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Abstract

The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In 
maximally (N = 4) supersymmetric Yang–Mills theory (SYM) in the planar limit, it is known, in principle, 
to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the 
four-loop order. The simplest quantity which contains this correction is the four-loop two-point form factor 
of the stress tensor multiplet. This form factor was largely obtained in integrand form in a previous work 
for N = 4 SYM, up to a free parameter. In this work, a reduction of the appearing integrals obtained by 
solving integration-by-parts (IBP) identities using a modified version of Reduze is reported. The form 
factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern 
of cancellations after IBP reduction. Moreover, two of the integral topologies vanish after reduction. The 
appearing master integrals are cross-checked using independent algebraic-geometry techniques explored 
in the Mint package. The latter results provide the basis of master integrals applicable to generic form 
factors, including those in Quantum Chromodynamics. Discrepancies between explicitly solving the IBP 
relations and the MINT approach are highlighted. Remaining bottlenecks to completing the computation of 
the four-loop non-planar cusp anomalous dimension in N = 4 SYM and beyond are identified.
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1. Introduction

Maximally (N = 4) supersymmetric Yang–Mills theory (SYM) offers perhaps the best chance 
of truly solving an interacting four-dimensional quantum field theory. In addition, it is a proven 
stepping stone to pioneer new computational technology, as the large amount of supersymmetry 
renders many computations much simpler than their non-supersymmetric counterparts. In many 
cases, the resulting technology has transformed computational power in generic quantum field 
theories. For instance, in QCD, recent years have seen a boom of next-to-leading-order (NLO) 
computations considered unfeasible only a few years before, inspired ultimately by Witten’s 
twistor string [1].

The focus of this paper is the computation of the Sudakov form factor, which is an observ-
able that involves one gauge-invariant operator from the stress tensor multiplet and two on-shell 
massless states,

F2 = 〈p1,p2|O|0〉. (1)

In N = 4 SYM, this form factor was first discussed and computed at the two-loop order in [2]. 
It is noteworthy that the three-loop form factor was first computed in QCD [3], almost three 
years after the master integrals were found in [4]. This result was then adapted to provide the 
three-loop answer in N = 4 SYM in [5]. The latter computation cleanly shows that the compu-
tation within N = 4 SYM is technically much more straightforward, especially when employing 
modern unitarity-based methods instead of Feynman graph techniques.

Since there is only a single scale in the problem of computing the Sudakov form factor, the 
dependence on this scale is fixed by dimensional analysis. Hence, the form factor evaluates to 
a function which only depends on the dimensional regularization parameter ε (D = 4 − 2ε), 
the coupling constant and the number of colors Nc. Moreover, the dependence on ε is governed 
to a large extent by the known structure of infrared (IR) divergences. The divergent structure 
through 1

ε2 , for instance, is determined by the so-called cusp (or soft) anomalous dimension, 
which gets its name from its appearance in the computation of the light-like cusped Wilson line 
[6,7]. The cusp anomalous dimension is a function which is universal for a given quantum field 
theory.

In N = 4 SYM, an integral equation which determines the leading planar part of the cusp 
anomalous dimension in principle exactly was derived from integrability [8]. This is to date 
the most powerful and precise manifestation of the cluster of ideas known as the AdS/CFT 
correspondence [9]. However, much less is known about the non-planar part of the cusp anoma-
lous dimension. At weak coupling, an immediate problem is that the first non-planar correction 
appears at four loops and has never been calculated to date, in any theory. Further motiva-
tion comes from a conjecture [10] that this correction may in fact vanish. This is based on 
the assumed completeness of the dipole contributions, which is consistent with the analysis 
of IR divergences in Yang–Mills theories explored through three-loop order, see also [11]. 
However, there is evidence from the Regge limit analysis in [12] that this naive dipole sum-
mation is not sufficient at four loops. It is important to settle this issue by explicit computa-
tion.

The integrand of the form factor was obtained in [13] using color-kinematic duality [14–16]
as an ansatz generator. The coefficients in the ansatz were fixed by a choice of unitarity cuts, 
up to one remaining parameter. To evaluate the integral, a major next step is to perform the in-
tegral reduction, in particular using integration-by-parts (IBP) reduction [17,18]. This turns out 
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to be highly non-trivial due to the complexity of four-loop integrals. The success of this reduc-
tion is a major achievement of this paper. In particular, this reduces the challenging non-planar 
cusp anomalous dimension problem down to the computation of an explicit set of master inte-
grals.

Based on the IBP reduction result, surprisingly, the free parameter in the integrand turns out to 
be truly free: it drops out of the full form factor after the reduction. This completes the determina-
tion of the integrand of the N = 4 SYM form factor at four loops. In other words, we prove that 
there is a one-parameter family of four-loop form factor integrands which satisfy color-kinematic 
duality.

The master integrals are also explored independently by algebraic techniques. While the re-
sults are consistent with the IBP reduction in majority, some rare examples of mismatch present 
interesting open questions to understand further. The results from algebraic methods, with some 
qualifications, provide the master integrals of four-loop form factors in generic quantum field 
theory, including QCD.

The remaining problem of computing the four-loop form factor in N = 4 SYM is the eval-
uation of the master integrals. Many techniques are available to compute Feynman integrals, 
see [19] and the references cited therein for an overview. However, the basis integrals of the 
four-loop form factor are rather non-trivial. They include non-planar four-loop integrals with up 
to quadratic irreducible numerators, the majority of which, to our knowledge, have never been 
integrated. We present partial numerical results and briefly survey the challenges involved in 
completing the computation, while leaving the full evaluation to future work.

This article is structured as follows. First, the connection between form factor and cusp 
anomalous dimension is reviewed in section 2. This section also introduces some of the lan-
guage to study Feynman integrals and discusses the issue of graph symmetry. In section 3, we 
report on the IBP reduction of the Feynman integrals in the four-loop form factor in N = 4 SYM 
based on the Reduze package [20]. The independence of the sum on the free parameter reported 
in [13] is elucidated. We then proceed, in section 4, to study the basis of master integrals using 
algebraic techniques explored in [21]. A brief survey of the numerical evaluation is given in sec-
tion 5. Appendices contain information on a three-loop cross-check and an alternative choice 
of basis integrals. In the supplementary material section, there are several ancillary files which 
contain results for the basis of master integrals.

2. Review and setup

In the following, extensive use will be made of the results in [13] for the four-loop form factor 
in N = 4 SYM, in particular of the graphics and tables in section 5 of that paper. The numbering 
of the integral topologies refers to that paper.

In the course of writing this paper, a typo was discovered in Table 5 of [13]: the entry for 
the color factor of integral topology 26 should be 24N2

c δa1a2 . In particular, this integral topology 
does not contribute to the planar cusp anomalous dimension.

2.1. Relation between form factor and cusp anomalous dimension

The Sudakov form factor is an observable which here involves one gauge-invariant operator 
from the stress tensor multiplet and two on-shell massless states,

F2 = 〈p1,p2|O|0〉. (2)



390 R.H. Boels et al. / Nuclear Physics B 902 (2016) 387–414
In the present paper, we focus on the four-loop Sudakov form factor in N = 4 SYM, for which 
the integrand was obtained in [13].1

The Sudakov form factor for the stress tensor multiplet can be written as the tree-level form 
factor times a scalar function,

F2 =F (0)
2 F2(g,Nc). (3)

It is this function F2 which will be computed. In momentum space, F2 is a function of the only 
scale in the problem, q2 = (p1 + p2)

2, the coupling constants, group theory Casimirs and ε. 
Here, q is the momentum associated with the gauge-invariant operator. Note that it does not 
obey a mass-shell condition, in contrast to the momenta of the gluons, p2

1 = p2
2 = 0.

The cusp anomalous dimension γcusp is related to the two-point form factor through the uni-
versal exponentiation of IR divergences [40–43], which, in dimensional regularization, takes the 
form

Log[F2] =
∑

l

(−q2)−lε −g2lγ
(l)
cusp

4(lε)2
+O(ε−1). (4)

The cusp anomalous dimension can be calculated as a perturbative series in the coupling constant. 
Displaying the dependence on group theory quantities up to fourth order, it reads

γcusp =
∑

l

g2lγ (l)
cusp = a1g

2CA + a2g
4C2

A + a3g
6C3

A + g8
(
aP

4 C4
A + aNP

4 d44

)
+O(g10),

(5)

where CA is the Casimir which, for the SU(Nc) gauge group, simply has value Nc. The quantity 
d44 is a particular group theory Casimir invariant which, for SU(Nc), has the value N4

c +36N2
c . In 

previous works, the constants a1, a2, a3 and aP
4 were calculated in perturbation theory [7,44–47]2

and using integrability [8]. In ’t Hooft’s planar limit [51], Nc → ∞ with g2Nc fixed, it is 
clear that the first subleading color correction to the cusp anomalous dimension occurs at four 
loops.

