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I. INTRODUCTION 

The purpose of this paper is to establish the existence of T-periodic 
solutions for the hereditary differential systems 

x’(f) = --F(Ux,) +f@), WI 

x’(t) = --A(t) 77X&(O) if(t), (131 
x’(t) = --F(t, U%) +f(t>, (1.J) 
x’(t) = -F(t, Ux,) -+ g(t, X6 ) U”x,), (1.4) 
x”(t) = h(t, x(t), x(t -.- d(t, x(t)))) (1.3 

(where U* is an operator of the same type as U), which are listed here in 
increasing order of complexity. The function F will be linear in the variable 
u = Uxt E C(f--h, 0] - R”), T-periodic in t, whenever it is present and 
continuous. The forcing term f(t) is continuous and T-periodic, while the 
terms g, h, d are T-periodic in t, continuous in their variables, and generally 
nonlinear. The notation xt is the same as in the monograph of Hale [4]. 

In Section 2 we prove a degree-theoretic structure theorem for hereditary 
systems slightly more general than (1 .l)-( 1.4) and apply these results in 
subsequent sections to (1 . l)-( 1.4). 

The simple case x’(t) = --AUx,(O) + f(t) is covered by (1.1) and is 
treated in Section 3. In particular, we are able to treat the scalar equation 

investigated by Stephan [ll]; the equation arises from an unsolved pertur- 
bation problem in biological modelling theory (see Cooke [Z]). We show 
that the Lipskhitz condition imposed by Stephan [ll] can be dropped, the 
term @(t, x(t)) can be more complicated, and we extend the range of known 
T-periodic solutions from 0 < aT < z-12 to 0 < aT < 2(3)li2. 

* This research was supported by the U. S. Army under grant number ARO-D- 
31-124-72-G56. 
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The nonautonomous cases (1.2) and (1.3) are considered in Section 4. 
In particular, we can treat the equation 

x’(t) = -a(t) x(t - r + w, % 3 p>> +“w with a(t) > 0 

(see Corollary 4.5), and similar delay-differential systems (see Corollary 4.4). 
The case of a nonlinear perturbation (1.4) presents a number of distinctive 

problems, and we indicate in Section 5 several ways to overcome these 
problems and obtain periodicity theorems. For example it is shown how to 
obtain l-periodic solutions for the nonlinear equation 

x’(t) = -a.x(t - 1 + p sin 2&)[1 + x(t)] + 6 sin 277% 

with 0 < a < 2(3)‘/” and ) b / small enough (see Example 5.5). 
In, Section 6 we consider systems (1.5) and provide a simple geometric 

condition for the existence of T-periodic solutions. This equation is not 
necessarily a special case of Eqs. (l.l)-( 1.4), since the right side need not be 
linear, and the term d(t, X) is not required to be bounded. 

We next define the heredity operator U. We shall consider only the simplest 
case, since the essential features of the calculations to be done will be 
su~ciently transparent for such operators. For extensions to more complicated 
operators we refer to Section 7. 

Let i = l,..., n and let ki(t, x, p) be continuous on 

R x W-4 01 -+ R”) x [T-G,, vol, 
with values in R, where p,, > 0, fi > 0. Let r+ E [0, &] (1 < i < n). We 
define the coordinate operators 

UC R x C(R -+ R”) + C([-k, 0] -+ Rn) 

by 

uyt, x)(@) = %(8 + 0 - ri + k,(t, % f p)), -h < @ < 0, I El 1 s PO > 

and put 
up, x) = (W(t, x) ,...) uyt, cc)). 

In order to avoid complications in notation we do not explicitly include 
the dependence on the parameter p in our notation. Further, we abbreviate 

cJ(t, x) = ux* . 

Concerning the dependence of k on the parameter p, we assume that there 
exist continuous functions /c : [0, co) + K, ti(0) LT= 0, such that 

I W, *> dl < 41 P I), 

and we put &(‘(Y) = (8a(r),,.., 8%(r)). 
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2. PRELIMINARIES 

In the sections to follow we make use of several formulas from the theory 
of vector Fourier series, which we cite here for the reader’s convenience. 
In addition, we give two structure theorems for periodic solutions of 
hereditary systems. The theorems are modeled after the functional results 
of Strygin [12]. Enough technical problems occur to justify including a 
complete proof of the main theorem. The results could also have been 
obtained by a modified Cesari method (see Mawhin [7]), though this approach 
seems more complicated in our opinion. 

