Marcinkiewicz Integrals with Rough Homogeneous Kernels of Degree Zero in Product Domains ${ }^{1}$

Youngwoo Choi
Department of Mathematics, Ajou University, Suwon 442-749, Korea
E-mail: youngwoo@madang.ajou.ac.kr

Submitted by B. S. Thomson
Received July 17, 2000

The L^{2}-boundedness of the Marcinkiewicz integrals in product domains with component-wise homogeneous kernels which belong to a certain Orlicz space and satisfy the cancellation property is studied. © 2001 Academic Press

Key Words: Marcinkiewicz integral; Orlicz space; product domain.

1. INTRODUCTION

Stein [15] defined a higher dimensional analogue of the Marcinkiewicz integral by

$$
\begin{equation*}
\mu_{\Omega} f(x)=\left(\int_{0}^{\infty}\left|F_{s} f(x)\right|^{2} \frac{d s}{s^{3}}\right)^{\frac{1}{2}}, \tag{1.1}
\end{equation*}
$$

where

$$
F_{s} f(x)=\int_{|x-y|<s} \frac{\Omega(x-y)}{|x-y|^{n-1}} f(y) d y
$$

and Ω is a homogeneous function of degree zero whose restriction to S^{n-1} belongs to $L^{1}\left(S^{n-1}\right)$ and satisfies the cancellation property,

$$
\int_{S^{n-1}} \Omega\left(x^{\prime}\right) d \sigma\left(x^{\prime}\right)=0
$$

[^0]Here, S^{n-1} denotes the unit sphere in \mathbb{R}^{n}. The continuity of Marcinkiewicz integrals is very useful in harmonic analysis [4-6, 16, 17, 22]. Stein [15] proved that if $\left.\Omega\right|_{S^{n-1}}$ belongs to the Lipschitz space $\Lambda^{\alpha}\left(S^{n-1}\right)$ of order $\alpha(0<$ $\alpha \leq 1$), then

$$
\begin{equation*}
\left|\left\{x \in \mathbb{R}^{n}: \mu_{\Omega} f(x)>\lambda\right\}\right| \leq \frac{C}{\lambda}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mu_{\Omega} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C_{p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{1.3}
\end{equation*}
$$

where $1<p \leq 2$, and if Ω is an integrable odd function, then

$$
\begin{equation*}
\left\|\mu_{\Omega} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C_{p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{1.4}
\end{equation*}
$$

for $2<p<\infty$.
This result was further improved by Walsh [19]. Among other things, he proved:

Theorem 1.1 (Walsh). Let $n \geq 2$ and let $\Omega: \mathbb{R}^{n} \rightarrow \mathbb{C}$ be a homogeneous function of degree zero such that

$$
\int_{S^{n-1}} \Omega\left(y^{\prime}\right) d \sigma\left(y^{\prime}\right)=0
$$

(1) If $\left.\Omega\right|_{S^{n-1}} \in L\left(\log ^{+} L\right)^{1 / 2}\left(S^{n-1}\right)$, then μ_{Ω} is bounded in $L^{2}\left(\mathbb{R}^{n}\right)$.
(2) Let $1<p<\infty$ and let p^{\prime} be the conjugate of p. If $\left.\Omega\right|_{S^{n-1}} \in$ $L\left(\log ^{+} L\right)^{1 / r}\left(\log ^{+} \log ^{+} L\right)^{2-4 / r^{\prime}}\left(S^{n-1}\right)$, with $r=\min \left\{p, p^{\prime}\right\}$, then μ_{Ω} is bounded in $L^{p}\left(\mathbb{R}^{n}\right)$.

Mapping properties of μ_{Ω} on other function spaces were also studied. Torchinsky and Wang [18] considered the weighted L^{p}-boundedness of μ_{Ω} and showed that if $\left.\Omega\right|_{S^{n-1}} \in \Lambda^{\alpha}\left(S^{n-1}\right)$, then for ω satisfying an A_{p} condition, μ_{Ω} is bounded on $L^{p}(\omega)$. Recently, this was extended to rougher kernels by Ding et al. [9]. Mapping properties of μ_{Ω} on $B M O$ or Campanato spaces have been studied in [3, 7, 10, 14, 20].

On the other hand, the Marcinkiewicz integral defined on product domains has also been studied.