From the general exponentiation formula in equation (4), this non-planar correction can be 
isolated from the non-planar part of the form-factor at four-loop order at order 1

ε2 in the ε expan-

sion. Since the integrals present in the form factor naively diverge as 1
ε8 , this gives an important 

check on any computation of the non-planar form factor: the first six orders in the 1
ε

expansion 
must vanish.

The planar correction to the cusp anomalous dimension at four loops can be expressed as 
a sum of rational coefficients times either ζ(3)2 or π6 [45–47], which are both constants of 
transcendentality six. Based on the maximal-transcendentality principle [48], it is natural to 
conjecture that the four-loop non-planar correction aNP

4 is given by a combination of the same 
transcendental numbers, if not vanishing.

1 In N = 4 SYM, form factors were first studied thirty years ago in [2] and revived in the past few years at weak 
coupling [5,22–32] and at strong coupling [33–35]. See also recent developments concerning form factors of non-
Bogomolnyi–Prasad–Sommerfield (BPS) operators [36–39].

2 The three-loop cusp anomalous dimension in N = 4 SYM was first obtained (conjecturally) in [48] by extracting 
the leading transcendentality part of the QCD result [49,50]. In this case, the cusp anomalous dimension is related to the 
anomalous dimension of the twist-two operator in the limit of spin j → ∞.
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2.2. Feynman integrals

An L-loop Feynman integral with n so-called indices a1, . . . , an is an integral which can be 
written as

I (a1, . . . , an) ≡
∫

dDl1 . . . dDlL (1/D1)
a1 . . . (1/Dn)

an , (6)

where Di are inverse propagators. For future reference, we define the absolute value of the sum 
over positive and negative indices to be t and s respectively. The parameter s is the numerator 
power and t is the propagator power. In this article, the indices are strictly integer valued. Inte-
grals which have the same non-zero indices for propagators are said to belong to the same sector. 
In the special case where all propagator powers are one, the integral is referred to as the corner 
integral of the sector.

The problem under study in this article consists of a series of four-loop twelve-propagator 
integrals. For each integral topology, one can construct a basis by starting with a parametrization 
of the loop momenta of the graphs. Then, one needs to pick six additional propagators to get a 
complete set. These additional propagators are important for expressing irreducible numerators. 
Given a numerator, one can express this uniquely into the basis. The choice of numerators is by 
nature somewhat arbitrary. If one focuses solely on additional propagators which are products of 
differences of two momenta, then this can be done by trial and error. A more systematic approach 
is needed, if the aim is to include graph symmetry.

As an example, let us consider integral topology 26. Its propagators can be parametrized as:

l2
6, l2

5 , l2
4, l2

3 , (−l4 + l5)
2, (l3 − l4)

2, (−l5 + p1)
2, (−l6 + p2)

2,

(−l4 + l5 + l6)
2, (−l3 + p1 + p2)

2, (l3 − l4 + l6 − p2)
2, (−l3 + l4 − l5 − l6 + p1 + p2)

2.

(7)

This topology has two independent permutation symmetries, as will be discussed later. It can be 
checked that the following six additional propagators parametrize all irreducible numerators:

(l3 − l5)
2, (l3 − l6)

2, (l5 − l6)
2, (l4 − p1)

2, (l4 − p2)
2, (l5 − p2)

2. (8)

In Appendix C, choices of propagators are explicitly given for all 34 topologies.
A useful step toward computing the Feynman integrals is the so-called α representation, see 

e.g. [19]. The result is an integral over α parameters, one for each propagator,

I (a1, . . . , an) ∝ 1∏
i �[ai]

∞∫
0

dα1 . . . dαn

∏
i

α
ai−1
i U−D/2e−iF/U , (9)

where the normalization constant, which is unimportant for our purposes, has been suppressed. 
U and F are certain polynomials of the α parameters of homogeneity L and L + 1, respectively. 
See [19] for further discussion and [52] for a Mathematica code to compute them from given 
propagators. As is customary, the labels on the αi parameters correspond to the position in a given 
ordered list of propagators, such as the one in equation (7) for integral topology 26. Equation (9)
can cover negative indices, that is, numerators as well.
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2.3. Graph symmetry

Several of the graphs in the set under study have a graph symmetry: the graphs are mapped 
to themselves under a permutation of some of the edges and external legs. Exploiting graph 
symmetry can be of great help in simplifying and cross-checking computations if it is present.

In [13], graph symmetry was indicated briefly by the symmetry factor. These symmetries can 
be checked or found by using the built-in capabilities of Mathematica. These permutations 
can include permutations of the external legs. An alternative strategy is to compute the U and F
polynomials of the α parameter integral, equation (6). Then, one can simply check all possible 
permutations and see if they leave these polynomials invariant. Due to the factorial growth of this 
problem, the feasibility of this analysis strongly depends on the algorithm: a naive implementa-
tion ran out of steam for ten propagators. A faster algorithm is presented in [53].

A symmetry of the graph of an integral can correspond to a symmetry of a corresponding 
Feynman integral. For a given parametrization of the loop momenta of the graph, a permutation 
symmetry of the graph may be undone by a shift of the loop momenta, combined with a permu-
tation of the external legs. If the latter leaves the integral invariant, the result is a symmetry of 
the Feynman integral.

For the example of topology 26, the two independent permutations are generated from

l6 ↔ l5,

l4 → −l4 + l5 + l6,

l3 → −l3 + p1 + p2,

p1 ↔ p2,

and

l6 → −l5 + p1,

l5 → −l6 + p2,

l4 → l3 − l4,

p1 ↔ p2,

(10)

as can be checked explicitly in equation (7). Since the integrals, by dimensional analysis, only 
depend on (p1 + p2)

2, they are left invariant by the permutation of p1 and p2.
The momentum map given above corresponds to a simple permutation pattern for a given 

list of propagators. Let us consider, for instance, the scalar integral in topology 26, with the 
propagators as listed in equation (7). The two independent permutation symmetries of the graph 
correspond to the following cycles:

{{1,7}, {2,8}, {3,6}, {5,11}, {9,12}},
{{1,2}, {3,9}, {4,10}, {6,12}, {7,8}}. (11)

Together with the trivial permutation and their product, these form a four-element representation 
of the permutation group. A given propagator can be mapped to other propagators in the set, but 
only if they are in the orbit of the given permutation. The orbits of the above permutation group 
are

{{1,2,7,8}, {3,6,9,12}, {4,10}, {5,11}}. (12)

This can be used to simplify the sector decomposition method employed in FIESTA, for in-
stance, as will be shown in section 5.1.

Given a permutation symmetry of a particular topology, ideally, additional propagators would 
be found which yield a complete basis of propagators and also incorporate the permutation sym-
metry. One can search for symmetric numerators systematically. Permutation symmetries either 
leave propagators invariant or interchange two propagators. Hence, the six propagators to be 
added to the set contain either zero, one, two or three pairs of interchanges and, consequently, 
six, four, two or zero invariant propagators. Starting from a generic linear combination of all four 
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loop momenta and two external momenta, one can construct the most general pair combination 
as well as the most general invariant propagator in terms of a number of free variables. Since 
propagators are only determined up to a sign by the appearance of the square, there are two times 
two possible (pairs of) polynomials which come out of this. Hence, all possible appearances of 
the permutation symmetry can be parametrized.

Then, one checks if the resulting set of eighteen propagators is linearly independent. In several 
cases (e.g. topology 20), no set exists at all. In addition, there are integrals with multiple permuta-
tion symmetries which do not permit a choice of six additional propagators with all permutation 
symmetries manifest. In cases in which there are sets of numerators with explicit permutation 
symmetries, typically many free variables exist. These may then be fixed by hand aiming for 
propagators as simple as possible. Care should be exercised not to choose parameters such that 
accidental linear dependencies in the total set of propagators are introduced.

For the example of topology 26, the momentum maps in equation (10) do not map the 
additional numerators in equation (8) into a permutation of themselves. The following set of 
additional numerators has explicit permutation symmetry:

(l3 + 2l5 − 3p1)
2,

(−l3 + 2l6 + p2)
2,

(l3 − 2l6 − p1 + 2p2)
2,

(l3 + 2l5 − p2)
2,

(l3 − l4 + l5 − p2)
2,

(l4 − l6 − p1 + p2)
2.

(13)

This example shows a general principle: the price of manifest permutation symmetry can be a 
much more complicated numerator structure. It would be very interesting to fix guiding principles 
for choosing sets of numerators.

The considerations above result in two sets of propagators. For each integral topology, there 
is a choice of eighteen propagators which can be used to express any integral in this particular 
topology. In particular, any numerator can be expressed in terms of the basis. In the first set, the 
aim was to include numerators as simple as possible, while, in the second, permutation symme-
tries were taken into account as much as possible. Obtaining the symmetric set is the result of a 
fairly lengthy computation. The simplest choice in the first set is listed in Appendix C. All results 
reported here were obtained with this set, unless explicitly mentioned otherwise.

