Chart description for genus-two Lefschetz fibrations and a theorem on their stabilization

Seiichi Kamada
Department of Mathematics, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

A R T I C L E I N F O

Keywords:

Chart
Lefschetz fibration
Stabilization

Abstract

Chart descriptions are a graphic method to describe monodromy representations of various topological objects. Here we introduce a chart description for genus-two Lefschetz fibrations, and show that any genus-two Lefschetz fibration can be stabilized by fiber-sum with certain basic Lefschetz fibrations.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Chart descriptions were originally introduced in order to describe 2-dimensional braids in [5,6] (cf. [7]). In [9], a chart description for genus-one Lefschetz fibrations was introduced and an elementary proof of Matsumoto's classification theorem was given. At the third JAMEX meeting in Oaxaca, Mexico, 2004, the author generalized it to a method describing any monodromy representation [8]. Here we introduce a chart description for genus-two Lefschetz fibrations, and show that any genus-two Lefschetz fibration can be stabilized by fiber-sum with certain basic Lefschetz fibrations. Our result was partially announced at 'The Second East Asia School of Knots and Related Topics in Geometric Topology' in Dalian, China, 2005.

2. Lefschetz fibrations

Let M and B be compact, connected, and oriented smooth 4-manifold and 2-manifold, respectively. Let $f: M \rightarrow B$ be a smooth map with $\partial M=f^{-1}(\partial B)$. A critical point p is called a Lefschetz singular point of positive type (or of negative type, respectively) if there exist local complex coordinates z_{1}, z_{2} around p and a local complex coordinate ξ around $f(p)$ such that f is locally written as $\xi=f\left(z_{1}, z_{2}\right)=z_{1} z_{2}$ (or $\bar{z}_{1} z_{2}$, resp.). We call f a (smooth or differentiable) Lefschetz fibration if all critical points are Lefschetz singular points and if there exists exactly one critical point in the preimage of each critical value.

A general fiber is the preimage of a regular value of f. A singular fiber of positive type (or negative type, resp.) is the preimage of a critical value which contains a Lefschetz singular point of positive type (or negative type, resp.). A singular fiber is obtained by shrinking a simple loop, called a vanishing cycle, on a general fiber. In this paper we assume that a Lefschetz fibration is 'relatively minimal', i.e., all vanishing cycles are essential loops. We say that a singular fiber is of type I or of type II if the vanishing cycle is a non-separating loop or a separating loop, respectively.

A singular fiber is of type I^{+}if it is of type I and of positive type. Similarly type I^{-}, type II^{+}type II^{-}are defined. We denote by $n_{\mathrm{I}}^{+}(f), n_{\mathrm{I}}^{-}(f), n_{\mathrm{II}}^{+}(f)$, and $n_{\mathrm{II}}^{-}(f)$, the numbers of singular fibers of f of type $\mathrm{I}^{+}, \mathrm{I}^{-}, \mathrm{II}^{+}$, and II^{-}, respectively. A Lefschetz fibration is called irreducible if every singular fiber is of type I, i.e., $n_{\text {II }}^{+}(f)=n_{\text {II }}^{-}(f)=0$. A Lefschetz fibration is called chiral or symplectic if every singular fiber is of positive type, i.e., $n_{\mathrm{I}}^{-}(f)=n_{\mathrm{II}}^{-}(f)=0$.

[^0]

Fig. 1. Loops.

Let $f: M \rightarrow B$ be a Lefschetz fibration, and $\Delta=\left\{q_{1}, \ldots, q_{n}\right\}$ the set of critical values. Let $\rho: \pi_{1}\left(B \backslash \Delta, q_{0}\right) \rightarrow M C$ be the monodromy representation of f, where q_{0} is a base point of $B \backslash \Delta$ and $M C$ is the mapping class group of the fiber $f^{-1}\left(q_{0}\right)$. Consider a Hurwitz arc system for Δ, say $\mathcal{A}=\left(A_{1}, \ldots, A_{n}\right)$; each A_{i} is an embedded arc in B connecting q_{0} and a point of Δ such that $A_{i} \cap A_{j}=\left\{q_{0}\right\}$ for $i \neq j$, and they appear in this order around q_{0}. When B is a 2 -sphere or a 2-disk, the system \mathcal{A} determines a system of generators of $\pi_{1}\left(B \backslash \Delta, q_{0}\right)$, say $\left(a_{1}, \ldots, a_{n}\right)$. We call $\left(\rho\left(a_{1}\right), \ldots, \rho\left(a_{n}\right)\right)$ a Hurwitz system of f. For details on Lefschetz fibrations and Hurwitz systems, refer to [1,4,10-17], etc.

