Improved enzymatic synthesis of a highly potent oligosaccharide antagonist of L-selectin

Heidi Salminen, Katja Ahokas, Ritva Niemelä, Leena Penttilä, Hannu Maahemo, Jari Helin, Catherine E. Costello, Ossi Renkonen

Abstract The polylactosamine sLexβ1→3(sLexβ1→6')LacNAcβ1→3'(sLexβ1→6')LacNAcβ1→3'(sLexβ1→6')LacNAc (7) (where sLex is Neu5Acα2→3Galβ1→4(Fucα1→3)GlcNAc and LacNAc is Galβ1→4GlcNAc) is a nanomolar L-selectin antagonist and therefore a potential anti-inflammatory agent (Renkonen et al., 1997 Glycobiology, 7, 453). Here we describe an improved synthesis of 7. The octasaccharide LacNAcβ1→3'LacNAcβ1→3'LacNAcβ1→3'LacNAc (4) was converted into the triply branched undecasaccharide LacNAcβ1→3'(GlcNAcβ1→6')LacNAcβ1→3'(GlcNAcβ1→6')LacNAcβ1→3'(GlcNAcβ1→6')-LacNAc (5) by incubation with UDP-GlcNAc and the midchain β1,6-GlcNAc transferase activity of rat serum. Glycan 5 was enzymatically β1,4-galactosylated to LacNAcβ1→3'(LacNAcβ1→6')LacNAcβ1→3'(LacNAcβ1→6')-LacNAc (6). Combined with the enzymatic conversion of 6 to 7 (Renkonen et al., loc. cit.) and the available chemical synthesis of 4, our data improve the availability of 7 for full assessment of its anti-inflammatory properties.

Key words: Enzymatic synthesis; Tetravalent sLex glycan; L-Selectin antagonist; Midchain β1,6-GlcNAc transferase

1. Introduction

Lymphocyte extravasation to rejecting graft is initiated by interactions between L-selectin and saccharides that carry epitopes related to the tetrasaccharide Neu5Acα2→3Galβ1→4(Fucα1→3)GlcNAc, which is known as the sialyl Lewis x determinant [1,2]. Inflammatory stimuli induce the expression of the sLex type saccharides on the surface of the endothelium [3] to attract L-selectin-expressing lymphocytes to the graft. We have shown previously that a triply branched poly-N-acetyllactosamine, sLexβ1→3'(sLexβ1→6')LacNAcβ1→3'(sLexβ1→6')LacNAc (3) (where LacNAc is the disaccharide Galβ1→4GlcNAc), inhibits efficiently lymphocyte adhesion to the endothelium in vitro [4,5]. The presence of exogenous glycan 7 at 1 nM was shown to reduce lymphocyte adhesion to the rejection-activated endothelium in cardiac transplants by 50%, probably through competition for L-selectin with endothelial sLex saccharides. This property makes glycan 7 an interesting anti-inflammatory drug candidate.

Here, we describe a simplified and upscalable synthesis route to the L-selectin antagonist 7. In the key step of the new synthesis, the linear octasaccharide LacNAcβ1→3'LacNAcβ1→3'LacNAcβ1→3'LacNAcβ1→3'LacNAcβ1→3'LacNAcβ1→3'LacNAcβ1→3'LacNAcβ1→3'LacNAc (6) was incubated with UDP-GlcNAc and the midchain β1,6-GlcNAc transferase activity present in rat serum [6,7]. The product, LacNAcβ1→3'(GlcNAcβ1→6')LacNAcβ1→3'(GlcNAcβ1→6')LacNAcβ1→3'(GlcNAcβ1→6')-LacNAc (5), was then enzymatically β1,4-galactosylated to yield the tetradecasaccharide LacNAcβ1→3'(LacNAcβ1→6')LacNAcβ1→3'(LacNAcβ1→6')-LacNAcβ1→3'(LacNAcβ1→6')-LacNAc (6). To complete the novel synthesis of the L-selectin antagonist 7, glycan 6 is sialylated and fucosylated as described already in our previous report [4].

