and frequencies simulating various physiological conditions at the start and after 100 million cycles.

Results: Analysis was performed with transapical Jenaavalve prostheses (27mm) implanted in circular annuli (n=3) or annuli with 0.84 eccentricity (n=3). Hydrodynamic testing showed no significant difference in valve performance with regard to the average regurgitation volume under both conditions at the start (circumferential: 4.69±0.20% vs. oval: 4.81%±2.05% of total stroke volume; p=n.s.) Interestingly after a durability test of 100 million cycles hydrodynamic testing showed a slightly reduced average regurgitation volume in the oval annulus [circumferential: 5.53%±0.19% vs. oval: 3.59%±0.39% of total stroke volume; p=n.s.]. Macrosopic analysis and histology revealed no difference between valve leaflets of the two groups.

Conclusions: This is the first experimental in vitro durability study demonstrating no significant difference in valve performance and regurgitation volume for a percutaneous valve implanted in an eccentric annulus.

TCT-752
Asian Comparative Outcomes of Balloon-Expandable versus Self-expandable valves for Transcatheter Aortic Valve Implantation
Satoshi Nakatani1, Yasushi Sakata1, Koichi Toda1, Yoshiki Sawa1, Young-Hak Kim1, Cheol Whan Lee1, Jong-Young Lee1, Dong Hyun Yang1, Jong-Min Song1, Seung-Heek Park3, Seung-Jang Park3
1Asan Medical Center, Seoul, Korea, Republic of, 2Queen Elizabeth Hospital, Kowloon, China, 3National University Heart Centre, Singapore, Singapore.

Background: The aim of this study is to compare the clinical outcomes after transcatheter aortic valve implantation (TAVI) with the Edwards SAPIEN/SAPIEN XT transcatheter heart valve (ESV) versus the Medtronic CoreValve (MCV) in Asian countries.

Methods: The data from databases of 3 Asian centers were pooled and analyzed. Study objectives were Valve Academic Research Consortium outcomes at 30 days and 1 year. In total, 185 patients were included: 86 (46.5%) treated with the ESV and 99 (53.5%) with the MCV.

Results: Previous PCI, previous CABG and peripheral artery disease were more frequent in ESV group but aortic annulus area and perimeter measured by MDCT were larger in MCV group. There were no differences in baseline echocardiographic findings and calcification grade. Device success occurred in 78 of 86 patients (90.7%) in ESV group and 74 of 99 (74.7%) patients in MCV group (relative risk [RR],1.21; 95% confidence interval [CI]. 1.00 to 1.58).

Conclusions: This was attributed to a significantly lower frequency of residual more-than-mild aortic regurgitation (7.2% vs. 16.0%; RR: 0.45; 95% CI 0.90 to 6.61; p = 0.07) and the less frequent need for implanting more than 1 valve (0% vs. 10.1%;p = 0.002). All-cause mortality at 30 days was 4.7% in ESV group and 2.0% in MCV group (RR, 2.35; 95% CI 0.42 to 13.33; p = 0.42). Stroke, bleeding and vascular complications were not significantly different, and the combined safety end point occurred in 14.0% in ESV group and 10.1% in MCV group (RR: 3.99; 95% CI 0.59 to 3.53; p = 0.42).

Methods: A procedural success has been reached using a single valve in 13 pts. In 3 pts, aortic wall or left ventricular endocarditis and one from acute pulmonary edema). A new permanent PM implantation was necessary in 7 pts. Due to residual severe aortic regurgitation despite a second valve deployment, aortic valve replacement was required in 2 cases and aortic valve replacement was performed in one from acutely decompensated heart failure.

TCT-754
Predictors For Tissue Embolization During Transcatheter Aortic Valve Implantation
Nicolas M. Van Mieghem2, Peter De Jaegere3
1Erasmus MC, Rotterdam, Netherlands, 2Thoraxcenter, Erasmus Medical Center, Rotterdam, Rotterdam, Netherlands.

Background: Cerebrovascular embolization is frequent during Transcatheter Aortic Valve Implantation (TAVI). The aim of this study was to identify variables associated with tissue embolization during TAVI.