3. IBP reduction and its output

The set of Feynman integrals in equation (6) is over-complete, as there are relations between 
different Feynman integrals. A particular example are the IBP relations [17,18], which follow 
from

0 =
∫

dDl1 . . . dDlL
∂

∂l
μ
i

X. (14)

Working out the right-hand side leads to a linear relation of different Feynman integrals. By 
solving a system of such equations, one may express a general Feynman integral in terms of 
some basic integrals.

A different way of phrasing the problem is to envision the system of IBP relations as a large 
matrix equation, with the integrals combined into a vector. The standard way of solving a problem 
of this type is Gaussian elimination. However, the output of this algorithm for a non-invertible 
matrix problem, such as the one under study here, depends on the ordering of the integrals in the 
vector. This is the essence of Laporta’s algorithm for IBP reduction [54]: one picks an ordering 
of the integrals. This ordering should be such that complicated integrals are expressed in terms of 
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simpler ones in general. For instance, integrals with smaller values of the parameter s (measuring 
numerator powers) are preferred, as are integrals with less numbers of different propagators. In 
addition, smaller values of the parameter t (measuring propagator powers) are to be preferred. 
Within these general choices, in practice, the exact criteria can differ between two different im-
plementations of Laporta’s algorithm. The results of these two implementations are, therefore, in 
general not the same, but related by a change of basis.

Given a system of equations, the output of Laporta’s algorithm is a reduction of all integrals 
in a given set down to integrals which cannot be further reduced from the given equations using 
the given ordering. The left-over integrals are known as master integrals. These integrals depend 
on the given set of equations, although typically, if the given set of equations is large enough, the 
set of master integrals tends to converge.

Various private and public implementations of Laporta’s algorithm exist, such as AIR [55],
FIRE [56–58] and Reduze [59,20]. See LiteRed [60,61] for an alternative approach to IBP 
reduction. We explored FIRE, Reduze and LiteRed in some detail for the four-loop form 
factor problem. Only Reduze succeeded in solving the problem, probably due to its better par-
allelization implementation.

3.1. Relevant implementation details

Reduze is designed to run in massive parallel mode on a cluster. As an input, it takes a fam-
ily of integrals. This family is treated as an ordered set: lower integrals in the set are considered 
simpler. Integrals are reduced as far as possible to lower integrals. This cuts down on the compu-
tational workload considerably, especially in a large-scale problem such as the one under study 
here. As parameters, Reduze takes a range of propagator powers (the t variable) as well as a 
range of numerator powers (the s variable) and constructs out of these all possible IBP relations 
for a given sector. These are then solved sector by sector, starting from the simplest sector, which 
is the bottom sector of the first member of the integral family. The number of relations tends to 
grow very quickly along either the t or the s axis.

A problem we encountered in the public version of Reduze in parallel mode was that it 
tended to crash when handling many large files on the cluster file system during the identity 
generation stage. Due to this problem it is unfeasible to obtain an IBP reduction with the public 
version of Reduze, and a fix is needed. The problem was that a file was reported as not present 
in the file system, while a manual check thereafter did uncover this particular file. This is due 
to the internal file handling structure of Reduze,3 where all processes are allowed to read from 
and write to disc. As a work-around, the program can be forced4 to sleep for a time-out of fifty 
seconds, followed by a 500-second time-out if the file is still not found. This two-stage timeout 
resolved the crashing problem due to disk space usage. The loss of productivity for a few minutes 
is a small price to pay to prevent the total collapse of the computation.

During the running of the four-loop reduction, Reduze still crashed occasionally when han-
dling integrals in sectors with many, typically twelve or eleven propagators. These integrals 
require a large memory usage each, which can easily overwhelm one of the nodes of the cluster. 
Sometimes this can be due to bad scheduling of processes, with all root processes which consume 
most memory running on a single node; this situation can somewhat be avoided at start-up by 

3 We thank A. von Manteuffel for explaining this.
4 This can be done in the function set_job_status in the file jobqueue.cpp.
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passing scheduling instructions to the message-passing-interface (MPI) program.5 By contrast, 
for lower propagator count, the limiting factor for speed is mostly CPU time. These two situa-
tions require opposite numbers of allowed parallel processes, which in turn requires occasional 
input by the user during running. It should be noted that, although Reduze works in parallel, 
there is a limit to the number of cores which are assigned to a single process while still in-
creasing computational speed. This saturation is sector dependent, but certainly under a hundred 
cores.

The chosen IBP relations are in the range t ≤ 12 and 0 ≤ s ≤ 2, with some extensions to 
t = 13 for specific integral topologies. Since Reduze features a choice of used relations, there 
can be problems with the reduction at the outer edges of these relations: there can be unre-
solved integrals. A simple check of this is to observe the file size of the reductions in a sector 
and compare it to the average for other integral topologies in a sector with the same num-
bers of propagators. A sudden increase in file size tends to indicate unreduced integrals: the 
unreduced integrals appear with much more complicated prefactors than the others, typically 
involving polynomial ratios with polynomial orders an order of magnitude above the norm. 
This is more than just a nuisance. The abnormal prefactors tend to be highly divergent in the 
limit ε → 0, typically ∝ 1

ε15 or worse. Since the form factor itself is expected to diverge at 

worst as 1
ε8 , this implies massive cancellations among the integrals. This particular problem oc-

curred in the basis of Appendix C in integral topologies 20 and 26, for integrals with at most 
ten propagators. This problem was resolved using consistency conditions, see two paragraphs 
down.

We reduced using the set of numerators in Appendix C. A secondary computation using nu-
merators with explicit permutation symmetries failed; at a certain eleven-propagator integral, the 
MPI protocol ran into an issue with maximal size of a single message, which is set by the max-
imum size of an integer on a 32-bit machine, see [62] for an explanation of the problem and a 
possible resolution. This is a result of a choice of protocol and not related to the physical archi-
tecture used. In principle, this problem could be circumvented by rewriting the Reduze code to 
handle messages of this size.

Since the set of numerators with the simplest structures was used, integral relations from 
permutation symmetries are not explicit. This allowed a simple check on the results: take a graph 
symmetry relation and use the IBP reduction. If Reduze found the relation, the result must be 
zero. We checked permutation symmetry on maximal-propagator integrals with up-to-quadratic 
numerators. Surprisingly, one single additional relation was found which involved exactly all 
master integrals with abnormal prefactors. Plugging this relation into the reduction eliminated 
the abnormal prefactors, reducing them to much more normal-looking ones.

3.2. Results

The computation led to a result after several months of computation on a fairly large cluster.6

The complete list of the master integrals obtained with this reduction is attached, both in the 
planar and non-planar sectors, as well as a sample result for topology 25. Overall, the integrals 
which appear after reduction are simpler. There are two integrals with two numerator powers. 
One of these contains only eight propagators and is easy to integrate numerically. The other, 

5 One uses -bynode in openmpi.
6 Memory usage on single sectors can exceed 200 GB. More detailed information is available on request.
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Table 1
Master integral statistics of obtained IBP reduction.

(a) planar form factor

# props s = 0 s = 1 s = 2

12 8 6 0
11 18 2 0
10 43 9 0

9 49 1 0
8 51 4 1
7 25 0 0
6 8 0 0
5 0 0 0

sum 203 22 1

(b) non-planar form factor

# props s = 0 s = 1 s = 2

12 10 10 1
11 13 3 0
10 34 10 0
9 29 1 0
8 32 3 1
7 13 0 0
6 7 0 0
5 1 0 0

sum 139 27 2

however, has the full twelve propagators and occurs in integral topology 26. It turns out that this 
particular integral can be integrated numerically (see section 5.1).

Any basis of master integrals listed is arbitrary to some extent. For a given sector, an obvious 
first choice for a master integral is its corner integral. Beyond this, there is a choice of a (typically 
single) numerator or doubled-up propagator. The statistics in Table 1 relates to the direct output 
of Reduze, taking into account the one extra relation found from permutation symmetry. The 
statistics is split into those integrals which contribute to the planar and non-planar parts of the 
form factor.

In these tables, there is quite some double counting of integrals which appear both in the 
planar and non-planar sectors. Using the known result for the sum of the integrals in the planar 
sector, one can eliminate several of the integrals in the non-planar sector. This is more efficient 
than might be expected, as there are four integral topologies (21, 25, 30 and 31) which each 
appear with the same overall color factor, 2N4

c + 24N2
c . This can be used to eliminate these 

integral topologies from the non-planar sector in favor of the integrals in the purely planar sector 
and the known planar-form-factor result. The resulting sum contains more integrals (260 in total) 
than the non-planar sector by itself.

The choice of master integrals in the provided results is taken from the output of Reduze. 
It is possible to choose other sets of master integrals, in particular the ones with numerators, to 
aim at simplifying, for instance, the prefactors of the integrals in the form factor or to make use 
of a permutation symmetry of the scalar skeleton of the integral. In particular, one aim could be 
to make these as weakly divergent as possible in the limit ε → 0. The power of divergence in 
this limit determines the order to which the integral is to be expanded to get the cusp anomalous 
dimension.