3. Main result

Let $\zeta_{i}(i=1, \ldots, 5)$ be positive Dehn twists along the loops $C_{i}(i=1, \ldots, 5)$ illustrated in Fig. 1. The mapping class group $M C$ of a genus-two Riemann surface is generated by $\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}$, and the following relations are defining relations (cf. [3]).

$$
\begin{align*}
& \zeta_{i} \zeta_{j}=\zeta_{j} \zeta_{i} \quad \text { if }|i-j| \geqslant 2 \tag{1}\\
& \zeta_{i} \zeta_{i+1} \zeta_{i}=\zeta_{i+1} \zeta_{i} \zeta_{i+1} \quad \text { for } i=1, \ldots, 4 \tag{2}\\
& \iota^{2}=1 \quad \text { where } \iota=\zeta_{1} \zeta_{2} \zeta_{3} \zeta_{4} \zeta_{5}^{2} \zeta_{4} \zeta_{3} \zeta_{2} \zeta_{1}, \tag{3}\\
& \left(\zeta_{1} \zeta_{2} \zeta_{3} \zeta_{4} \zeta_{5}\right)^{6}=1 \tag{4}\\
& \iota \zeta_{i}=\zeta_{i} \iota \quad \text { for } i=1, \ldots, 5 \tag{5}
\end{align*}
$$

Let σ be a positive Dehn twist along the loop S illustrated in Fig. 1. Then $\sigma=\left(\zeta_{1} \zeta_{2}\right)^{6}$.
If (g_{1}, \ldots, g_{n}) is a Hurwitz system of a genus-two Lefschetz fibration, then each g_{j} is a conjugate of ζ_{i} or ζ_{i}^{-1}, or a conjugate of σ or σ^{-1}.

Now we define basic Lefschetz fibrations.

Definition 1. ([1,2,13,17]) Basic Lefschetz fibrations, $f_{0}, f_{1}, f_{2}, f_{1}^{\prime}$ and f_{2}^{\prime}, are Lefschetz fibrations over S^{2} whose Hurwitz systems are
(1) $W_{0}=(T)^{2}$ where $T=\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}, \zeta_{5}, \zeta_{4}, \zeta_{3}, \zeta_{2}, \zeta_{1}\right)$,
(2) $W_{1}=\left(\zeta_{1}, \zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{5}\right)^{6}$,
(3) $W_{2}=\left(\sigma,\left(\zeta_{3}, \zeta_{4}, \zeta_{5}, \zeta_{2}, \zeta_{3}, \zeta_{4}, \zeta_{1}, \zeta_{2}, \zeta_{3}\right)^{2}, T\right)$,
(4) $W_{1}^{\prime}=\left(\zeta_{1}, \zeta_{1}^{-1}\right)$,
(5) $W_{2}^{\prime}=\left(\sigma, \sigma^{-1}\right)$,
respectively.
For example, f_{0} has 20 singular fibers, which are of type I^{+}. Thus f_{0} is chiral and irreducible.

LF	\# of sing. fib.			Chiral	Irreducible	
	n_{I}^{+}	n_{I}^{-}	n_{II}^{+}	n_{II}^{-}		
f_{0}	20	0	0	0	\bigcirc	\bigcirc
f_{1}	30	0	0	0	\bigcirc	\bigcirc
f_{2}	28	0	1	0	\bigcirc	\times
f_{1}^{\prime}	1	1	0	0	\times	\bigcirc
f_{2}^{\prime}	0	0	1	1	\times	\times

For two Lefschetz fibrations f and f^{\prime} over S^{2}, we denote by $f \# f^{\prime}$ the fiber-sum of f and f^{\prime}. By \#mf for a positive integer m, we mean the fiber-sum of m copies of f.

Theorem 2. Let f be a genus-two Lefschetz fibration over S^{2}. Suppose that $n_{\mathrm{II}}^{+}(f) \geqslant n_{\mathrm{II}}^{-}(f)$. Then
(1) $\mathcal{E}(f):=n_{\mathrm{I}}^{+}(f)-n_{\mathrm{I}}^{-}(f)-28\left(n_{\mathrm{II}}^{+}(f)-n_{\mathrm{II}}^{-}(f)\right)$ is a multiple of 10 .
(Hence we can define the parity, $\epsilon(f) \in\{0,1\}$, by $\epsilon(f) \equiv \mathcal{E}(f) / 10 \bmod 2$.)
(2) There exists a positive integer m_{0} such that for any integer $m \geqslant m_{0}$,

$$
f \# m f_{0} \cong \#(a+m) f_{0} \# b f_{1} \# c f_{2} \# d f_{1}^{\prime} \# e f_{2}^{\prime}
$$

for some non-negative integers a, b, c, d and e.
(3) In (2), it holds that $c=n_{\mathrm{II}}^{+}(f)-n_{\mathrm{II}}^{-}(f), d=n_{\mathrm{I}}^{-}(f)$ and $e=n_{\mathrm{II}}^{-}(f)$. Although a and b are not determined uniquely, we can take $b=\epsilon(f) \in\{0,1\}$, and then $a=(\mathcal{E}(f)-30 \epsilon(f)) / 20$.
(4) If $n_{\mathrm{II}}^{-}(f)=0$, then we may take m_{0} in (2) to be $n_{\mathrm{I}}^{-}(f)+2 n_{\mathrm{II}}^{+}(f)+1$.

Remark 3. If f is chiral and irreducible, then $n_{\mathrm{I}}^{-}(f)=n_{\mathrm{II}}^{+}(f)=n_{\mathrm{II}}^{-}(f)=0$ and by (4) we may assume $m_{0}=1$. Thus, we have

$$
f \# f_{0} \cong \#(a+1) f_{0} \# b f_{1}
$$

This is due to B. Siebert and G. Tian [17]. Our proof concerning the assertion (4) of Theorem 2 is based on their result. In Section 7, we observe that Theorem 2 except the assertion (4) can be proved without Siebert and Tian's result.

If f is chiral, then $n_{\mathrm{I}}^{-}(f)=n_{\mathrm{II}}^{-}(f)=0$. By Theorem 2 , we have

$$
f \# m f_{0} \cong \#(a+m) f_{0} \# b f_{1} \# c f_{2}
$$

This is due to D. Auroux [1]. Here m is any integer with $m \geqslant 2 n_{\mathrm{II}}^{+}(f)+1$.

