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1. INTRODUCTION

Stein [15] defined a higher dimensional analogue of the Marcinkiewicz
integral by

µ�f �x� =
( ∫ ∞

0
�Fsf �x��2

ds

s3

) 1
2

	(1.1)

where

Fsf �x� =
∫
�x−y�<s

��x − y�
�x − y�n−1 f �y�dy	

and � is a homogeneous function of degree zero whose restriction to Sn−1

belongs to L1�Sn−1� and satisfies the cancellation property,∫
Sn−1

��x′�dσ �x′� = 0�

1 This work was supported by Grant 1999-2-112-004-3 from the Interdisciplinary Research
program of the KOSEF.
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Here, Sn−1 denotes the unit sphere in �n. The continuity of Marcinkiewicz
integrals is very useful in harmonic analysis [4–6, 16, 17, 22]. Stein [15]
proved that if ��Sn−1 belongs to the Lipschitz space �α�Sn−1� of order α �0 <
α ≤ 1�, then ∣∣	x ∈ �n � µ�f �x� > λ�∣∣ ≤ C

λ
fL1��n�	(1.2)

and

µ�fLp��n� ≤ CpfLp��n�	(1.3)

where 1 < p ≤ 2, and if � is an integrable odd function, then

µ�fLp��n� ≤ CpfLp��n�	(1.4)

for 2 < p < ∞.
This result was further improved by Walsh [19]. Among other things, he

proved:

Theorem 1.1 (Walsh). Let n ≥ 2 and let � � �n → � be a homogeneous
function of degree zero such that∫

Sn−1
��y ′�dσ�y ′� = 0�

(1) If ��Sn−1 ∈ L�log+ L�1/2�Sn−1�, then µ� is bounded in L2��n�.
(2) Let 1 < p < ∞ and let p′ be the conjugate of p. If ��Sn−1 ∈

L�log+ L�1/r�log+ log+ L�2−4/r ′ �Sn−1�, with r = min	p	 p′�, then µ� is
bounded in Lp��n�.

Mapping properties of µ� on other function spaces were also studied.
Torchinsky and Wang [18] considered the weighted Lp-boundedness of µ�

and showed that if ��Sn−1 ∈ �α�Sn−1�, then for ω satisfying an Ap condition,
µ� is bounded on Lp�ω�. Recently, this was extended to rougher kernels
by Ding et al. [9]. Mapping properties of µ� on BMO or Campanato spaces
have been studied in [3, 7, 10, 14, 20].

On the other hand, the Marcinkiewicz integral defined on product
domains has also been studied.

To be more specific, let k ≥ 1 be an integer, n1	 � � � 	 nk ≥ 2 be integers,
and � � �n1 × · · · × �nk → � be a component-wise homogeneous function
of degree zero with the cancellation property:∫

Snj−1
��y ′

1	 � � � 	 y ′
k�dσ�y ′

j� = 0 for j = 1	 � � � 	 k�(1.5)

The Marcinkiewicz integral µ̃� is defined by

µ̃�f �x1	���	xk�=
(∫ ∞

0
···
∫ ∞

0
�Fs1	���	sk

f �x1	���	xk��2
ds1 ···dsk

s3
1 ···s3

k

) 1
2

	(1.6)
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where

Fs1	���	sk
f �x1	���	xk�=

∫
�x1−y1�≤s1

···
∫
�xk−yk�≤sk

��x1−y1	���	xk−yk�
�x1−y1�n1−1 ···�xk−yk�nk−1

×f �y1	���	yk�dy1 ···dyk�

Ding [8] showed the L2-boundedness of µ̃� in case k=2 under the hypoth-
esis of

��Sn1−1×Sn2−1 ∈L�log+L�2�Sn1−1×Sn2−1��
In this paper, we improve the above result. Namely, we will prove:

Theorem 1.2. Let k≥1 be an integer, n1	���	nk≥2 be integers, and � �
�n1 ×···×�nk →� be a component-wise homogeneous function of degree zero
with the cancellation property (1.5). If ��Sn1−1×···×Snk−1 ∈L�log+L�k/2�Sn1−1×
···×Snk−1�, then the Marcinkiewicz integral operator µ̃� defined by (1.6) is
bounded in L2��n1 ×···×�nk�.

This paper is organized as follows: in Section 2, elementary properties
on Orlicz spaces are discussed and the proof of the main theorem appears
in Section 3.

2. PRELIMINARIES ON ORLICZ SPACES

Let � � �0	∞�→�0	∞� be a function with the following properties:

(1) � is convex;
(2) ��0�=0; and that
(3) limt→∞��t�/t=∞.