3.2.1. Cross-check: multiple reductions
The IBP reduction was run twice, with a second reduction involving a reshuffling of the in-

tegral topologies to put planar topologies first. It was checked that the two reductions commute: 
reducing with the second reduction followed by the first gives the same result as reducing with 
the first, after taking into account the extra relation found from permutation symmetries. Before 
taking into account this relation, there are seeming mismatches between several of the integrals 
which appear in the full four-loop form factor: these mismatches are all proportional to the extra 
relation. This is a consistency check for the IBP reduction.
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3.3. Cancellations in the form factor after IBP reduction

The IBP reduction displays two separate patterns of interesting cancellations for the form 
factor result: one pattern takes place within the separate integral topologies, while the second is 
between different integral topologies.

The first pattern is that, for integral topologies 18 and 20, the contributions to the form fac-
tor vanish after IBP reduction. Generically, the Feynman integrals in these topologies do not 
vanish; there are twelve-propagator master integrals. However, the specific combination of the 
integrals in the N = 4 SYM form factor reduce to zero. Considering the complicated numerators 
for topologies 18 and 20, this is rather nontrivial and not obvious at all at the integrand level. It 
should be noted that these integrals already do not contribute to the form factor: their color fac-
tors are also zero. Such cancellations, however, do not happen for the other four zero-color-factor 
topologies, 8, 11, 15 and 16, whose integrals reduce to nontrivial results. It would be very inter-
esting to find an explanation for these vanishing integrals, as, in physics, a zero almost always 
has a physical and important symmetry explanation.

Another intriguing pattern emerges when tracking the dependence on the single free parameter 
in the form factor integrand which was left in [13]. There, the free parameter in the form factor 
multiplies a combination of 24 out of 34 different integral topologies which obeys all the physical 
constraints imposed in [13] separately. In particular, this combination is color-kinematic dual by 
itself. One may expect that, by applying other, more complicated cuts which are not exploited in 
[13], this parameter may be fixed uniquely. The surprise is that, when summed with the correct 
color and symmetry factors (and only then), the dependence on the free parameter drops out of 
the form factor after IBP reduction. This means that the color-kinematic-dual representation of 
the four-loop form factor contains a truly free parameter!

This detailed cancellation involves an order of fifty different master integrals with up to ten 
propagators and occurs in both the planar and non-planar sectors. Most of the cancellations of the 
coefficients of the master integrals involve integrals out of all of the eighteen integral topologies 
which involve the free parameter and have nontrivial color factors. As an intricate example, 
consider the coefficient of the master integral

INT[2, {−1,0,1,1,1,1,1,0,0,0,1,1,0,0,1,0,0,0}], (15)

which occurs in topologies 12, 14, 15, 17 and 19. The coefficient in topology 12 reads:

−242 + 2861ε − 4906ε2 − 37 519ε3 + 133 706ε4 − 18 520ε5 − 378 200ε6 + 366 000ε7

21ε4(1 + 4ε)(−1 + 5ε)(1 + 5ε)
,

(16)

which is exactly −2 times the coefficient of this master integral in topology 19. Taking into 
account the symmetry factors of topologies 12 and 19, which are 2 and 1, respectively, this leads 
to a cancellation. Similarly, the coefficients of this master integral in topology 14 cancels against 
that in topology 17, while the color factor of topology 15 is zero. The other master integrals 
typically involve much more intricate cancellations.

It would be very interesting to reach a better understanding of the uncovered cancellations. On 
a practical level, this pattern completes the determination of the form factor integrand [13]. To 
our knowledge, this is the first example of a color-kinematic-dual integrand representation that 
contains a free parameter. It would be fascinating to see if there is any deeper physical meaning 
of the free parameter, for example, as due to some gauge symmetries. This free parameter can be 
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set to any value at the start of the computation. A natural value is −1, which simplifies the naive 
appearance of the integrals. This cancellation provides strong evidence for consistency of both 
the integrand result in [13] and the IBP reduction performed in the present paper.

4. Counting master integrals using algebraic techniques

In [21], Lee and Pomeransky developed a method to count the number of master integrals 
using a technique adapted from algebraic geometry. This is partially based on previous work by 
Baikov [63]. This method only relies on the topology of the integral and, therefore, applies for 
arbitrary values of t and s. In particular, it is independent of obtaining an explicit IBP reduction 
and, hence, of the results of the previous section. This idea was also implemented in a Mathe-
matica package called Mint [21]. In this section, we develop and apply this method to count 
the number of master integrals of four-loop form factors.

Similarly to the start of IBP reduction, one first needs to determine the unique physical sectors 
for a given integral topology. As described in [21], it is convenient to perform this step using
LiteRed [60,61]. In particular, LiteRed determines the sector symmetries, which can be 
taken into account automatically in Mint. In the next step, the counting of master integrals is 
done independently for each physical sector.

Let us consider a physical sector of L-loop topology and m propagators. From the associated 
polynomials U and F in equation (9), one can define a new polynomial7

G(
α) = U(
α) + F(
α), (17)

which has polynomial degree L + 1. Using the duality of homology and cohomology (see [21]
for more details), the number of master integrals is related to the number of independent integral 
contours. The latter depends on the analytic structure of the polynomial G and is characterized 
by the so-called proper critical points. These are the stationary points at which G does not vanish 
and are, thus, defined as the solutions of

∂G

∂αi

= 0 (i = 1, . . . ,m) and G �= 0. (18)

Proper critical points may or may not exist for a given G polynomial. If there is no critical 
point, this implies that the corner integral of the sector is reducible, so that this sector does not 
contribute a master integral. On the other hand, if critical points do exist, the corner integral is 
irreducible with respect to IBP. This condition of irreducibility was first shown in [63].

A proper critical point may have a multiplicity which is measured by a topological invariant, 
the so-called Milnor number at the critical point. The number of master integrals is the sum over 
the Milnor numbers Mi of all proper critical points,

# of master integrals =
∑

i∈ proper critical points

Mi, (19)

provided that the proper critical points are isolated. We will explain the meaning of isolated 
critical point shortly. In the case of non-isolated critical points, more work is required [21], see 
also an explicit example in section 4.2 below.

7 Equivalently, one can consider a different polynomial using Baikov’s representation as discussed in [21,63]. For all 
cases being checked, the two polynomials always give the same result, while the use of the polynomial G is usually much 
more efficient in the computation.
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Table 2
Master integral counting for the six three-loop form factor 
topologies given in Fig. 5 of [13].

topology (1) (2) (3) (4) (5) (6)

# MIs via Mint 9 10 10 10 14 10

Thus, the problem of counting master integrals is reduced to the one of computing the critical 
points of a system of nonlinear polynomial equations given by equation (18), which is usually 
highly nontrivial to solve. Fortunately, one can apply powerful algebraic approaches to make this 
job simple, based on the so-called Gröbner basis technique. Readers who are not familiar with 
the Gröbner basis and related concepts may consult [64] for a pedagogical introduction. Here, 
only the basic procedure is outlined.

The solution space of a system of polynomial equations is called affine variety associated with 
an ideal determined by the equations. For the system of equations (18), the ideal can be defined 
as

I =
〈
∂G

∂α1
, . . . ,

∂G

∂αm

,α0G − 1

〉
, (20)

where, in the last term, one introduces an additional parameter α0 which forces the polynomial 
G to be non-vanishing at the critical point. The solutions of the affine variety can be obtained by 
computing the Gröbner basis of equation (20),

gb(I ) = {g1, g2, . . . , gk} . (21)

Once the Gröbner basis is obtained, it becomes relatively trivial to find the solutions. In our 
problem, we only concern ourselves with the number of solutions. This, in practice, can be con-
veniently obtained by counting the number of irreducible monomials in the Gröbner basis.8

The above-described procedure is implemented in Mint [21] and applies straightforwardly 
to many simple cases; for example, applying it to the three-loop form factor, we obtain the result 
summarized in Table 2. The numbers of master integrals are consistent with the reduction of
LiteRed.

For the four-loop form factor, however, one encounters two problems when trying to apply 
the Mint package. The first problem is that the set of critical points can form an affine variety of 
dimension ≥ 1. This corresponds to the non-isolated critical-point case. Mint cannot deal with 
such cases automatically in its present version, but denotes them as Indeterminate. The number 
of such cases for the integral topologies at hand are summarized in Table 3. Although the absolute 
number of these cases is low, they tend to occur in the more complicated sectors. They require 
some further work as described in [21]. We employed a similar procedure and present an explicit 
example in subsection 4.2.