4. Chart description

In this section we introduce a chart description for genus-two Lefschetz fibrations. We use the terminologies on chart description in [8]. For simplicity's sake, we only consider genus-two Lefschetz fibrations over B such that ∂B is empty or connected, and if ∂B is not empty, we assume that the monodromy along ∂B is trivial. Unless otherwise stated, genus-two Lefschetz fibrations over B are assumed to be so.

Definition 4. ([7-9]) A chart in B is a finite graph Γ in B (possibly being empty or having hoops that are closed edges without vertices) whose edges are labeled with an element of $\{1,2,3,4,5, \sigma\}$, and oriented so that the following conditions are satisfied (see Fig. 2):
(1) The degree of each vertex is $1,4,6,20,30,22$ or 13.
(2) For a degree- 1 vertex, the adjacent edge is oriented outward or inward.
(3) For a degree-4 vertex, two edges in each diagonal position have the same label and are oriented coherently; and the labels i and j of the diagonals are in $\{1, \ldots, 5\}$ with $|i-j|>1$.
(4) For a degree-6 vertex, the six edges are alternately labeled i and j in $\{1, \ldots, 5\}$ with $|i-j|=1$; and three consecutive edges are oriented outward while the other three are oriented inward.
(5) For a degree-20 vertex, the edges are labeled with $(1,2,3,4,5,5,4,3,2,1)^{2}$; and all edges are oriented outward or all edges are oriented inward.
(6) For a degree- 30 vertex, the edges are labeled with $(1,2,3,4,5)^{6}$ in a counterclockwise direction (or clockwise direction, resp.); and all edges are oriented outward (or inward, resp.).
(7) For a degree-22 vertex, the edges are labeled with ($1,2,3,4,5,5,4,3,2,1, i)^{2}$ in a counterclockwise direction where $i \in\{1, \ldots, 5\}$; and the first 11 edges are oriented outward and the latter ones are oriented inward.
(8) For a degree-13 vertex, the edges are labeled with $\left((1,2)^{6}, \sigma\right)$ in a counterclockwise direction (or clockwise direction, resp.); and the edges with labels 1 and 2 are oriented outward (or inward, resp.), and the edge with label σ is oriented inward (or outward, resp.).
(9) $\Gamma \cap \partial B=\emptyset$.
(10) Γ misses the base point $q_{0} \in B$.

Remark 5. When we would treat genus-two Lefschetz fibrations over B with $\partial B \neq \emptyset$ such that the monodromies along ∂B are not trivial, the condition (9) should be removed. See [8].

We call a degree-1 vertex a black vertex. We say that a chart is chiral if every black vertex has an adjacent edge oriented outward. We say that a chart is irreducible if there exist no edges with label σ.

For a chart Γ, let Δ_{Γ} be the set of black vertices. A chart Γ determines a homomorphism $\pi_{1}\left(B \backslash \Delta_{\Gamma}, q_{0}\right) \rightarrow M C$ as in [8]. By Theorem 5 of [8], we have the following theorem.

Fig. 2. Vertices of a chart.

(3)

Fig. 3. Some chart moves.
Theorem 6. Let f be a genus-two Lefschetz fibration over B, and let ρ be the monodromy representation. Then there is a chart Γ in B such that the monodromy representation ρ equals the homomorphism ρ_{Γ} determined by Γ.

A chart Γ as in Theorem 6 is called a chart description of f or a chart describing f. A chart Γ in D^{2} is also regarded as a chart in S^{2} in the trivial way.

We introduce some local moves on chart descriptions.
(C1) For a chart Γ, suppose that there exists a chart Γ^{\prime} and an embedded 2-disk, say E, in B such that (i) ∂E intersects with Γ and Γ^{\prime} transversely (or do not intersect with them) avoiding their vertices, (ii) Γ and Γ^{\prime} have no black vertices in E, and (iii) Γ and Γ^{\prime} are identical outside of E. Then we say that Γ^{\prime} is obtained from Γ by a C1-move.
(C2) For a chart, suppose that there is an edge e joining a degree- 4 vertex and a black vertex. Remove the edge e as in Fig. 3(1). We call this local move a C2-move.
(C3) For a chart, suppose that there is an edge e joining a degree-6 vertex and a black vertex. Suppose that e is neither the middle of three edges oriented outward nor the middle of the three edges oriented inward. Then, remove the edge as in Fig. 3(2). We call this local move a C3-move.
(C4) In a chart, suppose that there is an edge e joining a degree- 22 vertex and a black vertex. Suppose that e is one of the two edges labeled i in Fig. 2. Then, remove the edge as in Fig. 3(3). We call this local move a C4-move.

When $\partial B \neq \emptyset$ and the base point q_{0} is in ∂B, we introduce another move.
(C5) Suppose that $\partial B \neq \emptyset$ and $q_{0} \in \partial B$. Let Γ^{\prime} be a chart that is the union of a chart Γ and some hoops which are parallel to and sufficiently near ∂B. Then we say that Γ^{\prime} is obtained from Γ by a C5-move.

Definition 7. (1) Chart moves are C1-moves, C2-moves, C3-moves, C4-moves and their inverse moves.
(2) Two charts in B are said to be chart move equivalent (with respect to the base point q_{0}) if they are related by a finite sequence of chart moves and ambient isotopies of B rel q_{0}, where we assume that chart moves are applied in embedded 2-disks in B missing q_{0}.

