Remark 2.2. (1) $L^\Phi(\mathbb{R}^n)$ is a Banach space.

(2) The following analogue of Hölder’s inequality is available; see, for instance, [22].

Lemma 2.3. Let $\Phi: [0,\infty) \to [0,\infty)$ and $\Psi: [0,\infty) \to [0,\infty)$ be Young’s pair in the sense that

1. Φ and Ψ are convex;
2. $\Phi': [0,\infty) \to [0,\infty)$ and $\Psi': [0,\infty) \to [0,\infty)$ are inverse to each other;

...
If \(f \in L^\Phi(\mathbb{R}^n) \) and \(g \in L^\Psi(\mathbb{R}^n) \), then \(fg \in L^1(\mathbb{R}^n) \) and we have
\[
\|fg\|_{L^1(\mathbb{R}^n)} \leq \|f\|_{L^\Phi(\mathbb{R}^n)} \|g\|_{L^\Psi(\mathbb{R}^n)}.
\]

3. PROOF OF THE MAIN THEOREM

3.1. Simplifying Notations. For simplicity, we will use the following notations:

1. \(I = (1, \ldots, 1), \quad n = (n_1, \ldots, n_k) \in \mathbb{N}^k; \)
2. For \(j \in \{1, \ldots, k\}, \ x \in \mathbb{R}^{n_j}, \) and \(s > 0, \) we write
 \[
 B_j(x, s) = \{y \in \mathbb{R}^{n_j} : |y - x| < s\};
 \]
3. For \(j \in \{1, \ldots, k\}, \ \xi' \in S^{n_j-1}, \) and \(s > 0, \) we write
 \[
 C_{i(j)}(\xi') = \{y' \in S^{n_j-1} : |y' \cdot \xi'| \leq s^{-\frac{j}{2}}\};
 \]
4. For \(s = (s_1, \ldots, s_k) \in (\mathbb{R}_+)^k \) and \(y = (y_1, \ldots, y_k) \in \mathbb{R}^{n_1} \times \cdots \times \mathbb{R}^{n_k}, \) we write
 \[
 sy = (s_1y_1, \ldots, s_ky_k),
 \]
 \[
 s^{-1}y = (s_1^{-1}y_1, \ldots, s_k^{-1}y_k),
 \]
 \[
 s^m = \prod_{j=1}^k s_j^{m_j}, \quad m = (m_1, \ldots, m_k) \in \mathbb{N}^k,
 \]
 \[
 \tilde{\Omega}_s(y) = \frac{\Omega(y)}{|y_1|^{n_1-1} \cdots |y_k|^{n_k-1}} \chi_{B_1(0, s_1) \times \cdots \times B_k(0, s_k)}(y).
 \]

3.2. A Reduction. We can write
\[
F_s f(x) = \tilde{\Omega}_s \ast f(x).
\]
From the homogeneity of \(\Omega, \) we see
\[
\tilde{\Omega}_s(y) = s^1 [s^n]^{-1} \tilde{\Omega}_1(s^{-1}y).
\]
Thus, we obtain the following formula for the Fourier multiplier of \(F_s: \)
\[
\tilde{\Omega}_s(\xi) = s^1 \tilde{\Omega}_1(s\xi).
\]
Plancherel’s theorem allows us to write
\[\|\tilde{\mu}_\Omega f\|_{L^2}^2 = \int_{\mathbb{R}^n} \int_{(\mathbb{R}^n)^k} |F_s f(x)|^2 \frac{ds}{(s^1)^3} \, dx \]
\[= \int_{(\mathbb{R}^n)^k} \|\tilde{\alpha}_s f\|_{L^2((s^1)^3)}^2 \, ds \]
\[= \int_{(\mathbb{R}^n)^k} \|\tilde{\alpha}_s f\|_{L^2((s^1)^3)}^2 \, ds \]
\[= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left| \tilde{\Omega}_1(s\xi) \right|^2 \frac{ds}{s^1} |f(\xi)|^2 \, d\xi \]
\[= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left| \tilde{\Omega}_1(s\xi) \right|^2 \frac{ds}{s^1} |f(\xi)|^2 \, d\xi \]
\[= \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \left| \tilde{\Omega}_1(s\xi) \right|^2 \frac{ds}{s^1} |f(\xi)|^2 \, d\xi. \]