2. Materials and methods

2.1. Synthesis of the heptasaccharide 1

Details of the synthesis and characterization of the heptasaccharide LacNAcβ1→3(Fucα1→3)LacNAcβ1→3'LacNAc (1) will be described elsewhere (Niemelä et al., in preparation). Briefly, GlcNAcβ1→3'LacNAcβ1→3'LacNAc (8), was α1,3-fucosylated partially by using α1,3/4 fucosyltransferase(s) of human milk [9]. The fraction of monofucosylated products was isolated by paper chromatography and the hexasaccharide GlcNAcβ1→3(Fucα1→3)LacNAcβ1→3'LacNAc was isolated from this fraction by WGA-agarose chromatography (Niemelä et al., loc. cit.) and converted to radiolabeled glycan 1 by enzymatic β1,4-galactosylation.

The difucosylated glycan LacNAcβ1→3(Fucα1→3)LacNAcβ1→3'(Fucα1→3)LacNAc was obtained in an analogous fashion, starting from an exhaustively α1,3-fucosylated sample of GlcNAcβ1→3'LacNAcβ1→3'LacNAc.
Fig. 1. Outline of the present enzymatic synthesis of primer 4. The fucose residue in the midchain of the primer, heptasaccharide 1, was required to inhibit the branching reactions [18] that would have occurred in our system at the non-fucosylated acceptor because of the presence of a contaminating midchain \(\beta 1,6 \)-GlcNAc transferase activity [7,8].

2.4. Chromatographic methods

Descending paper chromatography was carried out as described [7] using n-butanol/acetic acid/water (10:3:7 v/v) as the solvent. Gel permeation chromatography was performed as in [4]. HPAE chromatography with either pulsed amperometric detection or liquid scintillation counting was carried out as described [7].

2.5. MALDI-TOF-MS

MALDI-TOF mass spectrometry was performed as described [7].

<table>
<thead>
<tr>
<th>Residue</th>
<th>Glycan</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>H-1</td>
<td>1</td>
<td>5.204 ((\alpha))</td>
<td>5.203 ((\alpha))</td>
<td>5.204 ((\alpha))</td>
<td>5.212 ((\alpha))</td>
<td>5.210 ((\alpha))</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.720 ((\beta))</td>
<td>n.d. (^a)</td>
<td>4.720 ((\beta))</td>
<td>4.730 ((\beta))</td>
<td>4.726 ((\beta))</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.696</td>
<td>4.695</td>
<td>4.701/4.698(^b)</td>
<td>4.702/4.696</td>
<td>4.701/4.697</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4.696</td>
<td>4.695</td>
<td>4.701</td>
<td>4.696</td>
<td>4.697</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>4.680</td>
<td>4.700</td>
<td>4.701</td>
<td>4.696</td>
<td>4.697</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.585</td>
<td>4.625/4.619</td>
</tr>
<tr>
<td></td>
<td>10,11</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.593</td>
<td>4.639</td>
</tr>
<tr>
<td></td>
<td>12,13,14</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4.464</td>
</tr>
<tr>
<td>H-4</td>
<td>15</td>
<td>5.115</td>
<td>5.115</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.154</td>
<td>4.157</td>
<td>4.156</td>
<td>4.146</td>
<td>4.148</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4.098</td>
<td>4.098</td>
<td>4.156</td>
<td>4.146</td>
<td>4.148</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>4.154</td>
<td>4.157</td>
<td>4.156</td>
<td>4.146</td>
<td>4.148</td>
</tr>
<tr>
<td>H-6</td>
<td>15</td>
<td>1.151</td>
<td>1.151</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Numbering of the residues is shown in Figs. 1 and 5.

\(^a\) n.d., not determined.

\(^b\) The two chemical shifts given arise from signals representing the two anomeric forms of the glycan.

\(^\sim\), not appropriate.
2.6. 1H-NMR spectroscopy

1H-NMR spectroscopy was performed as described by Maaheimo et al. [13].

3. Results

3.1. Enzyme-assisted synthesis of the linear octasaccharide primer LacNAcβ1-3’LacNAcβ1-3’LacNAcβ1-3’LacNAcβ1-3’LacNAc (4)

Glycan 4, which is involved in the key step in the present synthesis of glycan 7, has been synthesized chemically [14,15]. We synthesized it enzymatically. For this, the heptasaccharide LacNAcb1-3’(Fucocl-3)LacNAcβ1-3’LacNAc (1) was first elongated by the β1,3-GlcNAc transferase activity of human serum [16,17]. The fucosylated derivative of LacNAcβ1-3’LacNAcβ1-3’LacNAc was used as acceptor instead of the fucose-free hexasaccharide itself because the fucosyl residue prevents the action of the midchain β1,6-GlcNAc transferase [2,7,13].