To be more specific, let $k \geq 1$ be an integer, $n_{1}, \ldots, n_{k} \geq 2$ be integers, and $\Omega: \mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}} \rightarrow \mathbb{C}$ be a component-wise homogeneous function of degree zero with the cancellation property:

$$
\begin{equation*}
\int_{S^{n_{j}-1}} \Omega\left(y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right) d \sigma\left(y_{j}^{\prime}\right)=0 \quad \text { for } j=1, \ldots, k \tag{1.5}
\end{equation*}
$$

The Marcinkiewicz integral $\tilde{\mu}_{\Omega}$ is defined by

$$
\begin{equation*}
\tilde{\mu}_{\Omega} f\left(x_{1}, \ldots, x_{k}\right)=\left(\int_{0}^{\infty} \cdots \int_{0}^{\infty}\left|F_{s_{1}, \ldots, s_{k}} f\left(x_{1}, \ldots, x_{k}\right)\right|^{2} \frac{d s_{1} \cdots d s_{k}}{s_{1}^{3} \cdots s_{k}^{3}}\right)^{\frac{1}{2}} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{aligned}
& F_{s_{1}, \ldots, s_{k}} f\left(x_{1}, \ldots, x_{k}\right)=\int_{\left|x_{1}-y_{1}\right| \leq s_{1}} \cdots \int_{\left|x_{k}-y_{k}\right| \leq s_{k}} \frac{\Omega\left(x_{1}-y_{1}, \ldots, x_{k}-y_{k}\right)}{\left|x_{1}-y_{1}\right|^{n_{1}-1} \cdots\left|x_{k}-y_{k}\right|^{n_{k}-1}} \\
& \times f\left(y_{1}, \ldots, y_{k}\right) d y_{1} \cdots d y_{k} .
\end{aligned}
$$

Ding [8] showed the L^{2}-boundedness of $\tilde{\mu}_{\Omega}$ in case $k=2$ under the hypothesis of

$$
\left.\Omega\right|_{S^{n_{1}-1} \times S^{n_{2}-1}} \in L\left(\log ^{+} L\right)^{2}\left(S^{n_{1}-1} \times S^{n_{2}-1}\right)
$$

In this paper, we improve the above result. Namely, we will prove:
THEOREM 1.2. Let $k \geq 1$ be an integer, $n_{1}, \ldots, n_{k} \geq 2$ be integers, and Ω : $\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}} \rightarrow \mathbb{C}$ be a component-wise homogeneous function of degree zero with the cancellation property (1.5). If $\left.\Omega\right|_{S^{n_{1}-1} \times \cdots \times S^{n_{k}-1}} \in L\left(\log ^{+} L\right)^{k / 2}\left(S^{n_{1}-1} \times\right.$ $\cdots \times S^{n_{k}-1}$), then the Marcinkiewicz integral operator $\tilde{\mu}_{\Omega}$ defined by (1.6) is bounded in $L^{2}\left(\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}}\right)$.

This paper is organized as follows: in Section 2, elementary properties on Orlicz spaces are discussed and the proof of the main theorem appears in Section 3.

2. PRELIMINARIES ON ORLICZ SPACES

Let $\Phi:[0, \infty) \rightarrow[0, \infty)$ be a function with the following properties:
(1) Φ is convex;
(2) $\Phi(0)=0$; and that
(3) $\lim _{t \rightarrow \infty} \Phi(t) / t=\infty$.

Definition 2.1. (1) For a measurable function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$, we define $\|f\|_{L^{\Phi}\left(\mathbb{R}^{n}\right)}$ (the Luxemberg norm) by

$$
\|f\|_{L^{\Phi}\left(\mathbb{R}^{n}\right)}=\inf \left\{\lambda \in(0, \infty): \int_{\mathbb{R}^{n}} \Phi\left(\lambda^{-1}|f(x)|\right) d x \leq 1\right\}
$$

(2) The Orlicz sapce $L^{\Phi}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{C}: f \text { is measurable and }\|f\|_{L^{\Phi}\left(\mathbb{R}^{n}\right)}<\infty\right\}
$$

Remark 2.2. (1) $L^{\Phi}\left(\mathbb{R}^{n}\right)$ is a Banach space.
(2) The following analogue of Hölder's inequality is available; see, for instance, [22].