Fig. 4. Chart moves.
(3) Two charts in B are said to be chart move equivalent up to conjugation (with respect to the base point q_{0}) if they are related by a finite sequence of chart moves, C5-moves and ambient isotopies of B rel q_{0}. (It is not necessary to assume that chart moves are applied in embedded 2-disks in B missing q_{0}.)

We say that two monodromy representations $\rho: \pi_{1}\left(B \backslash \Delta, q_{0}\right) \rightarrow M C$ and $\rho^{\prime}: \pi_{1}\left(B \backslash \Delta^{\prime}, q_{0}\right) \rightarrow M C$ are equivalent if there is a diffeomorphism $h:\left(B, q_{0}\right) \rightarrow\left(B, q_{0}\right)$ which is isotopic to the identity map rel q_{0} such that $h(\Delta)=\Delta^{\prime}$ and $\rho=\rho^{\prime} \circ h_{*}$, where $h_{*}: \pi_{1}\left(B \backslash \Delta, q_{0}\right) \rightarrow \pi_{1}\left(B \backslash \Delta^{\prime}, q_{0}\right)$ is the induced isomorphism.

We say that two monodromy representations $\rho: \pi_{1}\left(B \backslash \Delta, q_{0}\right) \rightarrow M C$ and $\rho^{\prime}: \pi_{1}\left(B \backslash \Delta^{\prime}, q_{0}\right) \rightarrow M C$ are equivalent up to conjugation if there is an inner-automorphism of MC, say t, and there is a diffeomorphism $h:\left(B, q_{0}\right) \rightarrow\left(B, q_{0}\right)$ which is isotopic to the identity map rel q_{0} such that $h(\Delta)=\Delta^{\prime}$ and $\rho=t \circ \rho^{\prime} \circ h_{*}$.

C1-moves in this paper are called chart moves of type W in Definition 7 of [8]. C2-moves, C3-moves, C4-moves, C5-moves are not given explicitly in [8]. However, as shown in Figs. 22 and 23 of [8], C2-moves and C3-moves are equivalent to some local moves called chart moves of transition in Definition 14 of [8]. C4-moves are also equivalent to chart moves of transition in the sense of [8]. Thus, as stated in Section 8 of [8], we see that if two charts are chart move equivalent in our sense (Definition 7(2)) then the monodromy representations determined by them are equivalent. C5-moves are equivalent to chart moves of conjugacy in (3) and (4) of Fig. 17 of [8]. Again as in Section 7 of [8], we see that if two charts are chart move equivalent up to conjugation (Definition $7(3)$) then the monodromy representations determined by them are equivalent up to conjugation.

Thus we have the following.

Theorem 8. For two charts in B, if they are chart move equivalent (or chart move equivalent up to conjugation, resp.) then the monodromy representations determined by them are equivalent (or equivalent up to conjugation, resp.), and hence the Lefschetz fibrations described by them are isomorphic.

Remark 9. By Theorem 16 of [8], we see that two charts determine equivalent monodromy representations if and only if they are related by C1-moves (chart move of type W), chart moves of transition, and ambient isotopies of B rel q_{0}. It is unknown to the author whether all chart moves of transition are consequence of our chart moves.

We say that a black vertex of a chart Γ is of type I^{+}, type I^{-}, type II^{+}or type II^{-}if the adjacent edge is labeled in $\{1, \ldots, 5\}$ and oriented outward, if the adjacent edge is labeled in $\{1, \ldots, 5\}$ and oriented inward, if the adjacent edge is labeled σ and oriented outward, or if the adjacent edge is labeled σ and oriented inward, respectively.

When Γ is a chart description of a genus-two Lefschetz fibration $f: M \rightarrow B$, black vertices correspond to critical values of f, and the types of the vertices are the same with the types of the singular fibers over the corresponding critical values. For a chart Γ, we denote by $n_{\mathrm{I}}^{+}(\Gamma), n_{\mathrm{I}}^{-}(\Gamma), n_{\mathrm{II}}^{+}(\Gamma)$, and $n_{\mathrm{II}}^{-}(\Gamma)$, the numbers of black vertices of type I^{+}, type I^{-}, type II^{+} and type II^{-}, respectively. They are equal to $n_{\mathrm{I}}^{+}(f), n_{\mathrm{I}}^{-}(f), n_{\mathrm{II}}^{+}(f)$, and $n_{\mathrm{II}}^{-}(f)$, respectively.

If a chart Γ is irreducible, then it is obvious that $n_{\mathrm{II}}^{+}(\Gamma)=n_{\mathrm{II}}^{-}(\Gamma)=0$. The converse is not true. However we have the following.

Lemma 10. Every chart Γ with $n_{\mathrm{II}}^{+}(\Gamma)=n_{\mathrm{II}}^{-}(\Gamma)=0$ is chart move equivalent to an irreducible chart.
Proof. We can replace every hoop labeled σ into 12 parallel hoops with labels 1 or 2 by a chart move depicted in Fig. 4(1) followed by one in Fig. 4(2). Every edge labeled σ whose endpoints are degree-13 vertices is also removed by the latter move.

Proposition 11. A chiral (or irreducible, resp.) genus-two Lefschetz fibration has a chart description which is chiral (or irreducible, resp.).