Another problem is that, in quite a lot of cases, Mint gets stuck at the step of Constructing 
Gröbner basis . . . . This is due to the complexity of four-loop integrals for which Mathematica
cannot finish the computation of the corresponding Gröbner basis. There are many known other 
packages which can compute a Gröbner basis more efficiently. We applied Macaulay2 [65], 

8 More precisely, one needs to compute the reduced Gröbner basis, which is unique for a given monomial ordering, 
see e.g. [64]. The number of irreducible monomials also takes the multiplicity of critical points (i.e. the Milnor number) 
into account.
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Table 3
Indeterminate sectors from Mint for the 34 topologies given in Figs. 8 and 9 of [13].

topology (14) (15) (16) (17) (18) (20) (22) (23) (24)

# Indeterminate 1 1 1 1 1 2 1 1 1

topology (25) (26) (27) (28) (29) (30) (32) (33) (34)

# Indeterminate 1 3 1 1 3 1 1 1 1

Table 4
Master integral statistics: Mint results for the 34 topologies given in Figs. 8 and 9 of [13].

topology (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

# MIs 28 35 38 34 39 48 71 52 55 69 52 95

topology (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

# MIs 76 87 95 93 106 84 105 89 45 66 41 75

topology (25) (26) (27) (28) (29) (30) (31) (32) (33) (34)

# MIs 55 78 92 69 93 84 35 33 31 39

which can be conveniently used in Mathematica through mathematicaM2.m [66], and we 
employed Singular [67] in several most complicated cases.

Based on Mint and with some extra effort to solve the above two problems, we obtained the 
numbers of master integrals for the 34 different topologies as summarized in Table 4.

Given the number of master integrals, Mint can also generate a set of master integrals. In 
most cases, a sector contains only one master integral, in which case the corner integral is chosen 
as the master integral. If there are more than one master integrals in a sector, Mint suggests 
integrals with higher powers of propagators (while Reduze typically chooses integrals with 
numerators). However, the choice of a double-propagator integral is rather heuristic; therefore, 
to find out whether it is a genuine master integral requires further checks. In our case, we could 
check them by using Reduze, as will be discussed shortly.

To obtain the master integrals for the four-loop form factor, we still need to combine the 
master integrals of Table 4 together. Obviously, same master integrals may appear in different 
topologies of Table 4. This may be detected by comparing their graph topology: if two graphs 
are isomorphic to each other, they are the same integral. After this step, we find that there are 
only 280 non-isomorphic master integrals: 244 with only simple propagators plus 36 containing 
a double propagator.9

Here, one should be cautious that there could be relations between integrals which are appar-
ently not due to graph isomorphism, see e.g. [20,53] for some explicit examples. Such relations 
can be found by considering Feynman parameter representations of integrals and checking if the 
two representations are related to each other by a permutation of Feynman parameters. A fast 
algorithm for such a check was proposed in [53]. Alternatively, one can also consider the so-
called graph matroid technique to detect such hidden relations between different integrals, as 

9 Note that we combined all 34 topologies including six zero-color-factor topologies: (8), (11), (15), (16), (18) and (20). 
If we exclude these six topologies, the number is reduced to 267, which is enough for the N = 4 SYM form factor. But 
for QCD with fundamental quarks, one likely needs all 280 master integrals.
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implemented in Reduze [20]. For us, there is an easier way to detect such relations, namely ap-
plying Reduze to reduce the basis integrals obtained by Mint. We checked that all 244 corner 
integrals correspond to basis integrals as determined by Reduze. Thus, they are indeed master 
integrals.

As mentioned above, the choice of master integrals with double propagators by Mint re-
quires further checks. We applied Reduze to the 32 double-propagators integrals which do not 
appear in the twelve-propagator sector of topology 26 and found that four of the suggested mas-
ter integrals are actually reducible.10 This does not change the number of Mint master integrals, 
but simply means that a different integral from this sector must be chosen as a master integral. 
By changing the position of the double propagator, we indeed found irreducible integrals. The 
twelve-propagator sector of integral topology 26 is analyzed further below. Thus, we obtained 
the final list of 280 genuine master integrals.

We would like to emphasize that the counting of master integrals based on Mint only relies 
on the topologies of given integrals and applies to arbitrary numerators; therefore, it applies to 
any theory, including QCD. We remind that the counting of Reduze given in Table 1 con-
cerns particular master integrals appearing in the reduction of the N = 4 SYM form factor 
result.

4.1. An interesting mismatch between Reduze and Mint

Some caution is needed when assessing the output of Mint: this package is known to under-
report the number of master integrals in very rare cases.

To check this, we collected all master integrals appearing in the IBP reduction by Reduze, 
with t = 12 and s = 2 and with t = 13 and s = 1. It turns out that Reduze yields more master 
integrals. Many of them consist of twelve propagators and one to several numerators. They are 
at the edge of the reduction setting, and it is very likely that they may be reduced by including 
more IBP identities. These will not be discussed further here, details are available on request. 
What is unexpected is that there are nine corner integrals with only ten or less propagators, for 
example

INT[2, {0,0,1,1,1,1,1,1,0,0,0,1,0,0,1,0,0,0}], (22)

with only eight propagators. Mint shows that they contain no proper critical points, while Re-
duze and FIRE5 take them as master integrals. Due to the low number of propagators, most 
related IBP identities should already be taken into account by Reduze. Therefore, it is likely 
that these integrals are truly master integrals.11 This would mean that the counting method 
of Mint requires some modification, although it is correct in the vast majority of cases. We 
cannot rule out, however, that there are integral relations which render this set of nine cor-
ner integrals reducible. It would be very interesting to understand this issue and see which is 
right.

In addition, there is one more master integral in the Reduze basis, which appears to be an 
artifact of the way we solved the permutation symmetry consistency condition.

10 Note that Reduze tends to choose integrals with numerators rather than double propagators. So, irreducible means 
that, in the reduction result of Reduze, there is an integral with the same propagators containing a numerator.
11 Some other examples of two-loop integrals showing mismatch between Mint and IBP reduction were also found by 
V. Smirnov [68].
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4.2. Two worked-out examples

Here, we give further details by considering two examples which cannot be computed directly 
by Mint.

Let us first consider an example corresponding to an indeterminate case: a subsector of topol-
ogy 26 with eleven propagators,

INT[26, {1,1,1,0,1,1,1,1,1,1,1,1,0,0,0,0,0,0}]. (23)

From G = U + F , which are polynomials of αi (i = 1, . . . , 11) and of homogeneity five, one 
can construct the ideal I defined in equation (20). The corresponding Gröbner basis cannot be 
computed by Mathematica, but can be calculated using Macaulay2 [65]. The quotient space 
of the resulting ideal I = GB(I ) turns out to be infinite dimensional.12 One then computes the 
primary decomposition of I (e.g. using Macaulay2), which gives

I = I1 ∩ I2, (24)

where

I1 = 〈186 624α0 − 3125, α1,5α2 + 12,5α3 − 12,5α4 + 12,5α5 − 12, α6,5α7 + 12,

5α8 + 12,5α9 − 12,5α10 + 12,5α11 + 12〉,
I2 = 〈729α0 − 16,2α1 + 2α8 + 3, α2 + 2α11 + 6, α3 − 3,2α4 − 2α8 + 3, α5 − 3,

2α6 + 2α11 + 3, α7 + 2α8 + 6,2α11α8 + 3α8 + 3α11 + 9,2α9 − 3,2α10 − 2α11 + 3〉.
The quotient space of the first ideal is one-dimensional, which is obvious, since there is only one 
solution of the corresponding polynomial system. On the other hand, the quotient space of the 
second ideal is infinite dimensional. This can be treated as the example discussed in [21]. Rather 
than considering the full ideal I2, one can simply consider the variety determined by the equation 
G̃(α8, α11) = 0, where

G̃(α8, α11) = 2α11α8 + 3α8 + 3α11 + 9 (25)

is the only quadratic element in I2. Then, one computes the dimensionality of the quotient space 
of the ideal

Ĩ =
〈
∂G̃/∂α8, ∂G̃/∂α11, α0G̃ − 1

〉
, (26)

which turns out to be one. Altogether, one finds that the number of bases is two.
As another illustrative example, we consider the sector of topology 26 with full twelve 

propagators. In this case, the computation of the Gröbner basis turns out to be hard even for
Macaulay2. In this case, we apply Singular, which solves the problem in less than a 
minute using the method slimgb. The quotient space of the resulting Gröbner basis I = GB(I )

is seven-dimensional. One still needs to consider the symmetry which may reduce the number 
of independent master integrals. In order to make the symmetry obvious, one can compute the 
primary decomposition of I , which gives

I = I1 ∩ I2 ∩ I3 ∩ I4 ∩ I5 ∩ I6, (27)

12 The dimensionality of the quotient space is given by the number of irreducible monomials, which can be directly 
counted from the reduced Gröbner basis as implemented in Mint [21].
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where

I1 = 〈729α0 − 16,4α1 + 3, α2 − 3, α3 − 3, α4,4α5 + 9, α6 − 3, α7 − 3,2α8 + 9,4α9 + 3,

2α10 − 3, α11 + 6,2α12 + 9〉,
I2 = 〈729α0 − 16, α1 − 3,2α2 + 9, α3 − 3, α4, α5 + 6, α6 − 3,4α7 + 3, α8 − 3,2α9 + 9,

2α10 − 3,4α11 + 9,4α12 + 3〉,
I3 = 〈729α0 − 16,2α1 + 9, α2 − 3,2α3 + 9,2α4 − 3, α5 + 6,4α6 + 3, α7 − 3,4α8 + 3,

α9 − 3, α10,4α11 + 9, α12 − 3〉,
I4 = 〈729α0 − 16, α1 − 3,4α2 + 3,4α3 + 3,2α4 − 3,4α5 + 9,2α6 + 9,2α7 + 9, α8 − 3,

α9 − 3, α10, α11 + 6, α12 − 3〉,
I5 = 〈256α0 + 1, α1 + 2, α2 + 2, α3 + 2, α4 − 2, α5 + 6, α6 + 2, α7 + 2, α8 + 2, α9 + 2,

α10 − 2, α11 + 6, α12 + 2〉,
I6 = 〈65 536α0 − 3125,5α1 + 5α12 − 8,5α2 + 5α12 − 8, α3 − α12,20α4 + 5α12 − 16,

5α5 + 16, α6 − α12,5α7 + 5α12 − 8,5α8 + 5α12 − 8, α9 − α12,

20α10 + 5α12 − 16,5α11 + 16,25α2
12 − 40α12 + 128〉.