Lemma 2.3. Let $\Phi:[0, \infty) \rightarrow[0, \infty)$ and $\Psi:[0, \infty) \rightarrow[0, \infty)$ be Young's pair in the sense that
(1) Φ and Ψ are convex;
(2) $\Phi^{\prime}:[0, \infty) \rightarrow[0, \infty)$ and $\Psi^{\prime}:[0, \infty) \rightarrow[0, \infty)$ are inverse to each other;
(3) $\Phi(0)=\Psi(0)=0$; and that
(4) $\lim _{t \rightarrow \infty} \Phi(t) / t=\lim _{t \rightarrow \infty} \Psi(t) / t=\infty$.

If $f \in L^{\Phi}\left(\mathbb{R}^{n}\right)$ and $g \in L^{\Psi}\left(\mathbb{R}^{n}\right)$, then $f g \in L^{1}\left(\mathbb{R}^{n}\right)$ and we have

$$
\|f g\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{L^{\Phi}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{y}\left(\mathbb{R}^{n}\right)} .
$$

3. PROOF OF THE MAIN THEOREM

3.1. Simplifying Notations. For simplicity, we will use the following notations:
(1) $\mathbf{1}=(1, \ldots, 1), \mathbf{n}=\left(n_{1}, \ldots, n_{k}\right) \in \mathbb{N}^{k}$;
(2) For $j \in\{1, \ldots, k\}, x \in \mathbb{R}^{n_{j}}$, and $s>0$, we write

$$
B_{j}(x, s)=\left\{y \in \mathbb{R}^{n_{j}}:|y-x|<s\right\} ;
$$

(3) For $j \in\{1, \ldots, k\}, \xi^{\prime} \in S^{n_{j}-1}$, and $s>0$, we write

$$
C_{s}^{(j)}\left(\xi^{\prime}\right)=\left\{y^{\prime} \in S^{n_{j}-1}:\left|y^{\prime} \cdot \xi^{\prime}\right| \leq s^{-\frac{1}{2}}\right\}
$$

(4) For $\mathbf{s}=\left(s_{1}, \ldots, s_{k}\right) \in\left(\mathbb{R}_{+}\right)^{k}$ and $\mathbf{y}=\left(y_{1}, \ldots, y_{k}\right) \in \mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}}$, we write

$$
\begin{aligned}
\mathbf{s y} & =\left(s_{1} y_{1}, \ldots, s_{k} y_{k}\right), \\
\mathbf{s}^{-1} \mathbf{y} & =\left(s_{1}^{-1} y_{1}, \ldots, s_{k}^{-1} y_{k}\right), \\
\mathbf{s}^{\mathbf{m}} & =\prod_{j=1}^{k} s_{j}^{m_{j}}, \quad \mathbf{m}=\left(m_{1}, \ldots, m_{k}\right) \in \mathbb{N}^{k}, \\
\widetilde{\Omega}_{\mathbf{s}}(\mathbf{y}) & =\frac{\Omega(\mathbf{y})}{\left|y_{1}\right|^{n_{1}-1} \cdots\left|y_{k}\right|^{n_{k}-1}} \cdot \chi_{B_{1}\left(0, s_{1}\right) \times \cdots \times B_{k}\left(0, s_{k}\right)}(\mathbf{y}) .
\end{aligned}
$$

3.2. A Reduction. We can write

$$
F_{\mathrm{s}} f(\mathbf{x})=\widetilde{\Omega}_{\mathbf{s}} * f(\mathbf{x})
$$

From the homogeneity of Ω, we see

$$
\widetilde{\Omega}_{s}(\mathbf{y})=\mathbf{s}^{1}\left[\mathbf{s}^{\mathbf{n}}\right]^{-1} \widetilde{\Omega}_{\mathbf{1}}\left(\mathrm{s}^{-1} \mathbf{y}\right)
$$

Thus, we obtain the following formula for the Fourier multiplier of F_{s} :

$$
\widehat{\widetilde{\Omega}}_{\mathbf{s}}(\xi)=\mathbf{s}^{1} \widehat{\widetilde{\Omega}}_{\mathbf{1}}(\mathbf{s} \xi)
$$