The calculations in vector Fourier series will occur in the space 
J?([O, T] -+ Rn) with inner product 

s 

T 

x*y = 40 . Y(t) fit 
0 

and norm // x jlLz = (x 3 x)rjz. If x(t): R -+ Rn is a T-periodic function of 
class Cl, then x(t) has the Fourier series 

x(t) = f lT x(S) ds + 2 (ak cos w,t + b, sin w,t), 
k=l 

P-1) 

where wk = 2kr/T, and the derivative ~8 satisfies 

Using (2.1), (2.2) and the C-B-S inequality we obtain 

the sum on the right side in (2.3) can be evaluated: 

Combining (2.3) and (2.4) gives 

j x(t) - f j’ x(s) ds 1 < (T/12)1’2 I/ 2 11~2 m 
0 

(2.5) 

The following structure theorems for periodic solutions of hereditary 
differential systems will be used repeatedly in the sequel. 
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THEOREM 2.1. Let 0 be a bounded open convex set in R”, G = 
C([-h, 0] + 0), and assume 

(i) f(t, u, E) : R x G x [0, q,] -+ R” is continuous, bounded, and 
T-periodic in t, T > h. 

(ii) The field 9: 8 -+ R”, defined by 

F@o) = - f j), u. , 0) dt, u. E 8, 

is nonzero on a0 and has Brouwer degree d(S, 0,O) # 0. 

Then the hereditary system 

x’(t) = 6f(t, ux, , 6) (2.6) 

has a T-periodic solution x with values in 0, for all small E > 0. 

THEOREM 2.2. Let co be a positive number and let the hypotheses of 
Theorem 2.1 hold. Further assume that all possible T-periodic solutions x(t) 
of (2.6) for 0 < E < o E satisfy x(t) $ a0, 0 < t < T. Then (2.6) has a T- 
periodic solution for every E, 0 < E < co , with values in 0. 

Proof of Theorem 2.1. Let 0, be an open set such that flI C 0 and such 
that for some 6 > 0, a &neighborhood of flI also belongs to 0, and the field 
in (ii) does not vanish on 8 - oI . Put 

Go = {x E C([O, T] --+ R”) : x(t) E&, I x(0) - x(T)1 < 6). 

Define the imbedding operator 3 as follows: 

2’ : [0, l] x C([O, T] + R”) --+ C(R -+ R”) 

9(A, x) = y if and only if 

At> = W> + (1 - 4Ph 

where y(t) is the 4T-periodic function given by 

I x(t), 0 < t < T 
‘@) = x(t + T) - x(T) + x(O), -T<t<O. 
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The operator 9 is continuous, with the usual norm in [0, I] x C([O, T] --f Rn) 
and the topology of uniform convergence in the range space C(.R -+ R%). 

Define a(t, X) = At + (1 - X)T, 0 < t < T, 0 < h < 1 and consider 
the field H: G;, x [0, l] x [0, ~a] ---f C([O, T] --+ R”) defined by 

H(x, A, e)(t) = x(t) - x(T) - E $““’ f(s, UZ(X, x)~ , c) ds. (2.7) 

The system (2.6) will have a T-periodic solution y = 5Z(l, x), x E 0r , 
provided the field H(x, 1, E) vanishes at X, as one can easily verify. Therefore, 
we show that for E > 0 sufficiently small, the field (2.7) does not vanish on 
aG,, for 0 < h < 1, that each H(., X, 6) (0 < h < 1) is a completely 
continuous perturbation of the identity in C([O, T] + P), and d(H(*, 0, c), 
G, , 0) # 0. Then the result follows from homotopy invariance of Leray- 
Schauder degree [lo]. 

The set {UZZ(X, x)~ : 0 < t < T, X E [O, I]> will belong to G if x E 6, , 
because 9(X, x)( ) s is within 6 of a value of X. The Arzela-Ascoli theorem 
apphes because of (i) to show H - I compact. We use the continuity of DEa 
and the definition of U to verify continuity of H - I; hence, N - I is 
completely continuous. 

If the assertion of H being singularity-free on 8G, 0 < h < 1 fails, then 
we can select a sequence of E’S and x’s and x’s which make (2.7) equal to zero, 
with e -+ 0. We put t = T in (2.7), use the compactness of W - I, and find 
that the field in (ii) vanishes at some point of aG,, , which is impossible by 
the choice of Go . 

Let us put X = 0 in (2.7). Then 9(0, X) = x(T), UL?(O, x), = x(T) 
and H(., 0, E) - I is finite-dimensional. For E > 0 suffkiently small, its 
degree is defined and coincides with Brouwer degree of the field in (ii), 
because of continuity in the parameter E, and the definition of degree. 
Therefore, d(H(*, 0, E), Go, 0) # 0 for all small E > 0, and the proof is 
complete. 

Proof of Theorem 2.2. There does not exist a sequence of T-periodic 
solutions of (2.6) (0 < E < c,,) with va ues 1 in 0 whose values cluster on a@, 
because any such sequence is precompact and T-periodic solutions of (2.6) 
(0 < E < E@) satisfy x(t) $ M, while the field in (ii) being nonzero on 80 
eliminates E -+ 0. 