Proof. If f is chiral, local monodromies around the critical values are all positive Dehn twists. By the definition of a chart description, the adjacent edges of the black vertices are oriented outward. Thus any chart description of f is chiral. If f is irreducible, local monodromies around the critical values are Dehn twists along non-separating simple loops, which are

Fig. 5. Charts $N_{0}, N_{1}, N_{2}, F_{1}$ and F_{2} describing $f_{0}, f_{1}, f_{2}, f_{1}^{\prime}$ and f_{2}^{\prime}.
conjugates of $\zeta_{1}, \ldots, \zeta_{5}$ and their inverses. Thus any chart description Γ of f satisfies $n_{\mathrm{II}}^{+}(\Gamma)=n_{\mathrm{II}}^{-}(\Gamma)=0$. By Lemma 10 , it changes to an irreducible one.

In Fig. 5, we show charts $N_{0}, N_{1}, N_{2}, F_{1}$ and F_{2} describing $f_{0}, f_{1}, f_{2}, f_{1}^{\prime}$ and f_{2}^{\prime}. We call N_{0} a (positive) nucleon of degree-20 and N_{1} a (positive) nucleon of degree-30. The region named M_{2} is an arbitrary chart consisting of edges with labels in $\{1, \ldots, 5\}$ and vertices whose degrees are in $\{4,6,20,22\}$. (There exists such a chart M_{2}, Lemma 14.) A free edge means a chart consisting two black vertices and a single edge connecting them. F_{1} and F_{2} are free edges.

Let Γ and Γ^{\prime} be charts in $B=D^{2}$. Divide D^{2} into 2-disks D_{1}^{2} and D_{2}^{2} by a properly embedded arc in D^{2}. Put a small copy of Γ in D_{1}^{2} and a small copy of Γ^{\prime} in D_{2}^{2}. We have a new chart in $D^{2}=D_{1}^{2} \cup D_{2}^{2}$. We call it the product of Γ and Γ^{\prime} and denote it by $\Gamma \oplus \Gamma^{\prime}$. We say that Γ is a factor of $\Gamma \oplus \Gamma^{\prime}$. The chart $\Gamma \oplus \Gamma^{\prime}$ is a chart description of the fiber sum $f \# f^{\prime}$ of the Lefschetz fibrations f and f^{\prime} described by Γ and Γ^{\prime}. We denote by $n \Gamma$ the product $\Gamma \oplus \cdots \oplus \Gamma$ of n copies of Γ. (When $B=D^{2}$, the fiber sum $f \# f^{\prime}$ of f and f^{\prime} over B is defined by using the boundary connected sum of the base spaces.)

Theorem 12. Let Γ be a chart in $B=D^{2}$. Suppose that $n_{\mathrm{II}}^{+}(\Gamma) \geqslant n_{\mathrm{II}}^{-}(\Gamma)$. Then there exists a positive integer m_{0} such that for any integer $m \geqslant m_{0}$, the chart $\Gamma \oplus m N_{0}$ is chart move equivalent to

$$
\Gamma^{\prime} \oplus\left(n_{\mathrm{II}}^{+}(\Gamma)-n_{\mathrm{II}}^{-}(\Gamma)\right) N_{2} \oplus n_{\mathrm{I}}^{-}(\Gamma) F_{1} \oplus n_{\mathrm{II}}^{-}(\Gamma) F_{2}
$$

for some chart Γ^{\prime} with $n_{\mathrm{I}}^{-}\left(\Gamma^{\prime}\right)=n_{\mathrm{II}}^{+}\left(\Gamma^{\prime}\right)=n_{\mathrm{II}}^{-}\left(\Gamma^{\prime}\right)=0$ such that Γ^{\prime} has N_{0} as a factor. Moreover if $n_{\mathrm{II}}^{-}(\Gamma)=0$, we may take m_{0} to be $n_{\mathrm{I}}^{-}(\Gamma)+2 n_{\mathrm{II}}^{+}(\Gamma)+1$.

We prove Theorem 12 in Section 5.
Corollary 13. Let f be a genus-two Lefschetz fibration over $B=D^{2}$ (or $\left.S^{2}\right)$ with $n_{\mathrm{II}}^{+}(f) \geqslant n_{\mathrm{II}}^{-}(f)$. Then there exists a positive integer m_{0} such that for any integer $m \geqslant m_{0}$, the fiber sum $f \# m f_{0}$ is equivalent to

$$
f^{\prime} \#\left(n_{\mathrm{II}}^{+}(f)-n_{\mathrm{II}}^{-}(f)\right) f_{2} \# n_{\mathrm{I}}^{-}(f) f_{1}^{\prime} \# n_{\mathrm{II}}^{-}(f) f_{2}^{\prime}
$$

for some chiral and irreducible genus-two Lefschetz fibration f^{\prime} over $B=D^{2}$ (or S^{2}) such that the monodromy representation of f^{\prime} is transitive. Moreover if $n_{\mathrm{II}}^{-}(f)=0$, we may take m_{0} to be $n_{\mathrm{I}}^{-}(f)+2 n_{\mathrm{II}}^{+}(f)+1$.

Lemma 14. There is a chart satisfying the condition of M_{2}.
Proof. See Fig. 6 where M_{3} and M_{4} are charts depicted in Figs. 7 and 8.

5. Proof of Theorem 12

Definition 15. A chart Γ in a 2-disk is nomadic with respect to a chart Γ_{0} in B if for any two regions of the complement $B \backslash \Gamma_{0}$, say R_{1} and R_{2}, the chart Γ_{0} together with a small copy of Γ in R_{1} is chart move equivalent to the chart Γ_{0} together with a small copy of Γ in R_{2}. A chart Γ in a 2-disk is nomadic if it is nomadic with respect to every chart.