The quotient space of the last ideal is two-dimensional, while the others are all one-dimensional. 
So, naive counting would give seven master integrals. Topology 26, however, has permutation 
symmetry, see equation (11). It is not hard to see that the first four ideals are all related to 
each other by this symmetry; therefore, they contribute only one independent master integral. 
In total, one finds that there are four independent master integrals in this sector. For this integral 
topology, Reduze picks four twelve-propagator integrals as master integrals: the corner integral, 
two linear-numerator integrals and one with a quadratic numerator. Hence, the number of master 
integrals matches between Mint and Reduze.

5. Towards numerical integration

Given a set of master integrals, the next step is to perform the integration. A significant part 
of the master integrals obtained in the previous sections are very complicated and seem to be on 
or slightly over the very edge of what current integration methods can achieve. There are various 
methods to perform numerical integration in the literature, see [19] for an overview.

It should be said that, in principle, Mellin–Barnes (MB) representations, which can be used 
very efficiently in solving planar topology integrals [69–72], may be the optimal weapon of 
choice for four-loop integrals, if the difficulties in obtaining efficient MB representations for 
non-planar integrals without hidden singularities can be resolved. See [19], page 124, for a brief 
description of the problem. Progress in obtaining up to and including some three-loop non-planar 
representations in an automatic way was reported in [73]. This may be used, at least in principle, 
to obtain MB representations for those integral topologies containing either a bubble or a triangle 
with two on-shell legs.

We mostly explored numerical integration using sector decomposition [74]. In general, this 
is a method to turn a highly divergent integral into a sum over finite integrals, by resolving the 
singularities of the Feynman parameter integral. These finite integrals can then be integrated, 
for instance, using the CUBA library [75]. We are aware of three different implementations of 
this idea in public codes: sector_decomposition [76], SecDec [77–79] and FIESTA
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[80–82]. Only the latter program in its latest versions (3.x) was able to handle some of the most 
difficult integrals of the problem at hand.

5.1. Relevant implementation details

There are various strategies for resolving the singularities of a given Feynman integral. 
FIESTA offers a choice of these. Most relevant here are strategies S [80] and X [74]. Strat-
egy KU [83], which, in principle, is highly efficient in terms of sectors, did not resolve any of the 
sectors of the most complicated integrals (the corner integral of topology 25) in either of its three 
variants and was not pursued further. Strategy X, if it terminates, tends to yield better results in 
terms of the number of sectors than strategy S.

FIESTA splits the Feynman parameter integral in equation (9) into different primary sectors. 
In each primary sector, one particular Feynman parameter is smaller than the others. If the inte-
grand is invariant under a permutation of the α parameters, then these primary sectors may be 
related. A particular permutation symmetry of the α parameters descends from the parent graph. 
This symmetry may then be used to reduce the computational workload. Let us recall the sym-
metry property of the scalar integral of topology 26 given in equation (11). From its orbits of the 
permutation group in equation (12),

{{1,2,7,8}, {3,6,9,12}, {4,10}, {5,11}}, (28)

we can see that, instead of computing primary sectors 1, 2, 7 and 8 separately, one better just 
computes one of these, as the others will give the same numerical answer. In practice, it can 
matter which coefficient is picked, since the structure of the integrand for the α parameters is 
different; this can result in different numbers of sectors.

The integration time varies; for integrals with twelve propagators, the preparation time alone 
is typically measured in days to weeks. By contrast, all integrals with less than eleven propagators 
are highly tractable using FIESTA, typically requiring less than a day.

5.2. Quadratic-numerator integral in topology 26

The quadratic-numerator integral in topology 26 is naively expected to be one of the hard-
est integrals in the full set. It can be integrated using FIESTA. Integral topology 26 has two 
permutation symmetries, see equation (10). To make use of this, one needs to pick a symmet-
ric quadratic numerator. That is, one needs a numerator which is mapped to itself under both 
symmetries and which is related to the quadratic-numerator master integral in the output of Re-
duze by IBP reduction. Moreover, to facilitate the computation of the double derivative in the 
α parametrization, it is advantageous to pick a numerator that is linear in the loop momenta. It is 
easy to check that

(l3 · (p1 − p2))
2 (29)

transforms into itself under the symmetries in equation (10). We checked that this is related to 
the quadratic master integral from the explicit IBP reduction. With the symmetries in place, one 
only needs to compute four out of twelve primary-sector coefficients in FIESTA. We picked the 
coefficients {4, 0, 4, 2, 2, 0, 0, 0, 0, 0, 0, 0} for the order of propagators in equation (7), basically 
choosing the lowest from the orbits in equation (28).
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The resulting integral can be integrated with some numerical effort, giving the result

INT26[(l3 · (p1 − p2))
2] = (−0.032986 ± 2 · 10−7) ε−8 + (0.0694456 ± 1.01 · 10−5) ε−7

+ (1.3506 ± 0.0002) ε−6 + (−2.68804 ± 0.00317) ε−5

+ (−6.23707 ± 0.04013) ε−4 + (12.6763 ± 2.0782) ε−3

+ (1234.49 ± 32.97) ε−2 +O(ε−1). (30)

Preparing for the numerical integration takes about five days. The integration time itself strongly 
depends on the integration parameters in the Vegas integration algorithm of the CUBA library.13

We checked by running with different numbers of evaluation points that the first five coefficients 
are numerically stable under variations of the relevant parameters, especially maxeval. In other 
words, it is likely that their errors are in the reported ranges.

6. Summary and discussion

In this paper, we obtained an explicit integral reduction for the four-loop Sudakov form factor 
in N = 4 SYM based on the integrand result in [13] and by exploiting the Reduze package [20]. 
This reduces the challenging four-loop problem, in particular the computation of the unknown 
non-planar cusp anomalous dimension, down to the evaluation of an explicit set of given master 
integrals.

We also obtained master integrals by using the algebraic method introduced in [21]. This pro-
vides a first non-trivial implementation of the method to a complete observable. Limits of the
Mint package and their resolutions are explained. The resulting integrals are, with some qual-
ifications, the master integrals of quite generic form factors. For instance, they are expected to 
cover all integrals which appear in the QCD result. By comparing with the results of IBP reduc-
tion, we found interesting mismatches, namely, existing masters integrals from IBP reduction are 
taken to be reducible by the Mint package. It would be important to understand the reason of 
this discrepancy.

Based on the reduction result, we furthermore observed surprising cancellations in the form 
factor. First, the form factor integrand obtained in [13] contains a free parameter. While it was un-
clear whether this parameter could be uniquely fixed by further physical constraints, we showed 
that the terms depending on this parameter all magically cancel upon using IBP identities. There-
fore, this parameter is truly free and gives the first example of a color-kinematic-dual integrand 
with such a free parameter. Furthermore, two integrals, corresponding to topologies 18 and 20, 
turn out to be exactly zero, which is not obvious at all at the integrand level. It would be very 
interesting to have a physical understanding of these intriguing cancellations.

What remains to be done is to compute the master integrals. However, for many of them, this 
is currently just out of reach for publicly available (implementations of) integration methods. 
There is an important analogue to the three-loop case, which we would like to draw attention 
to. In that case, a reduction to master integrals was obtained in [4]. Their integration was first 
performed almost three years later in [3], using partly numerical methods. An analytic result was 
then reported in [84], with an important cross-check in [85]. Currently, the three-loop form factor 
integrals often appear as an example application of new integration and organization methods, 
e.g. in [86,87].