Therefore, we may replace the set QI in the proof of Theorem 2.1 by 
a slightly larger set, so that all possible T-periodic solutions of (2.6) for 
0 < E < c0 satisfy x(t) $ a - 0, . The field H(x, I, E) cannot vanish on aG, , 
so the result follows by homotopy invariance of Leray-Schauder degree 
applied to the parameter E. In fact, d(H(*, 1, E), G, ,0) = d(9, 0, 0), 
0 <E < Eg. 
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THEORY 2.3. Let 0, G, f, S satiny the ~on~~t~~s of Theme 2.1, am! 
oppose that the possible T-periodic solutions of 

x’(t) = ff@, u‘%# > 4, (I P I G PO) (0 < E G 1) 

satisfy x(t) $ a@. Let N, be the set of T-periodic solutions of&‘(t) = f (t, Ux, , 1) 
w&5 XX&ES in 0. Then p(N, , NJ zz inf(j x - y /j : x E N, , y EN,) -+ 0 as 
Ipll-+O’ 

Proof The union of the sets N, is a precompact family in C([O, T] -+ @). 

If W--f 0, x, E Nu, 7 and {A$ converges, then its limit is in NO. The 
conclusion follows. 

3, AUTONOMOUS SYS~MS 

Let F(u) be a continuous linear functional on C([--h, 0] -+ P), with 
values in Rn, f(t) a continuous T-periodic P-valued function, and consider 
the hereditary nonhomogeneous di~erenti~ system 

x’(t) = -F(Ux,) +f(t)* (3.1) 

Write the functional F(u) in integral form via the Riesz theorem: 

where the matrix q(8) is of bounded variation. 
The purpose of this section is to establish the existence of T-periodic 

solutions of (3.1) f or small 1 p /. The hypotheses are given in terms of the 
matrix ~(0) in the representation (3.2). 

We single out the particular case F(a) = Ati where A is an n x n 
matrix. In this case, ~(0) = 0 for -Jz < B < 0, ~(0) = A. 

LEMMA 3.1. Let A _- fin d?(8) b e invertible, and assume that for 1 p 1 < h 
the following inequality is valid. 

-f-Q4 = 1 - II A-l II llFl12 I 4 P Ill - TllF111WY’2 II=. 0. 

Put 

%4 = II A-l II IIFII I 4 P Ill + II R--l II + WWa. 

Then for every p E [-cc,, , IL,,] every T-periodic solution x(t) of the eq~ati~, 



PYOO$ Let x(t) b e a possible T-periodic solution, and integrate the 
equatian to obtain 

j=F(Ux,)dt = j*f(t)dt. 
0 0 

We apply the standard interchange theorem for StieItjes integrals to get 

Let V be the heredity operator U when p = 0. 
Let us estimate the integral 

f j;h 4P) joT I?% - V%l(@ & 

for such a solution. We have 

(3.3) 

(34 

with 

Therefore, the integral in (3.4) is bounded in norm by 

fi= = liW // x II ! 41 tt l>l -I- IlFli lifll i 41 Y iI. 
Next, let us calculate the integral 

j;/w) joT r~%w &. 

One gets, by a change of variable and periodicity, the relation 

4 

joT fV6xt](6) dt = joT x,(t - Y< + 8) dt = joT x&) ds, 
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so it follows that 

The matrix A E q(O) - 7(---h) is invertible, by hypothesis. We compute 
a bound on / x(t)1 via the inequality 

I +>I < 1 f 1’ ~(4 ds / + 1 x(t) - $- io= x(s) ds j. (3.7) 
0 

The first term in (3.7) can be estimated by (3.3)-(3.6): 

1 f 1’ x(t) dt j < Ij A-ll] / f s’ Ax(t) dt j 
0 0 

G !I -WI (g + 1 f /oTf(t) dt I) 
G II 41 w + llflll- 

(3.8) 

Since Ij X’ /IL2 < (T)l12 IIF Ij I/ x jl + (T)l12 [If I] (via the differential equation) 
one can use inequalities (2.5) and (3.8) in (3.7) to get 

I 40 < II A-l II F + Ml1 + mF II II x II + llfll1/u2>““* 

A rearrangement of terms completes the proof. 