Fig. 6. Chart M_{2}.

Fig. 7. Chart M_{3}.
Lemma 16. Let D be a 2-disk and B a compact, connected and oriented surface.
(1) Let Γ be a chart in D. If there is a 2 -disk U in D such that $\Gamma \cap U$ is as in Fig. 9(1), then Γ is nomadic.
(2) Let Γ_{0} be a chart in B. If there is a 2-disk U in B such that $\Gamma_{0} \cap U$ is as in Fig. 9(1), then any chart Γ in a 2-disk is nomadic with respect to Γ_{0}.

Proof. (1) First we consider a special case where Γ is as in Fig. 9(2). Let Γ_{0} be any chart in B, and put a small copy of Γ in a region of $B \backslash \Gamma_{0}$. As shown in Fig. 11, it can pass through any edge of Γ_{0} which is labeled in $\{1, \ldots, 5\}$. For an

Fig. 8. Chart M_{4}.

Fig. 9. Nomadic charts.

Fig. 10. Chart moves.

Fig. 11. Chart moves.
edge labeled σ, apply a chart move as in Fig. 4(1), let Γ pass through the 12 edges with labels 1 and 2, and recover the edge labeled σ by the move in Fig. 4. Thus we see that Γ is nomadic. Now we consider a general case. Take a point y_{0} in the region U and a point y_{1} in the boundary ∂D. Consider a simple path $\eta:[0,1] \rightarrow D$ connecting y_{0} and y_{1} such that η intersects Γ transversely. Let w be the intersection word of η with respect to Γ (see [7,8]). Let Γ^{\prime} be a chart obtained from Γ by adding some hoops surrounding Γ such that the intersection word w^{\prime} of η with respect to Γ^{\prime} is $w \cdot w^{-1}$. Applying a chart move in a neighborhood of η as in Fig. 10, we have a chart $\Gamma^{\prime \prime}$ such that it coincides with Γ^{\prime} outside of the neighborhood of η and the path η misses $\Gamma^{\prime \prime}$. So $\Gamma^{\prime \prime}$ is as in Fig. 9(2). Note that $\Gamma^{\prime \prime}$ is chart move equivalent to Γ, since one can add or remove any hoop surrounding it by chart moves as in Fig. 12. Since $\Gamma^{\prime \prime}$ is nomadic as shown in the previous case, we see that Γ is nomadic.

Now we prove (2). Let U be a region such that $\Gamma_{0} \cap U$ is as in Fig. 9(1). It is sufficient to show that any chart Γ put in a region of $B \backslash \Gamma_{0}$ can be moved into U. As shown in Fig. 13, Γ can pass through any edge of Γ_{0} by getting a surrounding hoop. When Γ arrives in U, it is surrounded some hoops, which can be removed by use of the edges of Γ_{0} in U as in Fig. 12.

Fig. 12. Chart moves.

Fig. 13. Chart moves.

Fig. 14. Chart P_{2}, which is equivalent to $2 N_{0}$.

Fig. 15. Chart moves.

Lemma 17. Let P_{2} be a chart depicted in Fig. 14, where M_{2} is the chart depicted in Fig. 6. It is chart move equivalent to $2 N_{0}$.
Proof. Applying chart moves depicted in Fig. 15 to the chart P_{2}, we have $2 N_{0}$.

Now we prove Theorem 12.

Proof of Theorem 12. First we consider a case where Γ is a chart with $n_{\mathrm{II}}^{-}(\Gamma)=0$. It suffices to show that $\Gamma \oplus\left(n_{\mathrm{I}}^{-}(\Gamma)+\right.$ $\left.2 n_{\text {II }}^{+}(\Gamma)+1\right) N_{0}$ is chart move equivalent to

$$
\Gamma^{\prime} \oplus n_{\mathrm{II}}^{+}(\Gamma) N_{2} \oplus n_{\mathrm{I}}^{-}(\Gamma) F_{1}
$$

for some chart Γ^{\prime} with $n_{\mathrm{I}}^{-}\left(\Gamma^{\prime}\right)=n_{\mathrm{II}}^{+}\left(\Gamma^{\prime}\right)=n_{\mathrm{II}}^{-}\left(\Gamma^{\prime}\right)=0$ such that Γ^{\prime} has N_{0} as a factor. By Lemma $16, N_{0}$ is nomadic. Thus we can move N_{0} freely up to chart move equivalence. For each black vertex of type I ${ }^{-}$, move a chart N_{0} near the vertex and apply a chart move as in Fig. 16 to make a free edge. Move the free edge toward the boundary of B by the chart move as in Fig. 13. Since there is at least one N_{0} near ∂B, the hoops surrounding the free edge can be removed (Fig. 12), and we may also assume that the label of the free edge is 1 (Lemma 18.24 of [7]). Thus we can change $\Gamma \oplus\left(n_{\mathrm{I}}^{-}(\Gamma)+2 n_{\mathrm{II}}^{+}(\Gamma)+1\right) N_{0}$ so that all black vertices of type I^{-}are endpoints of F_{1} 's near ∂B. We still have $2 n_{\mathrm{II}}^{+}(\Gamma)+1 N_{0}$'s near ∂B. For each black vertex of type II^{+}, move a pair of N_{0} near the vertex. Change the pair of N_{0} 's to a chart P_{2} in Fig. 14 (Lemma 17). The edge adjacent to the vertex of type II^{+}is oriented outward and is labeled σ. Apply a chart move as in Fig. 17, and then apply

Fig. 16. Chart moves.