The resulting glycan 2 (see Fig. 1 for the structure) was purified by gel filtration, followed by HPAE-chromatography (not shown), and in some experiments by paper chromatography ($R_{GP}=0.74$, $R_{PM}=1.10$). In three separate experiments, the actual yields of purified glycan 2 averaged 33%. The MALDI-TOF mass spectrum (not shown) confirmed that the product had the molecular mass of Gal$_3$GlcNAc$_3$Fuc; a major peak assigned to ($M+Na$)$^+$ was observed at m/z 1485.4 (calc. m/z 1485.5) and an accompanying signal, assigned to ($M+K$)$^+$, was seen at m/z 1501.4 (calc. m/z 1501.6). An 'impurity peak' (16%) of the spectrum at m/z 1282.4 was assigned to ($M+Na$)$^+$ of Gal$_2$HexNAc$_2$Fuc. As this spectrum was obtained from a HPAE-chromatographically purified sample, this species may represent a reducing-end ManNAc epimer of the acceptor saccharide (1) [19]. Prompt fragmentation of HexNAc units has not been observed with this type of glycans in the MALDI-TOF system used. The 1H-NMR spectrum confirmed the structure of 2 (Table 1). As expected, no resonances were observed around 4.58-4.59 ppm, in the area of the reported H-1 signals of β1,6-bonded GlcNAc residues of polylactosamines [7,20,21]. The successful terminal β1,3-N-acetylglucosaminylation of glycan 1 at its LacNAcβ1-3’(Fucocl-3)LacNAc determinant in the present experiments is sharply contrasted by the unreactivity of Fucocl-3-LacNAc determinant in the present experiments.

Glycan 2 was β1,4-galactosylated to give glycan 3. The product was purified by gel filtration and in some experiments by paper chromatography ($R_{GP}=0.53$, $R_{PM}=0.78$). The yields of the purified product in two experiments averaged 66%. MALDI-TOF-MS of Gal$_3$GlcNAc$_3$Fuc (not shown) had an abundant peak appropriate for the ($M+Na$)$^+$ at m/z 1647.6 (calc. m/z 1647.6) and a low abundance ($M+K$)$^+$ at m/z 1663.4 (calc. m/z 1663.7). The 1H-NMR spectrum of glycan 3 (Table 1) confirmed the structure shown in Fig. 1.

Glycan 3 was converted into glycan 4 by removing the fucose residue by mild acid hydrolysis; the product was purified by gel filtration using two consecutive Superdex 75 HR 10/30 columns. The yields of purified 4 in two experiments averaged 44%. MALDI-TOF-MS confirmed that the product was essentially fucose-free. The spectrum showed a major peak at m/z 1502.3, and an accompanying signal at m/z 1518.3 (Fig. 2A); these were assigned to ($M+Na$)$^+$ and ($M+K$)$^+$, respectively, of Gal$_2$HexNAc$_2$Fuc (calc. m/z 1502.3 and 1518.4, respectively). The 1H-NMR spectrum also confirmed the postulated structure of glycan 4 (Table 1, Fig. 3A). Overall, the structural reporter group region of glycan 4 resembled closely that obtained from the linear hexasaccharide LacNAcβ1-3’LacNAcβ1-3’LacNAc [7].

Glycan 4 was successfully synthesized also from the difucosylated glycan LacNAcβ1-3’(Fucocl-3)LacNAcβ1-3’(Fucocl-3)LacNAc in experiments analogous to those described above. Radiolabeled glycan 4 was obtained by using UDP-14C-Gal in the final β1,4-galactosylation reaction.