Methods: A total of 82 patients underwent TAVI with a dual filter - based embolic protection device (Montage Dual Filter System, Claret Medical, Inc.) deployed in the brachiocephalic trunk and left common carotid artery. Both balloon expandable and self-expanding transcatheter heart valves (THV) were used. After TAVI the filters were retrieved and sent for histopathologic analysis.

Results: Overall, debris was captured in 86% of patients. Captured material varied in size from 0.1 to 9.0 mm. Thrombotic material was found in 74% of patients and tissue-derived debris in 63%. Tissue-derived debris was found more often with balloon expandable THV (79% vs. 56%, p = 0.05). The dislodged material corresponded best with dislodged tissue from the native aortic valve leaflets, aortic wall or left ventricular myocardium. Balloon-expandable THV (adjusted OR: 12.100; 95% CI 1.925-76.040, p = 0.008) and cover index (adjusted OR: 1.151, 95% CI 1.015-1.307, p = 0.029) were independent predictors for tissue embolization by multivariable logistic regression analysis.

Conclusions: Debris was captured with the filter-based embolic protection in the vast majority of patients undergoing TAVI. Tissue derived material is found in 63% of cases and is correlated with the use of balloon expandable systems and more oversizing.

TCT-755
Transcatheter Aortic Valve Implantation in Patients with Pure Severe Native Aortic Regurgitation: Results after 3 Year of Follow-Up
Marco Luciano Rossi1, Cristina Barbaro1, Paolo Pagnotto1, Carla Lucarelli1, Gabriele Gasparini1, Patrizia Presbitero1
1Istituto Clinico Humanitas, Rozzano, Milano, Italy, 2Istituto Clinico Humanitas, Rozzano, Italy, 3Humanitas Institute, Milan, IL

Background: Transcatheter Aortic Valve Implantation (TAVI) is an option to treat pure severe aortic regurgitation (PSAR) in patients at high surgical risk. We hereby report the 3-year follow-up (3-y FU) of patients with inoperable PSAR treated in our Institute using Medtronic CoreValve prosthesis.

Methods: Aortic valve sizing was assessed on 3-dimensional-CT scan considering perimeter, area, major and minor orthogonal annular diameter. An oversizing prosthesis with respect of annular perimeter was used. We developed a size table (see below) to choose the right valve dimension. Sixteen pts with PSAR underwent TAVI with CoreValve prosthesis (mean age 84±2.6; mean L-Euroscore 33%)

<table>
<thead>
<tr>
<th>Valve Size</th>
<th>23 mm</th>
<th>26 mm</th>
<th>29 mm</th>
<th>31 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annulus</td>
<td>N/A</td>
<td>Dd21</td>
<td>Dd21</td>
<td>Dd24</td>
</tr>
<tr>
<td>Diameter (mm)</td>
<td>Dd21</td>
<td>Dd21</td>
<td>Dd24</td>
<td>Dd27</td>
</tr>
<tr>
<td>Annulus</td>
<td>N/A</td>
<td>P=5.9</td>
<td>P=6.7</td>
<td>P=7.8</td>
</tr>
<tr>
<td>Perimeter (cm)</td>
<td>P=6.0</td>
<td>P=7.7</td>
<td>P=8.5</td>
<td></td>
</tr>
</tbody>
</table>

Results: A procedural success has been reached using a single valve in 13 pts. In these pts we observed an improved functional capacity and no death at a 3-y FU. In one case a second valve deployment (CoreValve 29 mm in Core-Valve 31 mm) was necessary to reduce the peri-leak severe aortic regurgitation obtaining a final moderate grade of aortic regurgitation. In this case we observed a worsening of NYHA class after 1-y FU and frequent re-hospitalizations for congestive heart failure at 3-y FU. In 2 cases conversion to emergency open surgery and aortic valve replacement was required due to residual severe aortic regurgitation despite a second valve deployment. These 2 pts died 1 year after the procedure (one from infective endocarditis and one from acute pulmonary edema). A new permanent PM implantation was necessary in 7 pts.