Fig. 17. Chart moves.
a chart move between the 12 edges there and the 12 edges of P_{2} to get one N_{2}. Move the chart N_{2} toward ∂B. (Note that N_{2} is nomadic by Lemma 16.) Now all black vertices of type II $^{+}$belong to N_{2} 's near ∂B. We still have one N_{0} near ∂B. Thus the chart is $\Gamma^{\prime} \oplus n_{\mathrm{II}}^{+}(\Gamma) N_{2} \oplus n_{\mathrm{I}}^{-}(\Gamma) F_{1}$ for a chart Γ^{\prime} with $n_{\mathrm{I}}^{-}\left(\Gamma^{\prime}\right)=n_{\mathrm{II}}^{+}\left(\Gamma^{\prime}\right)=n_{\mathrm{II}}^{-}\left(\Gamma^{\prime}\right)=0$ such that Γ^{\prime} has N_{0} as a factor.

We consider a case where Γ is a chart with $n_{\mathrm{II}}^{+}(\Gamma) \geqslant n_{\mathrm{II}}^{-}(\Gamma)>0$. Let v be a black vertex of type II^{-}. Choose a black vertex v^{\prime} of type II^{+}and consider a simple path η from v to v^{\prime}. If η intersects an edge labeled σ, then apply a chart move depicted in Fig. 4(1) and we assume that η intersects only edges with labels in $\{1, \ldots, 5\}$. For each intersection of η and the chart, we assert one N_{0} and apply a chart move as in Fig. 11(2) so that η does not intersect the chart. Now move v along η toward v^{\prime} and by a chart move we can make a free edge with label σ, that is F_{2}. Move this F_{2} toward ∂B by moves as in Fig. 13. The hoops surrounding the free edge can be removed by adding one N_{0} near ∂B as before. By this procedure, we can move all black vertices of type II^{-}near ∂B as endpoints of F_{2} 's. The number of F_{2} 's is $n_{\mathrm{II}}^{-}(\Gamma)$. There are $n_{\text {II }}^{+}(\Gamma)-n_{\text {II }}^{-}(\Gamma)$ black vertices of type II^{+}in the chart, besides the endpoints of F_{2} 's. For each black vertex of type II^{+}, that is not an endpoint of F_{2}, add a pair of N_{0} to make P_{2}. As in the previous case, we can move the black vertex of type II^{+} as an endpoint of N_{2} near ∂B. The number of N_{2} 's is $n_{\text {II }}^{+}(\Gamma)-n_{\text {II }}^{-}(\Gamma)$. As in the previous case, we move black vertices of type I^{-}as endpoints of F_{1} 'as near ∂B. The number of F_{1} 's is $n_{I}^{-}(\Gamma)$. Thus we have a chart written as

$$
\Gamma^{\prime} \oplus\left(n_{\mathrm{II}}^{+}(\Gamma)-n_{\mathrm{II}}^{-}(\Gamma)\right) N_{2} \oplus n_{\mathrm{I}}^{-}(\Gamma) F_{1} \oplus n_{\mathrm{II}}^{-}(\Gamma) F_{2}
$$

for some chart Γ^{\prime} with $n_{\mathrm{I}}^{-}\left(\Gamma^{\prime}\right)=n_{\mathrm{II}}^{+}\left(\Gamma^{\prime}\right)=n_{\mathrm{II}}^{-}\left(\Gamma^{\prime}\right)=0$ such that Γ^{\prime} has N_{0} as a factor.

6. Proof of Theorem 2

Proof of Theorem 2. By Theorem A of Siebert and Tian [17] (cf. [2]) a chiral and irreducible genus-two Lefschetz fibration f^{\prime} with transitive monodromy representation is holomorphic and hence it is a fiber sum of some copies of f_{0} and f_{1}. Therefore Corollary 13 implies the assertions (2) and (4) of Theorem 2, and the former part of (3). It is well known that $3 f_{0} \cong 2 f_{1}$. Thus we can take b to be 0 or 1 . We shall compare the number of singular fibers of each type of $f \# m f_{0}$ with that of $\#(a+m) f_{0} \# b f_{1} \# c f_{2} \# d f_{1}^{\prime} \# e f_{2}^{\prime}$. We have already used the information on the numbers of singular fibers of types $\mathrm{I}^{-}, \mathrm{II}^{+}$ and type II^{-}to determine c, d and $e ; c=n_{\mathrm{II}}^{+}(f)-n_{\mathrm{II}}^{-}(f), d=n_{\mathrm{I}}^{-}(f)$ and $e=n_{\mathrm{II}}^{-}(f)$. The number of singular fibers of type I^{+}of $f \# m f_{0}$ is $n_{\mathrm{I}}^{+}(f)+20 m$, and that of $\#(a+m) f_{0} \# b f_{1} \# c f_{2} \# d f_{1}^{\prime} \# e f_{2}^{\prime}$ is $20(a+m)+30 b+28 c+d$. From this equality, we have

$$
20 a+30 b=n_{\mathrm{I}}^{+}(f)-n_{\mathrm{I}}^{-}(f)-28\left(n_{\mathrm{II}}^{+}(f)-n_{\mathrm{II}}^{-}(f)\right)
$$

Thus the right-hand side, which is $\mathcal{E}(f)$, is a multiple of 10 . And we see that the parity of b equals to the parity $\epsilon(f)$. Therefore when we assume $b=\epsilon(f)$, we have $a=(\mathcal{E}(f)-30 \epsilon(f)) / 20$.