13 A brief exploration of the other algorithms in the CUBA library quickly shows that Vegas is the optimal choice here, 
as for both time and accuracy.
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A new feature in the four-loop case is the appearance of several master integrals beyond 
corner integrals. These can be taken to be either doubled-up propagators or single numerators. 
The latter can, in principle, be traded for higher-dimensional scalar integrals using the Feynman 
parametrization in equation (9). The problem is that these scalar integrals feature four dots: there 
is a sum over integrals with four doubled-up propagators. Without an IBP reduction of these 
integrals down to the basis, this is an unpractical result. An explicit IBP reduction with up to 
four dots would enable the use of several methods. For instance, one could use dimensional 
recurrences [88] to either compute the integrals numerically [89] or to express the form factor 
in terms of a quasi-finite basis [87]. An explicit quasi-finite integral reduction for the three-loop 
form factor has been announced [90]. The needed IBP reductions at four loops seem very hard 
to obtain within the current version of Reduze and simply out of reach for anything else on the 
public market. See [91] for a proposal of an improved algorithm which is particularly suitable 
for single-scale reduction problems.

There is a practical issue when calculating the form factor which concerns the choice of master 
integrals. There are several choices of master integrals one could make as for both linear numer-
ators and doubled propagators. Which one to choose should then be guided by integrability, i.e. 
by which of these choices they can actually be integrated. Moreover, as for numerical evaluation, 
there are issues of precision and speed to be considered. One would expect doubled-up propa-
gators to give simpler Feynman parameter integrals, while linear numerators tend to give less 
divergent coefficients. A canonical example of the two choices are the master integrals of the 
double-box-integral topology. One can either choose a doubled-propagator basis element, as first 
done in [92]. Alternatively, one can use a linear-numerator integral, as in [93]. The latter has a 
less divergent prefactor as a function of ε. Which choice is the more practical must be decided 
on a case-by-case basis though: we observed cases where no difference in expansion order is 
present.

There are various other avenues to be explored which may lead to a full computation of the 
cusp anomalous dimension through the form factor route. One would be to explore MB repre-
sentations of four-loop non-planar integrals. An obstacle here is that naive implementations of 
this idea quickly lead to high-order MB representations containing an order of one hundred MB 
integrations. Any algorithm which could curb this number would offer a way forward. While 
numerical evaluation may have the precision issue, analytic methods would be more desirable. 
Linearly reducible integrals may be evaluated analytically by HypInt [94]. This works partic-
ularly efficiently for integrals of less singular behavior [87]. An alternative route for computing 
the cusp anomalous dimension is to extend integration techniques based on differential equa-
tions [95] to form factors by making one extra leg off-shell and then taking the massless limit. 
Controlling this limit after integration might also be an obstacle. Apart from that, IBP reduc-
tion, a necessary step in constructing the differential equation, would be more challenging for 
deformed integrals. See [86] for an application to the three-loop case.
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Appendix A. Three-loop form factor check

The three-loop form factor was first computed in [3]; we started from the expression obtained 
in [13], which can be shown to be equivalent. The problem consists of six integrals with at most a 
single numerator. The integrals contain nine propagators, and three additional numerators have to 
be specified to obtain a definite basis. Five of these integrals have a single permutation symmetry.

IBP reduction using Reduze on a part of our local computing cluster running in parallel 
mode took about 1.5 days. The reduction yielded a set of master integrals, the most complicated 
of which indeed correspond to those obtained in [4]. These integrals were then computed using
FIESTA, running for a few days with their standard precision setting. The result for the form 
factor is

F
(3)
2,num = −0.166606

ε6
− 0.00012

ε5
+ 0.00054

ε4
+ 1.10182

ε3
+ 0.93788

ε2
+ O

(
1

ε

)
, (A.1)

which is to be compared to the known result, e.g. from [5],

F
(3)
2,exact = − 1

6 ε6
+ 11ζ(3)

12 ε3
+ 247π4

25 920 ε2
+ O

(
1

ε

)
. (A.2)

The difference between the exact answer and the numerical approximation is


F
(3)
2 = 0.000060

ε6
− 0.00012

ε5
+ 0.00054

ε4
− 0.00006

ε3
+ 0.00964

ε2
+ O

(
1

ε

)
. (A.3)

Note that the final coefficient is only off by about one percent. With more numerical effort, this 
could be brought down more. For the purposes of this article, it is important that the calculational 
pipeline works, at least in principle.

Appendix B. Alternative choice of numerators

The following choice of numerator factors for master integrals optimizes the power series 
expansions of the coefficients to some extent. This choice is guided by the following principles:

• choose the numerators linear in the loop momenta to minimize the complexity of the Feyn-
man parameter integrals;

• when expressed in the master integral basis preferred by Reduze, the coefficient of the 
linear-numerator master integral comes with a negative power of ε if possible;

• when expressed in the master integral basis preferred by Reduze, the coefficient of the 
scalar version of the linear-numerator master integral comes with a negative power of ε;

• preserve permutation symmetry if possible.

This leads to the following list, where the coordinates are in the basis of the integral topologies 
given in Appendix C:

INT[30, {1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0},p2 · l5],
INT[3, {1,0,0,1,0,1,1,0,1,1,0,1,0,1,1,1,1,1},p1 · (l3 − l5)],
INT[28, {1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0},p2 · l5],
INT[26, {1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0},p1 · l4],
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INT[25, {1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0}, (p2 − p1) · l3],
INT[23, {1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0},p2 · l5],
INT[20, {1,0,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0},p2 · (l5 + l6 − l3)],
INT[17, {1,0,1,1,1,1,1,1,1,1,1,1,0,0,0,1,0,0},p2 · (l3 − l5)],
INT[11, {1,0,1,1,1,1,1,1,0,1,1,1,0,0,1,0,0,1},p1 · l5],
INT[5, {1,0,1,1,1,1,1,1,1,1,1,1,0,0,1,0,0,0}, (p2 − p1) · l3],
INT[4, {1,0,1,1,1,1,1,1,1,1,0,1,1,1,0,0,0,0},p1 · l3],
INT[3, {1,1,0,1,1,1,1,0,1,1,0,1,0,1,1,0,1,0},p2 · (l4 − l5)],
INT[2, {0,0,1,1,1,1,1,1,1,1,1,1,0,0,1,1,0,0},p1 · l3].

This choice leads to a significant reduction in the IBP computational workload, at the expense of 
introducing non-symmetric numerators.

Appendix C. Basis

This appendix contains the main basis used in the reduction. The numbering of the equations 
corresponds to the topologies in [13]. In each case, the twelve entries given in the first line 
parametrize the twelve propagators of the respective integral and the six entries in the second line 
the chosen numerators. Note that the numerators do not respect the symmetries of the diagram 
topology corresponding to the first twelve propagators, with the exception of topology 1. We 
have defined q = p1 + p2.

{l6, l5, l4, l3, l6 − l5, l4 − l3, p1 − l6, l5 − l4, −l6 + q, −l4 + q, −l3 + q, −l5 + q,

l3 − l5, l3 − l6, l4 − l6, l3 − p2, l4 − p2, l5 − p2}, (C.1)

{l6, l5, l4, l3, l5 − l4, l6 − l5, p1 − l6, l3 − l4, −l3 + q, −l6 + q, −l5 + q, −l3 + l4 − l5 + q,

l3 − l5, l3 − l6, l4 − l6, l4 − p1, l5 − p2, l3 − p2}, (C.2)

{l6, l5, l4, l3, l4 − l3, l4 − l5, l6 − l5, p1 − l6, −l4 + q, −l6 + q, −l3 + q, −l4 + l5 − l6 + q,

l5 − p1, l3 − p2, l4 − p2, l5 − p2, l3 − l5, l3 − l6}, (C.3)

{l6, l5, l4, l3, p1 − l6, l4 − l3, l5 − l6, l5 − l4, −l5 + l6 + p2, −l5 + q, −l3 + q, −l4 + q,

l3 − l5, l3 − l6, l4 − l6, l3 − p2, l4 − p2, l6 − p2}, (C.4)

{l6, l5, l4, l3, l3 − l4, l5 − l4, p1 − l6, l5 − l6, −l5 + q, −l5 + l6 + p2, −l3 + q, −l3 + l4 − l5 + q,

l3 − p2, l3 − l6, l4 − l6, l4 − p1, l4 − p2, l6 − p2}, (C.5)

{l6, l5, l4, l3, p1 − l5, l4 − l5, l4 − l3, p2 − l6, −l3 + q, −l4 + q, −l4 − l6 + q, −l5 − l6 + q,

l3 − l5, l3 − l6, l4 − l6, l5 − l6, l3 − p2, l4 − p2}, (C.6)

{l6, l5, l4, l3, p1 − l5, l4 − l5, l4 − l3, p2 − l6, −l4 + q, −l4 + l5 + l6, −l3 + q, −l5 − l6 + q,

l3 − l5, l3 − l6, l5 − l6, l3 − p2, l4 − p2, l5 − p2}, (C.7)

{l6, l5, l4, l3, p2 − l6, l4 − l5, l4 − l3, p1 − l5, −l4 + q, −l3 + q, −l4 − l6 + q, l4 − l5 + l6 − p2,

l3 − l5, l3 − l6, l4 − l6, l5 − l6, l3 − p2, l5 − p2}, (C.8)

{l6, l5, l4, l3, l4 − l3, p1 − l5, l4 − l5, −l5 + q, −l3 + q, −l4 − l6 + q, l5 + l6 − q, −l3 − l6 + q,
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l3 − l5, l3 − p2, l4 − p2, l4 − l6, l5 − l6, l6 − p2}, (C.9)