THEOREM 3.2. Let the following conditions be met: (a) F(u) has the 
represtmtation (3.2); 

(b) A = s!n dy(B) is invertible, and 

(4 N4 = 1 - II A-l II IlFl12 I 4 P l>l - TIIF ll/(wl’” > 0 for 
--PO G P G PO * 

Then the equation x’(t) = -F( Ux,) + f(t) h as at least one T-periodic solution 

for I P I d PO. 
Proof. By Lemma 3.1, all possible T-periodic solutions of the auxiliary 

equation are bounded by some number R > 0. We choose R > 0 even 
larger, if needed, to insure that 

-@o) + f /*f(t) dt f 0, 
0 

for ( u. I = R, u. E Rn. This can be done, because 

F(uo) = Au, , 
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and A is invertible. The Brouwer degree of the mapping 

*o --+ - ; lo= [-Wo) -I-- f(t)] df 

at 0 relative to 1 U, 1 < R is precisely the sign of the determinant of A, hence, 
nonzero. An application of Theorem 2.2 completes the proof. 

COROLLARY 3.3. If T/i F /I < 2(3)1/2 and (a) and (b) hold, then x’(t) = 
-F(Ux,) + f (t) has T-periodic solutions fog all small TV > 0. 

COROLLARY 3.4. lf 0 < 1 a / T < 2(3)1/2, k(t, x) is a bcnmded ~0~~~~0~ 
~~&~i~, T-pe~~ad~c in t, then 

x’(t) = --a@ - r + f&t, x(t))) t-f(t) 

has T-periodic solutiolzs for all small p > 0, for every T-periodic cont&~uolcs$ 

~e~~~~. Equation (3.9) is the subject of study in [I 11. There it is proved 
that for a > 0 and ar < VT/Z (3.9) will h ave a Il”-periodic solution for all 
p > 0 small enough, for every T-periodic, continuous f, T > P. Corollary 
3-4 extends the result in [ll] to the range 

(n/2) < j a / Y < 1 a j T < 2(3)1/2. 

COROLLARY 3.5. The periodic solutes whose existence ~~~~~s from 
Theorem 3.2 tend, as 1 p / --f 0, b the periodic solutions of the eqocativn 

x’(t) z=: -F(Vx,) +f(t). 

Proof. Apply Theorem 2.3. 

EXAMPLE 3.6. The equation, 

x’(t) = -x(t - 1 + y sin 2nf) + sin 2~t, 

has l-periodic solutions for 0 z$ j p j < 1 - ~3~~2~6). 

(3SO) 

fiemark. It follows from the work of Hale [3] that (3.10) has l-periodic 
solutions for 0 < TV < z-//2 - 1. Example 3.6 shows that for a somewhat 
larger range. of values of p the existence of l-periodic solutions still follows. 
HoFever, for the range 71.12 - 1 < p < 1 - (3x/s/6) the uniqueness and 
as~pto~c stability obtained by Hale [3] cannot be proved using our methods. 
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4. NONAUTONOMOUS SYSTEMS 

Let F(t, U) be a continuous functional on (-co, oo) x C([--h, 0] -+ 22”) 
with values in R”, F(t + T, u) = F(t, u), f(t) a continuous T-periodic 
RN-valued function, and consider the hereditary nonhomogeneous differential 
system 

x’(t) = -F(t, Ux,) +f(t). (4-l) 

The purpose of this section is to establish the existence of T-periodic 
solutions of Eq. (4.1) for 1 p 1 sufficiently small. 

Let us apply Riesz’ theorem in order to write F(t, ZJ) in the integral form 

(4.2) 

where ~(t, 0) is an n x n matrix of bounded variation, q(t, -A) = 0. The 
hypotheses will depend on ~(t, 0). W e single out the special case F(t, U) = 
A(t) u(0) with A(t) an n x n T-periodic continuous matrix, then use results 
for this special case to obtain results for (4.1). In this case, q(t, 0) = 0 
(--h < 8 < 0) and ~(t, 0) = A(t). 

We establish the following lemma for the special case when F(t, u) = 
A(t) u(O) in Eq. (4.1). 

LEMMA 4.1. Let A(t) be T-periodic, of class Cl, with A(T) invertible. 
Assume that the following inequality is valid for j p 1 < p. : 

$W = 1 - II 4TF1 II [II 4.)/12 I 4 I-L I>1 + T II A’(.Wl 
- TII Am//'/" > 0. 

Put 

W4 = II 4’Y II [1 + II A(.>ll I 4 P MI + WW”. 