Plancherel's theorem allows us to write

$$
\begin{aligned}
\left\|\tilde{\mu}_{\Omega} f\right\|_{L^{2}}^{2} & =\int_{\mathbb{R}^{n_{1} \times \cdots \times \mathbb{R}^{n_{k}}}}\left(\int_{\left(\mathbb{R}_{+}\right)^{k}}\left|F_{s} f(\mathbf{x})\right|^{2} \frac{d \mathbf{s}}{\left(\mathbf{s}^{1}\right)^{3}}\right) d \mathbf{x} \\
& =\int_{\left(\mathbb{R}_{+}\right)^{k}}\left\|\widehat{F_{s} f}\right\|_{L^{2}}^{2} \frac{d \mathbf{s}}{\left(\mathbf{s}^{1}\right)^{3}} \\
& =\int_{\left(\mathbb{R}_{+}\right)^{k}}\left\|\widehat{\widetilde{\Omega}_{s}} \hat{f}\right\|_{L^{2}}^{2} \frac{d \mathbf{s}}{\left(\mathbf{s}^{1}\right)^{3}} \\
& =\int_{\mathbb{R}^{n_{1} \times \cdots \times \mathbb{R}^{n_{k}}}}\left(\int_{\left(\mathbb{R}_{+}\right)^{k}}\left|\widehat{\widetilde{\Omega}_{\mathbf{s}}}(\xi)\right|^{2} \frac{d \mathbf{s}}{\left(\mathbf{s}^{\mathbf{1}}\right)^{3}}\right)|\hat{f}(\xi)|^{2} d \xi \\
& =\int_{\mathbb{R}^{n_{1} \times \cdots \times \mathbb{R}^{n_{k}}}}\left(\int_{\left(\mathbb{R}_{+}\right)^{k}}\left|\widehat{\widetilde{\Omega}}_{\mathbf{1}}(\mathbf{s} \xi)\right|^{2} \frac{d \mathbf{s}}{\mathbf{s}^{\mathbf{1}}}\right)|\hat{f}(\xi)|^{2} d \xi \\
& =\int_{\mathbb{R}^{n_{1}} \times \cdots \times \mathbb{R}^{n_{k}}}\left(\int_{\left(\mathbb{R}_{+}\right)^{k}}\left|\widehat{\widetilde{\Omega}}_{\mathbf{1}}\left(\mathbf{s} \xi^{\prime}\right)\right|^{2} \frac{d \mathbf{s}}{\mathbf{s}^{\mathbf{1}}}\right)|\hat{f}(\xi)|^{2} d \xi .
\end{aligned}
$$

Therefore, it suffices to verify the uniform boundedness of

$$
I\left(\xi^{\prime}\right) \equiv \int_{\left(\mathbb{R}_{+}\right)^{k}}\left|\widehat{\widetilde{\Omega}_{\mathbf{1}}}\left(\mathbf{s} \xi^{\prime}\right)\right|^{2} \frac{d \mathbf{s}}{\mathbf{s}^{\mathbf{1}}}=\int_{\left(\mathbb{R}_{+}\right)^{k}}\left|\widehat{\widetilde{\Omega}}_{\mathbf{1}}\left(s_{1} \xi_{1}^{\prime}, \ldots, s_{k} \xi_{k}^{\prime}\right)\right|^{2} \frac{d s_{1} \cdots d s_{k}}{s_{1} \cdots s_{k}}
$$

in $\xi^{\prime}=\left(\xi_{1}^{\prime}, \ldots, \xi_{k}^{\prime}\right) \in S^{n_{1}-1} \times \cdots \times S^{n_{k}-1}$.
3.3. Estimates on $I\left(\xi^{\prime}\right)$. We let

$$
R_{0}=(0,1), \quad R_{1}=(1, \infty)
$$

and write

$$
I\left(\xi^{\prime}\right) \equiv \sum_{\alpha_{1}, \ldots, \alpha_{k}=0,1} I_{\alpha_{1}, \ldots, \alpha_{k}}\left(\xi^{\prime}\right)
$$

with

$$
I_{\alpha_{1}, \ldots, \alpha_{k}}\left(\xi^{\prime}\right)=\int_{R \alpha_{1} \times \cdots \times R \alpha_{k}}\left|\widehat{\widetilde{\Omega}}_{\mathbf{1}}\left(\mathbf{s} \xi^{\prime}\right)\right|^{2} \frac{d \mathbf{s}}{\mathbf{s}^{\mathbf{1}}}
$$