{l6, l5, l4, l3, l4 − l5, p1 − l5, l3 − l4, l3 − l4 + l6, −l3 + q, −l5 + q, −l3 − l6 + q, l3 − l4 + l5 + l6 − q,

l5 − l6, p2 − l6, l3 − l5, l4 − p2, l3 − p2, l4 − l6}, (C.10)

{l6, l5, l4, l3, l4 − l5, p1 − l5, l4 − l3, −l3 + q, −l5 + q, l5 + l6 − q, −l3 − l6 + q, l3 − l4 + l5 + l6 − q,

l3 − l5, l3 − p2, l4 − p1, l4 − p2, l5 − l6, l6 − p2}, (C.11)

{l6, l5, l4, l3, p2 − l6, p1 − l5, l3 − l4, l5 − l4, −l3 + q, −l4 + l5 + l6, −l5 − l6 + q, −l3 + l4 − l5 − l6 + q,

l3 − l6, l5 − p2, l3 − p2, l4 − p1, l4 − p2, l6 − p1}, (C.12)

{l6, l5, l4, l3, l3 − l4, p2 − l6, p1 − l4, l6 − l5, −l3 + q, −l4 − l6 + q, −l3 − l5 + q, −l4 − l5 + q,

l3 − l6, l3 − p2, l4 − p2, l5 − p1, l5 − p2, l6 − p1}, (C.13)

{l6, l5, l4, l3, p2 − l6, p1 − l4, l3 − l4, l6 − l5, −l3 + l4 + l5, −l3 + q, −l4 − l5 + q, −l4 − l6 + q,

l4 − l5, l3 − l6, l4 − l6, l3 − p2, l4 − p2, l5 − p2}, (C.14)

{l6, l5, l4, l3, p2 − l6, p1 − l4, l3 − l4, l5 − l6, −l3 + q, −l4 − l5 + l6 + p1, −l3 − l5 + q, −l4 − l5 + q,

l3 − l6, l3 − p2, l4 − p2, l5 − p1, l5 − p2, l6 − p1}, (C.15)

{l6, l5, l4, l3, p2 − l6, p1 − l4, l6 − l5, l3 − l4, −l3 + q, l3 − l4 + l5 − l6, −l3 − l5 + q, −l4 − l6 + q,

l3 − l6, l3 − p2, l4 − l5, l4 − p2, l5 − p1, l6 − p1}, (C.16)

{l6, l5, l4, l3, p2 − l6, l5 − l4, p1 − l5, l4 − l3, −l3 + q, −l5 − l6 + q, −l3 + l4 − l5 + q, −l3 + l4 − l5 − l6 + q,

l3 − p2, l4 − l6, l5 − p2, l4 − p1, l4 − p2, l6 − p1}, (C.17)

{l6, l5, l4, l3, p1 − l5, p2 − l6, l3 − l4, l5 − l4, l3 − l4 − l6, −l3 + q, −l3 + l4 − l5 + q, −l3 + l4 − l5 + l6 + p1,

l3 − p2, l3 − l5, l4 − l6, l4 − p2, l5 − p2, l6 − p1}, (C.18)

{l6, l5, l4, l3, p2 − l6, p1 − l5, l4 − l5, l3 − l4, −l4 + l5 + l6, −l3 + q, −l3 + l5 + l6, −l5 − l6 + q,

l3 − l6, l5 − l6, l4 − p1, l3 − p2, l4 − p2, l5 − p2}, (C.19)

{l6, l5, l4, l3, p2 − l6, l4 − l3, p1 − l5, l5 − l4, −l3 + l5 + l6, −l3 + q, −l3 + l4 + l6, −l5 − l6 + q,

l4 − l6, l5 − l6, l4 − p1, l3 − p2, l4 − p2, l5 − p2}, (C.20)

{l6, l5, l4, l3, p1 − l4, l3 − l4, p2 − l6, l5 + l6, −l4 − l5 + p1, −l3 + q, −l3 + l6 + p1, −l3 − l5 + p1,

l3 − p2, l4 − p2, l5 − p2, l6 − p1, l4 − l6, l3 − l5}, (C.21)

{l6, l5, l4, l3, l3 − l4, l5 + l6, p2 − l6, p1 − l4, −l3 + l6 + p1, −l3 + q, −l4 − l5 + p1, −l3 + l4 + l5 + l6,

l3 − l5, l3 − p2, l4 − p2, l5 − p1, l5 − p2, l6 − p1}, (C.22)

{l6, l5, l4, l3, l6 − p2, p1 − l4, l6 − l5, l3 − l4, −l3 + q, l3 − l4 − l5, −l3 + l6 + p1, −l3 + l5 + p1,

l3 − p2, l4 − p2, l5 − p1, l6 − p1, l5 − p2, l4 − l6}, (C.23)

{l6, l5, l4, l3, p2 − l6, l5 + l6, l3 − l4, p1 − l4, −l3 − l5 + p1, −l4 − l5 + p1, −l3 + q, −l3 − l5 − l6 + q,

l3 − p2, l4 − l6, l4 − p2, l5 − p1, l5 − p2, l6 − p1}, (C.24)

{l6, l5, l4, l3, p1 − l5, l5 − l4, p2 − l6, l3 − l4, −l4 + l5 + l6, −l3 + q, −l3 + l4 − l5 + p1, −l3 + l4 − l5 − l6 + q,

l3 − l5, l3 − l6, l5 − l6, l4 − p1, l4 − p2, l5 − p2}, (C.25)

{l6, l5, l4, l3, l5 − l4, l3 − l4, p1 − l5, p2 − l6, −l4 + l5 + l6, −l3 + q, l3 − l4 + l6 − p2,−l3 + l4 − l5 − l6 + q,

l3 − l5, l3 − l6, l5 − l6, l4 − p1, l4 − p2, l5 − p2}, (C.26)
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{l6, l5, l4, l3, l5 + l6, p2 − l6, p1 − l4, l3 − l4, −l4 − l5 + p1, −l3 + q, −l3 + l4 + l5 + p2, −l3 + l4 + l5 + l6,

l4 − l6, l3 − p2, l4 − p2, l5 − p1, l5 − p2, l6 − p1}, (C.27)

{l6, l5, l4, l3, l3 − l4, p1 − l4, p2 − l6, l5 − l6, −l3 + q, l3 − l4 + l5 − p2, −l3 − l5 + q, −l3 + l4 − l6 + p2,

l3 − p2, l4 − l5, l4 − l6, l4 − p2, l5 − p2, l6 − p1}, (C.28)

{l6, l5, l4, l3, p1 − l4, l4 − l3, p2 − l6, l5 + l6, −l4 − l5 + p1, −l3 + q, −l3 + l4 − l6 + p2, −l3 − l5 − l6 + q,

l3 − p2, l4 − l6, l4 − p2, l5 − p1, l5 − p2, l6 − p1}, (C.29)

{l6, l5, l4, l3, l3 − l4, l5 + l6, p2 − l6, p1 − l4, −l3 + q, −l4 − l5 + p1, −l3 + l4 + l5 + p2, −l3 + l4 − l6 + p2,

l3 − p2, l4 − l6, l4 − p2, l5 − p1, l5 − p2, l6 − p1}, (C.30)

{l6, l5, l4, l3, l3 − p1, p2 − l6, l5 + l6, l4 − l5 − p2, −l3 − l5 + p1, −l3 + q, l4 + l6 − p2, −l3 − l4 + q,

l3 − l6, l4 − p1, l4 − p2, l5 − p1, l5 − p2, l6 − p1}, (C.31)

{l6, l5, l4, l3, l3 − p1, p2 − l6, l5 + l6, −l3 − l5 + p1, −l4 + l5 + p2, −l3 + q, l4 − l5 − l6, −l3 − l4 + q,

l3 − l6, l4 − p1, l4 − p2, l5 − p1, l5 − p2, l6 − p1}, (C.32)

{l6, l5, l4, l3, p2 − l6, l5 + l6, l3 − p1, −l3 + q, l4 + l6 − p2, −l3 − l4 + q, l4 + l5 + l6 − p2, −l3 − l4 − l5 − l6 + q,

l3 − l6, l4 − p1, l4 − p2, l5 − p1, l5 − p2, l6 − p1}, (C.33)

{l6, l5, l4, l3, p2 − l6, l3 − p1, l5 + l6, l4 + l6 − p2, −l3 − l5 + p1, −l3 + q, −l3 − l4 + q, −l3 − l4 − l5 − l6 + q,

l3 − l6, l4 − p1, l4 − p2, l5 − p1, l5 − p2, l6 − p1}. (C.34)

Appendix D. List of ancillary files

• List of master integrals appearing in the form factor obtained by Reduze
• List of master integrals as suggested by Mint
• IBP reduction of all integrals appearing in integral topology 25 for the N = 4 SYM form 

factor

Appendix E. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.nuclphysb.2015.11.016.
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