Then for every y E [-p. , po] every T-periodic solution x(t) of the auxiliary 
equation, 

x’(t) = &-A(t) ux,(O) + f WI (0 -=c E < 11, 
satisjies the inequality 

Proof. Let x(t) be a possible T-periodic solution. Integrate the equation on 
[0, T] to obtain 

1 T 

TO 
s A(t) Vx,(O) dt = f s,'f (t) dt + f s,’ A(t)[Vx, - Ux,](O) dt. (4.3) 
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The integral on the left side is subjected to an integration by parts to obtain 

j’ A(t) F’%,(O) dt = A(T) j” x(s) ds - j’ A(t) j” VxJO) ds dt, (4.4) 
0 0 0 0 

because 

joT Vx,(O) dt = jT x(s) ds, 
0 

as shown previously. Therefore, the invertibihty of A(T) and relation (4.4) 
give the inequality 

The second term on the right in relation (4.3) can be estimated by the 
methods already exploited in the autonomous case, and we arrive at the 
bound 

K = [II ~Wll2 II x II + II 4% llflll I 4 P II; 
hence, by (4.5) we have 

(4.6) 

I-&[ I 4s) h G II 4T)-111 [llfll + Kl + TII 4Wlil II A’ Ia>ii II x l/P- (4.7) 

As in the autonomous case, one can easily verify, using (4.7) and the 
differential equation, that 

I Ml G II 4W’ [llfll + K + TII A’(.)ll II x II/21 
+ TN 4.>ll II x II + llfll1/WY’“. (4.8) 

A rearrangement of terms completes the proof. 
With the aid of Lemma 4.1, we now extend the bounds obtained for the 

special case of a matrix to system (4.1). 

LEMMA 4.2. Let ~(t, 0) be of class Cl, v(T, 0) invertible, q(t -f- T, 0) E 
q(t, 81, ad put 

M = ozzT (j:h II dt, @Ii” d@)“t 

Ill F Ill = SUP {IIF@, *It : f E P, T31, 

-U4 = 1 - II SC 01-l II [II d.> W” I #(I P III + T/I $I’> O)ll/~l 
- T II d-t W/W1’~, 

&(P”) = II r(T> 0)-l II [I + II d-7 ON 141 P I>13 + W2)‘$ 
JW = -WFL) - %4lll F Ill2 + M(W2 III F IllI, 
&h-4 = ~IWII F Ill I 4 P II + ~W’7- 
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If -%4 > 0 for I P I G PO 9 then all possible T-periodic solutions of the 
auxiliary equation, 

x’(t) = 4--F@, Uxt) + f @)I (0 < E < 11, 

satisfy the inequality 

II x II G v4?(P)lE2(P)l llf II (I P I G POELO) 

Proof. Let x(t) be a possible T-periodic solution. Then x(t) is a T- 
periodic solution of the equation 

x’(t) = 4--A(t) V%(O) +fi(t>l, (4.9) 

where A(t) = q(t, 0) and 

(4.10) 

Let us apply the Lemma already proved for Eqs. (4.9) to obtain 

-Q4 II x II G Q(PL) llfi IL (4.11) 

The estimates already obtained in previous proofs give 

1 l;h w, e>lYxt - u%lP> j d IIIF Ill [IIIF III II x II + llf llll 4 P l>l, 

and since T > h the C-B-S inequality and the differential equation give 

1 jIh rl(t, e)llv%l’ c4 0% j < JWY [Ill F III II 3 II + Ilf III. 

The function f*(t) will, therefore, satisfy the inequality 

llfi II G [Ill F l/l2 II x II + IIIF Ill llf Ill I 4 P I>1 + JVY UIIF Ill II x II + llf Ill- 
(4.12) 

The two inequalities (4.11) and (4.12) imply the conclusion of the lemma, 
and the proof is complete. 

THEOREM 4.3. Let the following conditions hold: (a) F(t, u) has the 
representation (4.2); 

(b) v(t, 0) is of class Cl, q(T, 0) and $ q(t, 0) dt are invertible; and 

(c) The function E.&u) of Lemma 4.2 is positive for I p / < p. . 

Then the system x’(t) = -F(t, 77x,) + f (t) h as at least one T-periodic solution 
(I TV I < po), for every T-periodic continuous f. 
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Pyoof. The proof is identical with that of Theorem 3.2, by virtue of 
Lemma 4.2, except that we must calculate the degree of the mapping 

1 = 
u,+-- I’ F& ~0) dt + f j?(t) d*, 

T o ¶ 

/ us j < R, R > 0 sufficiently large. One has 

hence, the degree of the mapping is nonzero by (b), completing the proof. 

COROLLARY 4.4. If A(t) is a continuously diJjrere%tiable T-periodic n x n 
matrix, R(T) and Jb’ A(t) dt are invertible, and E&u) > 0 (1 ,u / ,< po}, thm 
the system d(t) = --A(t) Uxt(0) 3-f(t) h as at least one T-periodic solution 
(1 p / < po), for every T-periodic continuous f. 

COROLLARY 4.5. Jf a(t) # 0 is T-periodic, continuously difeerentiable, 
k(t, x) is a bounded continuous function, kft + T, x) s k(t, x), and 

Tll a II -=c Z(3) l/2, then whenever 0 < r < h < T the scalar equation, 

x’(t) = -4) x(t - y + pk(t, x(t))) i-f(t), 

has T-periodic solutions for small j p 1, for every T-periodic continuous f. 