Therefore, it suffices to verify the uniform boundedness of
\[I(\xi') \equiv \int_{(\mathbb{R}^n)^k} \left| \tilde{\Omega}_1(s\xi') \right|^2 \frac{ds}{s^1} = \int_{(\mathbb{R}^n)^k} \left| \tilde{\Omega}_1(s_1 \xi_1', \ldots, s_k \xi_k') \right|^2 \frac{ds_1 \cdots ds_k}{s_1 \cdots s_k} \]
in \(\xi' = (\xi_1', \ldots, \xi_k') \in S^{n-1} \times \cdots \times S^{n-1}. \)

3.3. Estimates on \(I(\xi'). \) We let
\[R_0 = (0, 1), \quad R_1 = (1, \infty), \]
and write
\[I(\xi') \equiv \sum_{\alpha_1, \ldots, \alpha_k = 0, 1} I_{\alpha_1, \ldots, \alpha_k}(\xi'), \]
with
\[I_{\alpha_1, \ldots, \alpha_k}(\xi') = \int_{R_{\alpha_1} \times \cdots \times R_{\alpha_k}} \left| \tilde{\Omega}_1(s\xi') \right|^2 \frac{ds}{s^1}. \]

It suffices to verify the uniform boundedness of \(I_{\alpha_1, \ldots, \alpha_k}(\xi') \) in \(\xi' \in S^{n-1} \times \cdots \times S^{n-1}, \) for each choice of \(\alpha_1, \ldots, \alpha_k = 0, 1. \) Write
\[J = \{1, \ldots, k\}, \]
and let
\[J_0 = \{j \in \{1, \ldots, k\} : \alpha_j = 0\} \]
\[J_1 = \{j \in \{1, \ldots, k\} : \alpha_j = 1\}. \]
By the cancellation property and homogeneity condition, one can see
\[
\left| \hat{\Omega}_l(s\xi') \right| = \left| \int_{\prod_{l \in J} B_{1}(0,1) \cap \left[\prod_{l \in J} e^{-2\pi i l \xi_l y_l - 1} \right] \right|
\prod_{l \in J} e^{-2\pi i l \xi_l y_l - 1} \Omega_l(y_1, \ldots, y_k) \prod_{l \in J} dy_l \right|
\leq \int_{\prod_{l \in J} B_{1}(0,1) \cap \left[\prod_{l \in J} e^{-2\pi i l \xi_l y_l - 1} \right] \right| \left| \Omega_l(y_1, \ldots, y_k) \prod_{l \in J} dy_l \right| \prod_{l \in J} dy_l.
\]

Switching to polar coordinates, we obtain
\[
\left| \hat{\Omega}_l(s\xi') \right| \leq \prod_{s \in J_0} s_r \int_{\prod_{l \in J_0} [s_{\xi_l} y_l, \xi_l]} \left| \sin \pi s_{\xi_l} y_l \cdot s_{\xi_l} \xi_l \right| \Omega_l(y_1, \ldots, y_k) \prod_{l \in J} d\sigma(y'_l).
\]
Observe that for each \(l \in J_1, \)
\[
\left| \sin \pi s_{\xi_l} y'_l \cdot s_{\xi_l} \xi'_l \right| \leq s_{\xi_l}^{-1} + \chi_{\mathcal{C}_\nu(\xi)}(y'_l)
\]
holds.