It suffices to verify the uniform boundedness of $I_{\alpha_{1}, \ldots, \alpha_{k}}\left(\xi^{\prime}\right)$ in $\xi^{\prime} \in S^{n_{1}-1} \times$ $\cdots \times S^{n_{k}-1}$, for each choice of $\alpha_{1}, \ldots, \alpha_{k}=0,1$. Write

$$
J=\{1, \ldots, k\}
$$

and let

$$
\begin{aligned}
J_{0} & =\left\{j \in\{1, \ldots, k\}: \alpha_{j}=0\right\} \\
J_{1} & =\left\{j \in\{1, \ldots, k\}: \alpha_{j}=1\right\}
\end{aligned}
$$

By the cancellation property and homogeneity condition, one can see

$$
\begin{aligned}
\left|\widehat{\widetilde{\Omega}}_{\mathbf{1}}\left(\mathbf{s} \xi^{\prime}\right)\right|= & \mid \int_{\prod_{j \in J} B_{j}(0,1)}\left[\prod_{\nu \in J_{0}}\left(e^{-2 \pi i s_{\nu} \xi_{\nu}^{\prime} \cdot y_{\nu}}-1\right)\right] \\
& \times\left[\prod_{l \in J_{1}} e^{-2 \pi i s_{l} \xi_{l}^{\prime}, y_{l}}\right] \widetilde{\Omega}_{\mathbf{1}}\left(y_{1}, \ldots, y_{k}\right) \prod_{j \in J} d y_{j} \mid \\
\leq & \int_{\prod_{\nu \epsilon_{0}} B_{\nu}(0,1)}\left[\prod_{\nu \in J_{0}}\left|e^{-2 \pi i s_{\nu}, \xi_{\nu}^{\prime} \cdot y_{\nu}}-1\right|\right] \\
& \times\left|\int_{\prod_{l \in J_{1}} B_{l}(0,1)}\left[\prod_{l \in J_{1}} e^{-2 \pi i s_{l} \xi_{l}^{\prime} y_{l}}\right] \widetilde{\Omega}_{1}\left(y_{1}, \ldots, y_{k}\right) \prod_{l \in J_{1}} d y_{l}\right| \prod_{\nu \in J_{0}} d y_{\nu} .
\end{aligned}
$$

Switching to polar coordinates, we obtain

$$
\left|\widehat{\widetilde{\Omega}}_{\mathbf{1}}\left(\mathbf{s} \xi^{\prime}\right)\right| \lesssim\left[\prod_{\nu \in J_{0}} s_{\nu}\right] \int_{\prod_{j \in I} S^{n} j^{-1}}\left[\prod_{l \in J_{1}}\left|\frac{\sin \pi s_{l} y_{y}^{\prime} \cdot \xi_{l}^{\prime}}{s_{l} y_{l}^{\prime} \cdot \xi_{l}^{\prime}}\right|\right]\left|\Omega\left(y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right)\right| \prod_{j \in J} d \sigma\left(y_{j}^{\prime}\right)
$$

Observe that for each $l \in J_{1}$,

$$
\left|\frac{\sin \pi s_{l} y_{l}^{\prime} \cdot \xi_{l}^{\prime}}{s_{l} y_{l}^{\prime} \cdot \xi_{l}^{\prime}}\right| \lesssim s_{l}^{-\frac{1}{2}}+\chi_{C_{s_{l}}^{(l)}\left(\xi_{l}^{\prime}\right)}\left(y_{l}^{\prime}\right)
$$

holds.
Therefore, it suffices to estimate integrals of the form

$$
\widetilde{I}_{J_{0}, J_{1}^{(1)}, J_{1}^{(2)}}\left(\xi^{\prime}\right)=\int_{\prod_{\nu \in \epsilon_{0}} R_{0}} \int_{\Pi_{l \in \epsilon_{1}^{(1)} R} R_{1}} \mathscr{F}(\check{s})\left[\prod_{l \in J_{1}^{(1)}} \frac{d s_{l}}{s_{l}^{2}}\right] \prod_{\nu \in J_{0}} s_{\nu} d s_{\nu}
$$