7. Concluding remark

In the proof of Theorem 2, we assumed the deep result due to Siebert and Tian [17] stating that any chiral and irreducible genus-two Lefschetz fibration f^{\prime} over S^{2} with transitive monodromy representation is holomorphic and it is a fiber sum of some copies of f_{0} and f_{1}. If one does not need a lower bound m_{0} given in (4) of Theorem 2 , we can prove Theorem 2 without assuming Siebert and Tian's result.

Fig. 18. Chart moves.
Proposition 18. Let Γ be a chart description of a chiral and irreducible genus-two Lefschetz fibration over $B=D^{2}$ (or S^{2}). There exists a positive integer m such that $\Gamma \oplus m N_{0}$ is chart move equivalent to $(a+m) N_{0} \oplus b N_{1}$ for some integers a and b.

Proof. Since f is chiral and irreducible, we may assume that Γ is chiral and irreducible by Proposition 11. Adding some N_{0} 's to the chart and applying chart moves shown in Fig. 18, we can remove all degree-6 vertices, degree-22 vertices, degree- 20 vertices whose adjacent edges are oriented outward, and degree- 30 vertices whose adjacent edges are oriented outward. (Since $3 N_{0}$ is chart move equivalent to $2 N_{1}$, we may add N_{1} 's too.) Remove all hoops using an N_{0} (Fig. 12). Now every edge is adjacent to a black vertex, a degree- 4 vertex, a degree- 20 vertex whose adjacent edges are oriented inward or a degree- 30 vertex whose adjacent edges are oriented inward. Note that for a degree- 4 vertex, the two incoming adjacent edges have black vertices at the other end. Thus by a chart move depicted in Fig. 15, we can remove the degree- 4 vertex. Remove all degree-4 vertices this way. Now the chart is a union of some N_{0} 's and N_{1} 's.

Now we have a corollary to Proposition 18.

Corollary 19. Let f be a chiral and irreducible genus-two Lefschetz fibration over S^{2}. There exists a positive number m such that $f \# m f_{0} \cong(a+m) f_{0} \# b f_{1}$ for some integers a and b.

Using this corollary, we have a proof of Theorem 2, except the assertion (4), without using Siebert and Tian's result.

References

[1] D. Auroux, Fiber sums of genus 2 Lefschetz fibrations, Turkish J. Math. 27 (2003) 1-10.
[2] D. Auroux, A stable classification of Lefschetz fibrations, Geom. Topol. 9 (2005) 203-217.
[3] J. Birman, Braids, Links and Mapping Class Groups, Princeton Univ. Press, 1974.
[4] R.E. Gompf, A.I. Stipsicz, 4-Manifolds and Kirby Calculus, Graduate Studies in Math., vol. 20, Amer. Math. Soc., Providence, RI, 1999.
[5] S. Kamada, Surfaces in R^{4} of braid index three are ribbon, J. Knot Theory Ramifications 1 (1992) 137-160.
[6] S. Kamada, An observation of surface braids via chart description, J. Knot Theory Ramifications 4 (1996) 517-529.
[7] S. Kamada, Braid and Knot Theory in Dimension Four, Math. Surveys Monogr., vol. 95, Amer. Math. Soc., Providence, RI, 2002.
[8] S. Kamada, Graphic descriptions of monodromy representations, Topology Appl. 154 (2007) 1430-1446.
[9] S. Kamada, Y. Matsumoto, T. Matumoto, K. Waki, Chart description and a new proof of the classification theorem of genus one Lefschetz fibrations, J. Math. Soc. Japan 57 (2005) 537-555.
[10] A. Kas, On the handlebody decomposition associated to a Lefschetz fibration, Pacific J. Math. 89 (1980) 89-104.
[11] R. Mandelbaum, J.R. Harper, Global monodromy of elliptic Lefschetz fibrations, in: Current Trends in Algebraic Topology, in: CMS Conf. Proc., vol. 2, Amer. Math. Soc., Providence, RI, 1982, pp. 35-41.
[12] Y. Matsumoto, Diffeomorphism types of elliptic surfaces, Topology 25 (1986) 549-563.
[13] Y. Matsumoto, Lefschetz fibrations of genus two - A topological approach, in: S. Kojima, et al. (Eds.), Topology and Teichmüller Spaces, Proc. of the 37th Taniguchi Sympo., World Scientific Publishing, River Edge, NJ, 1996, pp. 123-148.
[14] B.G. Moishezon, Complex Surfaces and Connected Sums of Complex Projective Planes, Lecture Notes in Math., vol. 603, Springer-Verlag, 1977.
[15] B.G. Moishezon, Stable branch curves and braid monodromies, in: Algebraic Geometry, in: Lecture Notes in Math., vol. 862, Springer Verlag, 1981, pp. 107-192.
[16] B. Siebert, G. Tian, On hyperelliptic C^{∞}-Lefschetz fibrations of four-manifolds, Commun. Contemp. Math. 1 (2) (1999) 255-280.
[17] B. Siebert, G. Tian, On the holomorphicity of genus two Lefschetz fibrations, Ann. of Math. (2) 161 (2) (2005) 959-1020.

[^0]: E-mail address: kamada@math.sci.hiroshima-u.ac.jp.