Definition 2.1. (1) For a measurable function f � �n→�, we define
fL���n� (the Luxemberg norm) by

fL���n� = inf
{
λ∈�0	∞��

∫
�n

��λ−1�f �x���dx≤1
}
�

(2) The Orlicz sapce L���n� is defined by{
f ��n→� �f is measurable and fL���n�<∞}

�

Remark 2.2. (1) L���n� is a Banach space.
(2) The following analogue of Hölder’s inequality is available; see,

for instance, [22].

Lemma 2.3. Let � � �0	∞�→�0	∞� and ! � �0	∞�→�0	∞� be Young’s
pair in the sense that

(1) � and ! are convex;
(2) �′ � �0	∞�→�0	∞� and !′ � �0	∞�→�0	∞� are inverse to each

other;
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(3) ��0�=!�0�=0; and that

(4) limt→∞��t�/t= limt→∞!�t�/t=∞.

If f ∈L���n� and g∈L!��n�, then fg∈L1��n� and we have

fgL1��n� ≤fL���n�gL!��n��

3. PROOF OF THE MAIN THEOREM

3.1. Simplifying Notations. For simplicity, we will use the following
notations:

(1) 1=�1	���	1�	 n=�n1	���	nk�∈�k;

(2) For j∈	1	���	k�	 x∈�nj , and s>0, we write

Bj�x	s�=	y∈�nj � �y−x�<s��

(3) For j∈	1	���	k�	 ξ′ ∈Snj−1, and s>0, we write

C
�j�
s �ξ′�={y ′ ∈Snj−1 � �y ′ ·ξ′�≤s−

1
2
}�

(4) For s=�s1	���	sk�∈��+�k and y=�y1	���	yk�∈�n1 ×···×�nk , we
write

sy=�s1y1	���	skyk�	
s−1y=�s−1

1 y1	���	s
−1
k yk�	

sm=
k∏

j=1

s
mj

j 	 m=�m1	���	mk�∈�k	

�̃s�y�=
��y�

�y1�n1−1 ···�yk�nk−1 ·χB1�0	s1�×···×Bk�0	sk��y��

3.2. A Reduction. We can write

Fsf �x�=�̃s ∗ f �x��
From the homogeneity of �, we see

�̃s�y�=s1�sn�−1�̃1�s−1y��
Thus, we obtain the following formula for the Fourier multiplier of Fs:̂̃

�s�ξ�=s1
̂̃
�1�sξ��
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Plancherel’s theorem allows us to write

µ̃�f2
L2 =

∫
�n1×···×�nk

(∫
��+�k

�Fsf �x��2
ds

�s1�3

)
dx

=
∫
��+�k

∥∥∥F̂sf
∥∥∥2

L2

ds
�s1�3

=
∫
��+�k

∥∥∥̂̃�sf̂
∥∥∥2

L2

ds
�s1�3

=
∫
�n1×···×�nk

(∫
��+�k

∣∣∣̂̃�s�ξ�
∣∣∣2 ds
�s1�3

)∣∣f̂ �ξ�∣∣2dξ

=
∫
�n1×···×�nk

(∫
��+�k

∣∣∣̂̃�1�sξ�
∣∣∣2 ds
s1

)∣∣f̂ �ξ�∣∣2dξ

=
∫
�n1×···×�nk

(∫
��+�k

∣∣∣̂̃�1�sξ′�
∣∣∣2 ds
s1

)∣∣f̂ �ξ�∣∣2dξ�

Therefore, it suffices to verify the uniform boundedness of

I�ξ′�≡
∫
��+�k

∣∣∣̂̃�1�sξ′�
∣∣∣2 ds
s1

=
∫
��+�k

∣∣∣̂̃�1�s1ξ
′
1	���	skξ′

k�
∣∣∣2 ds1 ···dsk

s1 ···sk

in ξ′ =�ξ′
1	���	ξ

′
k�∈Sn1−1×···×Snk−1.

3.3. Estimates on I�ξ′�. We let

R0=�0	1�	 R1=�1	∞�	
and write

I�ξ′�≡ ∑
α1	���	αk=0	1

Iα1	���	αk
�ξ′�	

with

Iα1	���	αk
�ξ′�=

∫
Rα1×···×Rαk

∣∣∣̂̃�1�sξ′�
∣∣∣2 ds

s1
�

It suffices to verify the uniform boundedness of Iα1	���	αk
�ξ′� in ξ′ ∈Sn1−1×

···×Snk−1, for each choice of α1	���	αk=0	1. Write

J=	1	���	k�	
and let

J0=	j∈	1	���	k� � αj =0�
J1=	j∈	1	���	k� � αj =1��
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By the cancellation property and homogeneity condition, one can see∣∣∣̂̃�1�sξ′�
∣∣∣=
∣∣∣∣∣∫∏j∈J Bj�0	1�

[ ∏
ν∈J0

(
e−2πisνξ

′
ν ·yν −1

)]

