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1. Introduction

Filter banks with linear phase have the desirable property that for any input signal
with energy confined to the pass-band of the filter, the corresponding output signal
is approximately equal to the input [11]. In the univariate case the only two-channel
conjugate mirror filters and finite impulse response filter banks which have linear
phase are the Haar filter. In the multivariate multiple channel vector-valued case,
examples of linear phase filter are given in [3,6,10]. A general construction of filter
banks having linear phase was proposed in [1] by a matrix factorization approach and
the use of block centrally symmetric matrices. This approach demands a computa-
tionally convenient method to generate block centrally symmetric matrices. Inspired
by this practical issue, we provide such a characterization here and also extend the
results in [1] to cover the important case of multivariate biorthogonal filter banks.

We begin our discussion in Section 2 with a study of block centrally symmetric
and anti-symmetric matrices. The structure of these matrices is completely resolved
and some of their most useful properties are presented. In the last section we show
how to use these matrices for the design of biorthogonal multivariate filter banks.

2. Centrally symmetric matrices

We start this section with a description of two ancillary results. They will be used
later in the section for the study of block centrally symmetric and anti-symmetric
matrices. Suppose that m is a positive integer and E, G, H are in Mm, the space of
all matrices of order m with real elements. Here we shall assume that these matrices
satisfy several conditions. First, we require that they are nonzero and symmetric.
Next, we demand that they satisfy the equations

G2 = H 2 = I, E2 = E. (2.1)

We also require that there is a real constant ν such that

GH +HG = νE. (2.2)

Note that Eqs. (2.1) and (2.2) imply that

νEG = GHG+H = νGE

and so we see, at least for ν /= 0, that E and G commute. Similarly, in this case we
also see that the matrices H and E commute. We assume, even when ν = 0, that
this property holds and, to conveniently state our first observation below, we simply
say, matrices E, G, H which satisfy all of these conditions are admissible. Thus,
when the matrices E, G and H are admissible they satisfy Eqs. (2.1) and (2.2) and
E commutes with G and H .

Lemma 2.1. If E,G,H ∈ Mm are admissible matrices and µ is a real number then
the matrix
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S :=
√

2

2
(I +HG+ µE) (2.3)

is orthogonal if and only if ν + (ν + 2)µ+ µ2 = 0.

Proof. Using the symmetry of the matrices E, G and H and Eq. (2.1) we have that

STS = I + 1

2
(HG+ 2µE +GH + µGHE + µEHG+ µ2E).

Since these matrices are admissible this equation simplifies to

STS = I + 1

2
(ν + (ν + 2)µ+ µ2)E,

which proves the result. �

In the next lemma we need another property of the matrices E, G and H when
they are admissible.

Lemma 2.2. If E,G,H ∈ Mm are admissible matrices such that

HE = GE, (2.4)

then

STHS = G

if and only if ν + 4µ+ µ2 = 0.

Proof. Using the symmetry of matrices E, G and H and Eq. (2.1) a direct compu-
tation leads to the equation

STHS = G+ 1

2
(H +µHE+GHG+µGE+µEH +µEG+µ2EHE).

Since the matrices are admissible we derive from this equation the formula

STHS = G+ 1

2
[(2µ+ µ2)HE + (2µ+ ν)GE].

Now, we use property (2.4) and observe that the above equation reduces to

STHS = G+ 1

2
(ν + 4µ+ µ2)GE,

from which the lemma follows. �

We now recall the definition of block centrally symmetric and anti-symmetric
matrices. The definition uses a special matrix defined for any positive integers r, n
by the equation

Hn :=




0 0 · · · Ir
0 · · · Ir 0
...

...
...

...

Ir 0 · · · 0


 .
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where Ir stands for the identity matrix of order r . A matrix B ∈ Mrn is called block
centrally σ -symmetric if it satisfies the matrix equation

B = σHnBHn.

When σ = 1 (respectively σ = −1), we say B is a centrally symmetric (respectively
anti-symmetric) matrix. We call the matrix Hn the basic block centrally symmetric
matrix.

Since we shall always work with block matrices in Mrn whose elements are matri-
ces of order r we will frequently drop our reference to the block size. Also, for the
sake of notational simplicity we shall generally not subscript the matrix Hn as long
as no confusion arises. When doing so we always distinguish this special matrix from
the general matrices which appeared in the first two lemmas.

Since the matrix Hn plays a crucial role in the study of centrally σ -symmetric
matrices, we identify its eigenvalues. For this purpose, we introduce two positive
integers

n1 :=
[
n+ 1

2

]
, n2 :=

[n
2

]
,

where [x] denotes the greatest integer less than or equal to x. An induction on n con-
firms that the characteristic polynomial p of the matrix Hn is given, at any complex
number λ, by the formula

p(λ) := |λIrn −Hn| = (λ − 1)rn1(λ + 1)rn2 . (2.5)

In other words, the matrix Hn has only 1 as an eigenvalue with algebraic multiplicity
rn1 and −1 with algebraic multiplicity rn2. The formula (2.5) also follows from
Proposition 2.3 below.

To make use of the previous lemmas we use the diagonal matrix G ∈ Mrn defined
by the equation

G :=
(
Irn1 0

0 −Irn2

)
(2.6)

and for the matrix E ∈ Mrn we use the identity matrix for n even while for n odd E
is defined by the equation

E :=

0 0 0

0 Ir 0
0 0 0


 .