with

$$
\mathscr{F}(\breve{s})=\int_{\prod_{l \epsilon_{1}^{(2)}} R_{1}}\left\|\left[\prod_{l \in J_{1}^{(2)}} \chi_{C_{l}^{(l)}\left(\xi_{l}^{\prime}\right)}\left(y_{l}^{\prime}\right)\right] \Omega\left(y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right)\right\|_{L^{1}\left(\prod_{j \in l} s^{n_{j}-1}\right)}^{2} \prod_{l \in J_{1}^{(2)}} \frac{d s_{l}}{s_{l}},
$$

where $\left\{J_{0}, J_{1}^{(1)}, J_{1}^{(2)}\right\}$ is any partition of J. An application of Minkowski's inequality on integrals gives us

$$
\mathscr{F}(\check{s})^{\frac{1}{2}} \lesssim \int_{\prod_{j \in J} S^{n_{j}-1}}\left[\prod_{l \in J_{1}^{(2)}}\left(\log \frac{1}{\left|y_{l}^{\prime} \cdot \xi_{l}^{\prime}\right|}\right)^{\frac{1}{2}}\right]\left|\Omega\left(y_{1}^{\prime}, \ldots, y_{k}^{\prime}\right)\right| \prod_{j \in J} d \sigma\left(y_{j}^{\prime}\right) .
$$

We have the following lemma:
Lemma 3.1. Let $K \geq 1$ be an integer, $n_{1}, \ldots, n_{k} \geq 2$ be integers, $\xi_{1}^{\prime} \in$ $S^{n_{1}-1}, \ldots, \xi_{K}^{\prime} \in S^{n_{K}-1}$, and $\Phi, \Psi:(0, \infty) \rightarrow(0, \infty)$ be a Young's pair with

$$
\Phi(u)=u\left(\log ^{+} u\right)^{\frac{K}{2}}, \quad \text { for large } u>0 .
$$

Then

$$
\prod_{j=1}^{K}\left(\log \frac{1}{\left|y_{j}^{\prime} \cdot \xi_{j}^{\prime}\right|}\right)^{\frac{1}{2}} \in L^{\Psi}\left(S^{n_{1}-1} \times \cdots \times S^{n_{K}-1}\right)
$$

and moreover there exists a constant $C(K)$ such that

$$
\left\|\prod_{j=1}^{K}\left(\log \frac{1}{\left|y_{j}^{\prime} \cdot \xi_{j}^{\prime}\right|}\right)^{\frac{1}{2}}\right\|_{L^{\Psi}\left(S^{n_{1}-1} \times \cdots \times S^{n_{K}-1}\right)} \leq C
$$

holds uniformly in $\xi_{1}^{\prime}, \ldots, \xi_{K}^{\prime} \in S^{n_{1}-1} \times \cdots \times S^{n_{K}-1}$.

Proof of Lemma 3.1. Observe that there exists a constant C such that for large $u>0$

$$
\begin{equation*}
\Psi(u) \lesssim \exp \left(C u^{\frac{2}{K}}\right) \tag{3.1}
\end{equation*}
$$

holds. For $\lambda \gtrsim 1$, we have

$$
\begin{aligned}
& \Psi\left(\lambda^{-1}\left(\prod_{j=1}^{K} \log \frac{1}{\left|y_{j}^{\prime} \cdot \xi_{j}^{\prime}\right|}\right)^{\frac{1}{2}}\right) \\
& \quad \lesssim \exp \left[C\left[\lambda^{-1}\left(\prod_{j=1}^{K} \log \frac{1}{\left|y_{j}^{\prime} \cdot \xi_{j}^{\prime}\right|}\right)^{\frac{1}{2}}\right]^{\frac{2}{K}}\right] \leq \exp \left[C K^{-1} \lambda^{-\frac{2}{K}} \sum_{j=1}^{K} \log \frac{1}{\left|y_{j}^{\prime} \cdot \xi_{j}^{\prime}\right|}\right] \\
& \quad \leq \prod_{j=1}^{K} \exp \left[C K^{-1} \lambda^{-\frac{2}{K}} \log \frac{1}{\left|y_{j}^{\prime} \cdot \xi_{j}^{\prime}\right|}\right]=\prod_{j=1}^{K}\left|y_{j}^{\prime} \cdot \xi_{j}^{\prime}\right|^{-C K^{-1} \lambda^{-\frac{2}{K}}}
\end{aligned}
$$

from the geometric-arithmetic mean inequality and (3.1).
Uniform integrability of $\Psi\left(\lambda^{-1} \prod_{j=1}^{K} \log \left(1 /\left|y_{j}^{\prime} \cdot \xi_{j}^{\prime}\right|\right)\right)$ on $S^{n_{1}-1} \times \cdots \times S^{n_{K}-1}$ is clear and the lemma is proved.