COROLLARY 4.6. The periodic solutions given by Theorem 4.3 tend, m 
p + 0, to the periodic solutions of the equation x’(t) = -F(E, Vx,) + f (t)” 

5. SYSTEMS SUBJECT TO NONLINEAR FORCES 

The inequalities developed in Sections 3 and 4 supply a simple vehicle 
for obtaining periodicity theorems for the forced nonautonomous hereditary 
system 

x’(t) + F(t, Uxt) = g(t, xt , u”xt), (5.0 

where lJ* is an operator of the same hind as U, with or without parameter 
dependence, and g is a continuous P-valued functional on 

R x C([-h, 0] -+ R”) x C([-h, 0] -+ R”), 

g(t, u, v) = g(t + T, % v). 
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The idea is to consider a possible T-periodic solution x(t) of (5.1) put 
f(t) = g(t, X* , U*X,), and apply the inequalities of Section 3 and 4 to the 
systems (3.1) and (4.1). W e may then put hypotheses on g to insure that x(t) 
belongs to a certain bounded open set in R”, add Brouwer degree hypotheses, 
and obtain periodicity theorems by arguments involving Theorems 2.1, 2.2, 
Schauder’s theorem, or Leray-Schauder degree theory. Two illustrations 
will be given. 

THEOREM 5.1. Let the following conditions hold: 

(a) F(t, u): R x C([-h, 0] -+ R”) -+ Rn is continuous; 

(b) the conditions of Lemma 4.2 are met; and 

(c) g(t, u, v): R x C([-h, 0] + R”) x C([-h, 0] + R”) --f Rn is con- 
tinuous, and fo7 some a 3 0, b > 0, 01 E [0, l), 

for every T-periodic continuous x(t): R -+ Rn; and 

(d) the mapping u, + l/T st [g(t, u,, , u,J - F(t, zq,)] dt does not vanish 
for / u0 j 3 R, , u0 E R”, and its Brouwer degree at 0 relative to I u,, I < R, 
is nonzero. 

Then system (5.1) has at least one T-periodic solution for 1 p j < pO . 

COROLLARY 5.2. The theorem is valid fop 01 = 1, provided 

Proof. Let RI > 0 be the largest positive solution of the inequality 
.7$(p) RI < D,(p)[aR,bl + b]. Then by Lemma 4.2 and (c) it follows that all 
possible T-periodic solutions of the auxiliary equation, 

x’(t) = +-F(t, Ux,) + g(t, Xt , U”xt)l (0 < E < 11, (5.2) 

are bounded by R, . 
Choose R > RI and R > R, . We complete the proof by applying (d) 

and Theorem 2.2. 

THEOREM 5.3. Let (a), (b) of Th eorem 5.1 hold, and in addition assume: 

(c’) G(t, 21, v) is continuous. Also there exists a polynomial P(.) and a 
numbs r > 0 such that 
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and such that 
I G(t, x, > U”%)l G .t”(r) 

f&r all continuous T-period~fimxilions x: R -+ RR satisfvin jj x 11 < r and 

(d’) The mupping u,, -+ l/T $- [g( t, u,, , uo) - F(t, uo)] dt is mmxe~o for 
( u. 1 = Y, u,, E R*, and has nonxe~o Brouwer degree at 0 rehtive to 1 I++, j < Y. 

Then system (5.1) has at least one T-periodic solzdtktio~ for f y \ < f~@ I 

Proof. By Lemma 4.2 and (c’) it follows that a possible T-periodic 
solution of system (5.2) must satisfy E&C) 1 x(t)\ < Da(p) P(r); hence, 
1 x(t)/ f r by (CC’). Because of (d’), we may apply Theorem 2.2 to complete 
the proof. 

EXAMPLE 5.4. The scalar equation, 

x’(t) = --owc(t - I + p sin 2xt) -j- ax(t) + b sin Znt, 

will have l-periodic solutions for all small j p /, provided 

1 - I a! / - / a I [l/l a 1 f T/(l2)1/2] > 0, 

by Corollary 5.2. 

EXAMPLE 5.5, The scalar equation, 

x’(t) = -m(t - 1 + p sin 277t)[l + g(t)] + b sin 2nt, 

has l-periodic solutions for all small / p f, provided 0 < ] 01 1 < 2(3)1~, 
1 6 j < 6, =- / 01 j [(12)1/s - 1 a! 1)/2(12)r1a + 1 a: ])]2. 