×
[∏

l∈J1

e−2πislξ
′
l ·yl

]
�̃1�y1	���	yk�

∏
j∈J

dyj

∣∣∣∣∣
≤
∫
∏

ν∈J0
Bν�0	1�

[ ∏
ν∈J0

∣∣∣e−2πisνξ
′
ν ·yν −1

∣∣∣]

×
∣∣∣∣∣∫∏l∈J1

Bl�0	1�

[∏
l∈J1

e−2πislξ
′
l ·yl

]
�̃1�y1	���	yk�

∏
l∈J1

dyl

∣∣∣∣∣ ∏
ν∈J0

dyν�

Switching to polar coordinates, we obtain∣∣∣̂̃�1�sξ′�
∣∣∣� [ ∏

ν∈J0

sν

]∫
∏

j∈J Snj−1

[∏
l∈J1

∣∣∣∣ sinπsly
′
l ·ξ′

l

sly
′
l ·ξ′

l

∣∣∣∣
]
���y ′

1	���	y
′
k��
∏
j∈J

dσ�y ′
j��

Observe that for each l∈J1,∣∣∣∣ sinπsly
′
l ·ξ′

l

sly
′
l ·ξ′

l

∣∣∣∣� s
− 1

2
l +χ

C
�l�
sl �ξ′

l��y
′
l�

holds.
Therefore, it suffices to estimate integrals of the form

Ĩ
J0	J

�1�
1 	J

�2�
1
�ξ′�=

∫
∏

ν∈J0
R0

∫
∏

l∈J
�1�
1

R1

� �š�
[ ∏

l∈J
�1�
1

dsl

s2
l

] ∏
ν∈J0

sνdsν

with

� �š�=
∫
∏

l∈J
�2�
1

R1

∥∥∥∥∥
[ ∏

l∈J
�2�
1

χ
C

�l�
sl �ξ′

l��y
′
l�
]

��y ′
1	���	y

′
k�
∥∥∥∥∥

2

L1�∏j∈J Snj−1�

∏
l∈J

�2�
1

dsl

sl

	

where 	J0	J
�1�
1 	J

�2�
1 � is any partition of J. An application of Minkowski’s

inequality on integrals gives us

� �š� 1
2 �

∫
∏

j∈J Snj−1

[ ∏
l∈J

�2�
1

(
log

1
�y ′

l ·ξ′
l�
) 1

2

]
���y ′

1	���	y
′
k��
∏
j∈J

dσ�y ′
j��

We have the following lemma:

Lemma 3.1. Let K≥1 be an integer, n1	���	nk≥2 be integers, ξ′
1∈

Sn1−1	���	ξ′
K ∈SnK−1, and �	! � �0	∞�→�0	∞� be a Young’s pair with

��u�=u�log+u� K
2 	 for large u>0�
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Then

K∏
j=1

(
log

1
�y ′

j ·ξ′
j�
) 1

2

∈L!�Sn1−1×···×SnK−1�	

and moreover there exists a constant C�K� such that∥∥∥∥∥ K∏
j=1

(
log

1
�y ′

j ·ξ′
j�
) 1

2

∥∥∥∥∥
L!�Sn1−1×···×SnK−1�

≤C

holds uniformly in ξ′
1	���	ξ

′
K ∈Sn1−1×···×SnK−1.

Proof of Lemma 3�1� Observe that there exists a constant C such that
for large u>0

!�u�� exp
(
Cu

2
K

)
(3.1)

holds. For λ� 1	 we have

!

(
λ−1

(
K∏

j=1

log
1

�y ′
j ·ξ′

j�

) 1
2
)

� exp

[
C

[
λ−1

(
K∏

j=1

log
1

�y ′
j ·ξ′

j�

) 1
2 ] 2

K

]
≤exp

[
CK−1λ− 2

K

K∑
j=1

log
1

�y ′
j ·ξ′

j�
]

≤
K∏

j=1

exp
[
CK−1λ− 2

K log
1

�y ′
j ·ξ′

j�
]
=

K∏
j=1

�y ′
j ·ξ′

j�−CK−1λ− 2
K

from the geometric-arithmetic mean inequality and (3.1).
Uniform integrability of !�λ−1∏K

j=1 log�1/�y ′
j ·ξ′

j��� on Sn1−1×···×SnK−1

is clear and the lemma is proved.

Applying Hölder’s inequality (Lemma 2.3) followed by Lemma 3.1, we
obtain a uniform estimate on � �š�.

Therefore, we obtain the uniform boundedness of I�ξ′� and the proof of
the theorem is now complete.

Remark 3�2� In view of the sharpness of Walsh’s result, one can see that
the size condition on ��Sn1−1×···×Snk−1 is sharp.
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