Therefore, it suffices to estimate integrals of the form
\[
\tilde{T}_{j_0, j_1^{(1)}, j_1^{(2)}}(s\xi') = \int_{\prod_{l \in J_0} R_{l_0}} \int_{\prod_{l \in J_1^{(1)}} R_l} \mathcal{F}(\tilde{\xi}) \left[\prod_{l \in J_1^{(2)}} \frac{d\tilde{s}_l}{\tilde{s}_l^2} \right] \prod_{l \in J_0} s_{\xi_l} d\sigma,
\]
with
\[
\mathcal{F}(\tilde{\xi}) = \int_{\prod_{l \in J_1^{(2)}} R_l} \left[\prod_{l \in J_1^{(2)}} \chi_{\mathcal{C}_\nu(\xi)}(y'_l) \right] \Omega_l(y'_1, \ldots, y'_k) \prod_{l \in J_1^{(2)}} \frac{d\tilde{s}_l}{\tilde{s}_l},
\]
where \(\{J_{0}, J_1^{(1)}, J_1^{(2)}\} \) is any partition of \(J \). An application of Minkowski’s inequality on integrals gives us
\[
\mathcal{F}(\tilde{\xi})^2 \leq \int_{\prod_{l \in J_1^{(2)}} R_l} \left[\prod_{l \in J_1^{(2)}} \left(\log \frac{1}{|y'_l|} \right) \right] \Omega_l(y'_1, \ldots, y'_k) \prod_{l \in J_1^{(2)}} d\sigma(y'_l).
\]
We have the following lemma:

Lemma 3.1. Let \(K \geq 1 \) be an integer, \(n_1, \ldots, n_k \geq 2 \) be integers, \(\xi_1 \in S^{n_1-1}, \ldots, \xi_K \in S^{n_K-1} \), and \(\Phi, \Psi : (0, \infty) \to (0, \infty) \) be a Young’s pair with
\[
\Phi(u) = u \left(\log^+ u \right)^{\frac{K}{2}}, \quad \text{for large } u > 0.
\]
Then
\[
\prod_{j=1}^{K} \left(\log \frac{1}{|y'_j \cdot \xi'_j|} \right)^{\frac{1}{2}} \in L^\Psi(S^{n-1} \times \cdots \times S^{n_k-1}),
\]
and moreover there exists a constant \(C(K)\) such that
\[
\left\| \prod_{j=1}^{K} \left(\log \frac{1}{|y'_j \cdot \xi'_j|} \right)^{\frac{1}{2}} \right\|_{L^\Psi(S^{n-1} \times \cdots \times S^{n_k-1})} \leq C
\]
holds uniformly in \(\xi'_1, \ldots, \xi'_K \in S^{n-1} \times \cdots \times S^{n_k-1}\).

Proof of Lemma 3.1. Observe that there exists a constant \(C\) such that for large \(u > 0\)
\[
\Psi(u) \lesssim \exp\left(Cu^{\frac{k}{2}} \right)
\]
holds. For \(\lambda \geq 1\), we have
\[
\Psi\left(\lambda^{-1} \left(\prod_{j=1}^{K} \log \frac{1}{|y'_j \cdot \xi'_j|} \right)^{\frac{1}{2}} \right)
\lesssim \exp\left[C \lambda^{-\frac{k}{2}} \left(\prod_{j=1}^{K} \log \frac{1}{|y'_j \cdot \xi'_j|} \right)^{\frac{1}{2}} \right] \lesssim \exp\left[CK^{-1} \lambda^{-\frac{k}{2}} \sum_{j=1}^{K} \log \frac{1}{|y'_j \cdot \xi'_j|} \right]
\lesssim \prod_{j=1}^{K} \exp\left[CK^{-1} \lambda^{-\frac{k}{2}} \log \frac{1}{|y'_j \cdot \xi'_j|} \right] = \prod_{j=1}^{K} |y'_j \cdot \xi'_j|^{-CK^{-1} \lambda^{-\frac{k}{2}}}
\]
from the geometric-arithmetic mean inequality and (3.1).

Uniform integrability of \(\Psi(\lambda^{-1} \prod_{j=1}^{K} \log(1/|y'_j \cdot \xi'_j|))\) on \(S^{n-1} \times \cdots \times S^{n_k-1}\) is clear and the lemma is proved.

Applying Hölder’s inequality (Lemma 2.3) followed by Lemma 3.1, we obtain a uniform estimate on \(\mathcal{F}(\hat{s})\).

Therefore, we obtain the uniform boundedness of \(I(\xi')\) and the proof of the theorem is now complete.

Remark 3.2. In view of the sharpness of Walsh’s result, one can see that the size condition on \(\Omega|S^{n-1} \times \cdots \times S^{n_k-1}\) is sharp.
REFERENCES