Applying Hölder's inequality (Lemma 2.3) followed by Lemma 3.1, we obtain a uniform estimate on $\mathscr{F}(\check{s})$.

Therefore, we obtain the uniform boundedness of $I\left(\xi^{\prime}\right)$ and the proof of the theorem is now complete.

Remark 3.2. In view of the sharpness of Walsh's result, one can see that the size condition on $\left.\Omega\right|_{S^{n_{1}-1} \times \cdots \times S^{n_{k}-1}}$ is sharp.

REFERENCES

1. A. Benedek, A. Calderón, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. U.S.A. 48 (1962), 356-365.
2. A. P. Calderón, On the theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc. 68 (1950), 55-61.
3. T. Changmei, Littlewood-Paley operators and Marcinkiewicz integral on generalized Campanato spaces, Approx. Theory Appl. (N.S.) 11 (1995), 35-44.
4. S. Chanillo and R. L. Wheeden, Distribution function estimates for Marcinkiewicz integrals and differentiability, Duke Math. J. 49 (1982), 517-619.
5. S. Chanillo and R. L. Wheeden, Inequalities for Peano maximal functions and Marcinkiewicz integrals, Duke Math. J. 50 (1983), 573-603.
6. S. Chanillo and R. L. Wheeden, Relations between Peano derivatives and Marcinkiewicz integrals, in "Conference on Harmonic Analysis in Honor of Antoni Zygmund," Vols. I, II, pp. 508-525, Wadsworth Math. Ser., Wadsworth, Belmont, CA 1983.
7. L. Chevalier, Fonction maximale forte et integrale de Marcinkiewicz, J. Anal. Math. 65 (1995), 161-178.
8. Y. Ding, L^{2}-boundedness of Marcinkiewicz integral with rough kernel, Hokkaido Math. J. 27 (1998), 105-115.
9. Y. Ding, D. Fan, and Y. Pan, Weighted boundedness for a class of rough Marcinkiewicz integrals, Indiana Univ. Math. J. 48 (1999), 1037-1055.
10. Y. Ding, S. Lu, and Q. Xue, On Marcinkiewicz integral with homogeneous kernels, J. Math. Anal. Appl. 245 (2000), 471-488, doi:10.1006/jmaa.2000.6765.
11. J. Duoandikoetxea, Multiple singular integrals and maximal functions along hypersurfaces, Ann. Inst. Fourier (Grenoble) 36 (1986), 185-206.
12. R. Fefferman, Singular integral on product domains, Bull. Amer. Math. Soc. (N. S.) 4 (1981), 195-201.
13. J. Marcinkiewicz, Sur quelques integrales de type de Dini, Ann. Soc. Polon. 17 (1938), 42-50.
14. M. Sakamoto and K. Yabuta, Boundedness of Marcinkiewicz functions, Studia Math. 135 (1999), 103-142.
15. E. M. Stein, On the function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466.
16. E. M. Stein, "Singular Integrals and Differentiability Properties of Functions," Princeton Univ. Press, Princeton, NJ, 1970.
17. E. M. Stein, "Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals," Princeton Univ. Press, Princeton, NJ, 1993.
18. A. Torchinsky and S. Wang, A note on the Marcinkiewicz integral, Colloq. Math. 61-62 (1990), 235-243.
19. T. Walsh, On the function of Marcinkiewicz, Studia Math. 44 (1972), 203-217.
20. K. Yabuta, Boundedness of Littlewood-Paley operators, Math. Japon. 43 (1996), 143-150.
21. A. Zygmund, On certain integrals, Trans. Amer. Math. Soc. 55 (1944), 170-204.
22. A. Zygmund, "Trigonometric Series," Vol. 2, 2nd ed., Cambridge Univ. Press, Cambridge, UK, 1968.

[^0]: ${ }^{1}$ This work was supported by Grant 1999-2-112-004-3 from the Interdisciplinary Research program of the KOSEF.