![Fig. 2. MALDI-TOF mass spectrum of (A) the primer glycan 4, (B) the triply branched glycan 5 and (C) the galactosylated glycan 6.](image-url)
Fig. 1. NMR spectra of 2-deoxy-L-

A 6-N-acetyl-

B 6-N-acetyl-

C 6-N-acetyl-

lacNAc β 3 lactose (2, 4, 6-H)

lacNAc β 3 lacNAc β 1 lacNAc β 1 lacNAc (4)

lacNAc β 1 lacNAc β 1 lacNAc (4)

lacNAc β 1 lacNAc β 1 lacNAc (5)

lacNAc β 1 lacNAc β 1 lacNAc (5)

lacNAc β 3 lacNAc β 1 lacNAc β 1 lacNAc (6)

lacNAc β 1 lacNAc β 1 lacNAc β 1 lacNAc (6)
3.2. Enzyme-assisted conversion of glycan 4 into the triply branched undecasaccharide LacNAcβ1-3'(GlcNAcβ1-6'')-LacNAcβ1-3'(GlcNAcβ1-6')-LacNAcβ1-3'(GlcNAcβ1-6')LacNAc (5)

Incubation of the enzymatically synthesized glycan 4 (40.3 nmol) with UDP-GlcNAc and the midchain β1,6-GlcNAc transferase activity present in rat serum [6,7], gave several products that were separated by HPAE chromatography (Fig. 4). MALDI-TOF mass spectrum of the principal product (peak 7 in Fig. 4) showed a major signal at m/z 2111.9 that was assigned to (M+Na)+ of Galα1GlcNAc (calculated m/z 2111.9) (Fig. 2B); an accompanying signal at m/z 2128.0 was assigned to the corresponding (M+K)+ (calculated m/z 2128.0). Hence, the major product of the branching reaction was an undecasaccharide that contained three newly transferred GlcNAc residues. The 1H-NMR spectrum of the principal product (Fig. 3B; Table 1) revealed the presence of three new protons resonating at 4.585-4.593 ppm, in the area characteristic to H1’s of β1,6-bonded GlcNAc-residues. An unreacted glycan 4. The radioactivity profile (not shown) resulting from HPAE chromatography was remarkably similar to the PAD-profile of Fig. 4. The analog of peak 7 of Fig. 4 contained 6000 cpm of glycan 5 and peak 8 the unreacted glycan 4. The singly branched undecasaccharide LacNAcβ1-3'(GlcNAcβ1-6')-LacNAcβ1-3'(GlcNAcβ1-6')LacNAc (5). The yield of glycan 5 was 10.6 nmol (26%). Another branching experiment with UDP-GlcNAc and concentrated rat serum was performed with a 3 nmol/25 800 cpm-sample of 14C-labeled glycan 4. The radioactivity profile (not shown) resulting from HPAE chromatography was remarkably similar to the PAD-profile of Fig. 4. The analog of peak 7 of Fig. 4 contained 6000 cpm of glycan 5 (23% yield) that showed in MALDI-TOF-MS the same signals as peak 7 of Fig. 4.

The numerous side-products in Fig. 4 were analyzed by MALDI-TOF-MS (not shown). Peak 2 represented fucosylated glycans and peak 3 the unreacted glycan 4. The singly branched glycans appeared in peak 4, while peaks 5 and 6 probably represented doubly branched products and peak 8 their ManNAc epimers. Peak 9 represented a triply branched product Galα1HexNAcβ1, most likely the reducing-end ManNAc epimer of glycan 5. Peaks 3–6 gave also signals of ions missing one galactose. Taken together, the data suggest that improvements in the yield of glycan 5/peak 7 will be possible if (i) the branching reaction can be forced closer to completion and (ii) a purification method can be used that exposes the glycan 7, in turn, will lead to better assessment of the anti-inflammatory potential of this oligosaccharide in different in vivo inflammation models using experimental animals. The putative roles of glycan 7 and related saccharides as potential antagonists of E- and P-selectins will also merit a study when these glycans become available in sufficient amounts.