Indeed, under the assumptions made, any number t with 1 > Y > 
+((12)1/2 - 1 01 ])/((12)1/2 + j a: 1) - (be/j 01 / - 4 1 b }/I cy: j)l/a will be a. solution 
of the inequality, 

and, hence, for j p ] < p,, and p,, sufficiently small, the numbers E(p), D(p) 
of Lemma 3.1 will satisfy D&A) P(r) < E&)r, with P(r) = 1 OS 1 ra + / b 1. 

In order to apply Theorem 5.3 to the example, we must calculate 
d(.B, / x 1 < r, 0) for the mapping HX = o~z(l + 3). By definition, 
d(H,j~\ <r,O)=sigt+] f0, becauseO<r<l. 

Rem&k. The term b sin 27rb can be replaced by a cantinuous l-periodic 
function S(t), of small norm, to obtain a similar result with JFf(t) dt not 
necessarily zero. 
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6. SYSTEMS OF SECOND ORDER HWEDITARY EQUATIONS 

Let h: R x R” x R” --+ R” and d: R x R” + R be continuous. Consider 
the hereditary system 

x”(t) = h(t, x(t), x(t - d(t, x(t)))). (6.1) 

We assume that h and d are T-periodic in t. 
The purpose of this section is to establish the following result. 

THEOREM 6.1. Let D _C Rn be a bounded open convex set containing 0, and 
assume there exists a function 

such that 

A’“: ai2 --+ R” - (O}, 

(i) N(x) * x > 0, x E %I. 

(ii) For every x E as;! and y E 0, M(x) . h(t, x, y) > 0 for 0 < t < T. 

(iii) !Z~{y:~V(x).(y-xx) <O>for aZZxE3.Q. 

Then Eq. (6.1) has a T-periodic solution x(t) with values in Q. 

Remarks. We note that h only needs to be defined on R x D x Q --t R” 
and that the term d need not be bounded. Theorem 6.1 provides a simple 
geometric condition for the existence of T-periodic solutions of (6.1). The 
hypotheses are motivated by results for ordinary differential equations 
obtained by Bebernes and Schmitt [l], Knobloch [6], Schmitt [8], and 
results for linear delay-differential equations in Schmitt [9]. 

We prove Theorem 6.1 by applying Theorem 2.2 to a hereditary differential 
system which is a modification of (6.1) and has the property that T-periodic 
solutions of it with range contained in Q are T-periodic solutions of (6.1). 

For every x $a let x be the positive constant multiple of x on XI, and 
define 

further let 

and 
k(t, x) = d(t, x). 

We now consider the modified equation 

x”(t) = &(t, x(t), x(t - k(t, x(t)))), O<E<l. (6.2) 
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LEMMA 6.2. If x(t) is a T-periodic soluthlz of (6.2) u&h E = 1 and 
x(t) ~a, 0 < t & T, t&n x(t) is a T-~~~~od~ s~l~t~~ of (6.1). 

By virtue of Lemma 6.2, the proof of Theorem 6.1 is established by 
showing the existence of a T-periodic solution of (6.2) for E = 1 whose 
range is contained in Q. 

Then each GA , 0 < X < 1, is a bounded open convex set containing 0 and 
lJnao Sz, = Rn. Let x(t) b e a T-periodic solution of (6.2) and assume that 
its range is not contained in GR. Then there is a & 2 0 such that g(t) E %?A 
for some t and, hence, a maximal X 2 0 and a to E [O, T] such that x(to} E &QA 
and z(g) EB,+ for all other values of t. In particular x(t- - k(8, x(t))) eGA , 
O<t<T. 

Letting x0 = x(t,), ys = x(t, - k(t, x0)) we obtain 

Jqs) * Efwo 7 x0 3 Yo) > 0. 

Let us write 

x(to + S) = x(to) + x’(t,)S + p x”(to + SS) f ds, (6.3) 

and choose 6 > 0 small enough so that 

Jfq~o) ’ w, G), x(t - f-e, x~t)))~ > 0, to < t < to + s. (6.4) 

We use the convexity of fz, and the equation relating x to f to verify the 
inclusion A?,+ C { y : JV($~) . ( y - x0) < 01. Hence, N(ko) is an outer normal 
to GA at x0 . Considering difference quotients, therefore, gives 

dqiFoj * x’fto) = 0. 63 

It now follows from (6.3) to (6.5) that 

J-(~o) * [+I + 8) - go1 F-=- 0, 

and, thus, that ~(4 + S) $aA for 6 sufkiently small, which contradicts 
the choice of A. 
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Consider now the 2n-dimensional system 

‘Yl’ = EY2 

i Yzl = at> Yl(t>, Y& - WY YlW>> 
O<E<l. (6.6) 

LEMMA 6.4. All possible T-periodic solutions of (6.6) satisfy yl(t) E 52 and 

I y&>l -=c N 0 d t < T, w h ere N is a constant independent of E. 