3.3. Enzyme-assisted synthesis of the tetradecasaccharide LacNAcβ1-3'(LacNAcβ1-6')-LacNAcβ1-3'(LacNAcβ1-6')-LacNAcβ1-3'(LacNAcβ1-6')-LacNAc (6)

Enzymatic β1,4-galactosylation of glycan 5 gave a major product, glycan 6, with the yield of 85%. MALDI-TOF-MS of the product (Fig. 2C) showed a major peak at m/z 2598.2 that was assigned to (M+Na)+ of Galα1GlcNAc (calculated m/z 2598.3); an accompanying signal assigned to (M+K)+ of Galα1GlcNAc was seen at m/z 2614.3 (cal. m/z 2614.4). The structure of glycan 6 was confirmed by 1H-NMR spectroscopy (Fig. 3C). The 4.464-ppm signals assigned to H1’s of the newly transferred branch galactoses 12, 13 and 14 in the tetradecasaccharide 6 were identical to the analogous signals in the decasaccharide LacNAcβ1-3'(LacNAcβ1-6')-LacNAcβ1-3'(LacNAcβ1-6')-LacNAcβ1-3'(LacNAcβ1-6')LacNAc (7).

4. Discussion

The present data represent distinct improvements in the enzyme-assisted synthesis of glycan 7 (for the structural formula see Fig. 5), a tetravalent sialyl Lewis x (sLex) glycan that is a nanomolar inhibitor of L-selectin-mediated adhesion of lymphocytes to the inflammation-activated endothelium of rejecting cardiac transplants of rats [4]. The increased availability of glycan 7, in turn, will lead to better assessment of the anti-inflammatory potential of this oligosaccharide in different in vivo inflammation models using experimental animals. The putative roles of glycan 7 and related saccharides as potential antagonists of E- and P-selectins will also merit a study when these glycans become available in sufficient amounts.

The major improvement in the synthesis of glycan 7 consists of the use of the octasaccharide LacNAcβ1-3(LacNAcβ1-3LacNAcβ1-3LacNAcβ1-3LacNAc (4) rather than the hexasaccharide LacNAcβ1-3(LacNAcβ1-3LacNAcβ1-3LacNAc as the primer, and four rather than six enzymatic steps to convert the primer into the tetravalent sLex-saccharide sLexβ1-3'(sLexβ1-6')LacNAcβ1-3'(sLexβ1-6')LacNAcβ1-3'(sLexβ1-6')LacNAc (7) as shown in Fig. 5. The key reaction in the novel synthesis is the conversion of the linear octasaccharide 4 into the triply branched undecasaccharide 5 in a single-step transformation catalyzed by the midchain β1,6-GlcNAc transferase activity of rat serum. In the future this reaction will be catalyzed by the recombinant form of the midchain β1,6-GlcNAc transferase of embryonal carcinoma cells, which we have recently expressed in baculovirus-infected Spodoptera frugiperda (SPF) insect cells and isolated in an active form (P. Mattila et al., in preparation). Another major advantage of the octasaccharide 4 is that this glycan is accessible in considerable amounts by chemical synthesis in solution [14,15]. It appears probable that
Fig. 5. The present, improved synthesis route to the tetravalent sialyl Lewis x glycan 7.

also solid phase chemical synthesis of glycan 4 will soon become possible [23]. Its enzymatic synthesis, too, will probably develop rapidly when recombinant forms of the β1,3-GlcNAc transferase become available.

The triply branched undecasaccharide 5 was readily galactosylated by β1,4-galactosyl transferase of bovine milk, yielding the branched array of seven N-acetyllactosamine units that is shown as glycan 6 in Fig. 5. Glycan 6 of the present experiments was identical with a sample constructed in our early experiments via another route [4]; both samples revealed similar molecular weights in MALDI-TOF-MS and gave very similar 1D 1H-NMR spectra, confirming the postulated structure of this oligosaccharide. Chemical synthesis of glycan 6 has not been described yet, but related syntheses have been presented [24,25], suggesting that in the future glycan 6 will be accessible also by chemical synthesis.

The enzymatic conversion of glycan 6 to the tetravalent sLex glycan 7 has been described before [4]; no improvements are described in the present report to the two reactions involved.

It remains to be seen whether chemical, enzymatic or hybridized chemo-enzymatic approaches will prove to be the most efficient ones in providing branched poly-N-acetyllactosamine backbones for construction of multivalent sLex saccharides and related glycans.

Acknowledgements: Dr. Martin Renlund, the Pediatric Clinic, University of Helsinki, provided samples of outdated human milk. The work was supported in part by Grant 38042 from the Academy of Finland (O.R.), and by grants from the Technology Development Center TEKES, Finland (O.R.), Jenny and Antti Wihuri Foundation (H.S. and H.M.) and by NIH Grant RR10888 (C.E.C.).

References