Proof- Let ( r&>, y&N b e a T-periodic solution of (6.6). Then yJt) is a 
T-periodic solution of (6.2) with E replaced by e2, and, hence, has values in Q 
by Lemma 6.3. Since yr is T-periodic and yl’ = .zy2 , it follows that each 
component of y2 vanishes at some point in [0, T]. Thus, the second equation 
in (6.6) implies that the components of ys are bounded independent of E. 

LEMMA 6.5. Let Q = {(yl , yJ : yl EQ, j y2 1 < N), where N is as in 
Lemma 6.4. Then the Brouwer degree d(S, 9,O) of the mapping 

JW, YI 7 ~1) 
1 dt 

is nonzero. 

Proof. Let D be the 2n x 2n matrix 

where I, is the n x n identity matrix, and consider the mapping F1 = DF. 
It suffices to show that d(Sl , 0, 0) # 0. By the product theorem for Brouwer 
degree [lo], 

dC% , 0, 0) = d (f joT HP, ~1, ~1) 4 J-4 0). (6.7) 

To compute the degree on the right side of (6.7), we observe that the field, 

@(Y, ,A) = AY, + (1 - 4 $ s’ HP, ~1, ~1) dt (0 < x < 11, 
0 

is zero free on XJ by (i) and (ii) of Th eorem 6.1 and, hence, is a homotopy, 
which by the homotopy invariance theorem [lo] implies that 

d (4 1‘,’ HP, ~1, ~1)s Q 0) = 1. 
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Proof of Theorem 6.1. We first observe that the system (6.6) is of the 
type (2.6) and satisfies (i) of Theorem 2.1 since k is bounded. It follows 
then from Lemma 6.5 that (ii) of Theorem 2.1 holds and from Lemma 6.4 
that Theorem 2.2 may be applied to Eq. (6.6) (~a = 1). Thus, (6.6) has a 
T-periodic solution for E = 1; hence, (6.2) has a T-periodic solution x(t) 
with range in Q. Theorem 6.1, therefore, follows from Lemma 6.2. 

Remark. One may easily check that the open bounded convex region Q 
of Theorem 6.1 may be replaced by an open bounded convex region which 
does not necessarily contain 0 as an interior point. 

COROLLARY 6.6. Let x and h be scalars, and let there exist constants a: and& 
01 < ,O, such that 

h(t, a, 4 < 0 -=c h(t, 8, B), 0<t<T. (6.8) 

Further let h(t, x, y) be non&creasing in y for fixed (t, x). Then the eqzcation 

x”(t) = h(t, x(t), x(t - d(t, x(t))>) (6.9) 

has a T-periodic solution x(t) with c1 < x(t) < /I. 

Proof. It suffices to observe that D may be chosen to be the open interval 
(a, 8). (6.8) together with the monotonicity of h with respect to y then imply 
that all conditions of Theorem 6.1 hold. 

Remark. Corollary 6.6 provides an extension of Theorem 2 of [9] to 
nonlinear equations. Similar results for systems patterned after the results in 
[l], [6] and [8] may also be obtained. 

7. EXTENSIONS, REMARKS, UNSOLVED PROBLEMS 

The results of Section 2-6 will extend to more general heredity operators 
with virtually no change in the proofs. In particular, we could also have 
considered equations with terms of the form 

where 0 is itself a heredity operator. Therefore, there is a natural extension 
of the results of Sections 2-6 to finite iterates of the simple heredity operators; 
the reader can easily supply the statements. 

Anothes direction could also be pursued, namely to formulate the results 
in terms of the hereditary systems introduced by Jones [5]. We leave this 
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task to the reader, because we cannot justify the space in view of the cases 
already treated. 

The parameter p which appears throughout can be an element of an 
arbitrary normed linear space, without change in the proofs. We had hoped 
to be able to treat the equation 

S’(t) = -r(t) S(t) [lo + s, - s (t + ~(~~~~)] +m 

with the aid of Theorem 2.1 (see Cooke [2, p. 1731) and the correct inter- 
pretation of p. We were unsuccessful, and the periodicity question remains 
unsolved. 

It should be apparent how to weaken the differentiability assumption on 
A(t) and ~(t, 0) in Section 4 to a bounded variation requirement. It seems 
unlikely that such a hypothesis is necessary, and we leave unsolved the 
problem of determining whether or not continuity of A(t), ~(t, 0) is sufficient. 

An interesting problem occurs if we allow the functions &(t, x, p) to be 
unbounded but still bounded on bounded sets. Our progress in this direction 
is limited to the results of Section 6, but we still feel that more can be done. 
We remark that a theorem similar to Theorem 6.1 can be formulated for 
first order systems of the kind considered in Theorem 2.2. This task is left 
to the reader. 
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