We also set µ = ν = 0 when n is even and we set µ = −2 + √
2 and ν = 2 when

n is odd. Therefore, for this value of ν these matrices are admissible and satisfy Eq.
(2.4) with H = Hn. With them and the value of µ we prescribed, the matrix S ∈ Mrn

defined by (2.3) has the alternative form

S =
√

2

2


Irk 0 −Hk

0
√

2Ir 0
Hk 0 Irk


 ,
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when n = 2k + 1 for some nonnegative integer k and when n = 2k it is given by the
formula

S =
√

2

2

(
Irk −Hk

Hk Irk

)
.

From Lemmas 2.1 and 2.2, we obtain the next proposition.

Proposition 2.3. The matrix S is orthogonal and has the property that

S−1HS = G. (2.7)

Proof. As we have already mentioned above the matrices E, G and H are admissi-
ble and, in addition, their definitions ensure the validity of the formula

HE = GE.

Therefore, we conclude by Lemma 2.1 that S is an orthogonal matrix and by Lemma
2.2 that they satisfy Eq. (2.7). �

From this fact follows our first theorem on a characterization of block centrally
σ -symmetric matrices.

Theorem 2.4. If Z ∈ Mrn and B := SZS−1 then B is block centrally σ -symmetric
if and only if

σGZG = Z. (2.8)

Proof. Suppose that B is block centrally σ -symmetric. Using this hypothesis and
Proposition 2.3, we have that

σGZG = σ(S−1HS)Z(S−1HS) = σS−1(HBH)S = S−1BS = Z.

Conversely, suppose that Eq. (2.8) holds. We then have that

σHBH = σHSZS−1H = σSGZGS−1 = SZS−1 = B,

which completes the proof. �

This theorem gives a complete characterization of centrally σ -symmetric matrices
as it is an easy matter to solve Eq. (2.8) for Z since the matrix G has the simple form
(2.6). The details are postponed until later.

We shall now use this theorem to say more about block centrally symmetric and
anti-symmetric matrices. For this purpose, we recall that the Frobenious inner prod-
uct of any F and G in Mrn is defined by the equation

〈F,G〉 := trace(FGT).

We denote by Mc the subspace of Mrn of block centrally symmetric matrices and Ma

the subspace of block centrally anti-symmetric matrices. We need the linear operator
H : Mrn −→ Mrn defined for any F ∈ Mrn by the equation
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H(F ) := HFH,

where H is the basic centrally symmetric matrix defined earlier. In particular, H 2 =
I which guarantees that the operator

G := 1

2
(I + H)

satisfies G2 = G. By noting the fact trace(A) = trace(HA) for any matrix A, we
conclude that G is self-adjoined and then an orthogonal projection onto Mc with
orthogonal complement Ma. These facts are directly verifiable and lead to the fol-
lowing result.

Proposition 2.5. The space Mrn is the orthogonal direct sum of Mc and Ma, that
is,

Mrn = Mc ⊕⊥ Ma.

Let us now use this fact to identify the dimension of Mc and Ma.

Proposition 2.6. The dimensions of Mc and Ma are given respectively by

dimMc = r2
(
n2

1 + n2
2

)
, and dimMa = 2r2n1n2.

Proof. When σ = 1 the dimension of the subspace of all matrices Z ∈ Mrn which
satisfy Eq. (2.8) is seen to be r2(n2

1 + n2
2). By Proposition 2.5, we know that the

dimension of Ma is given by

dimMa = dimMrn − dimMc = 2r2n1n2,

which proves the result. �

The association of matrices Z which satisfy Eq. (2.8) in Theorem 2.4 with block
centrally σ -symmetric matrices B allows us to easily transfer properties of B directly
to Z and visa verse. To explain the next corollary it is now appropriate to characterize
these matrices. For σ = 1 we see that Z ∈ Mrn satisfies (2.8) exactly when it has the
form

Z :=
(
Z1 0
0 Z2

)
(2.9)

with Z1 ∈ Mrn1 and Z2 ∈ Mrn2 while for σ = −1 it has the form

Z :=
(

0 Z2
Z1 0

)
with Z1 ∈ Mrn1×rn2 and Z2 ∈ Mrn2×rn1 . Let us make use of these formulas and
denote by Mc,i and Mc,o the group of all invertible matrices and orthogonal matri-
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ces in Mc, respectively. The next result characterizes these matrices in terms of the
corresponding matrices Z1 and Z2. The proof follows directly from Theorem 2.4.

Corollary 2.7. The following statements hold:

(i) B ∈ Mc,i if and only if it has the form

B = SZS−1 (2.10)

where Z has the form (2.9) with Z1 ∈ Mi
rn1

and Z2 ∈ Mi
rn2

.

(ii) B ∈ Mc,o if and only if it has the form (2.10) where Z has the form (2.9) with
Z1 ∈ Mo

rn1
and Z2 ∈ Mo

rn2
.

We now turn to discussion of centrally symmetric and centrally anti-symmetric
matrices, which are symmetric and anti-symmetric (as block matrices). Specifically,
we denote by Mc,s and Mc,a the group of all symmetric and anti-symmetric matrices
in Mc, respectively. Likewise, we use Ma,s and Ma,a for the group of all symmetric
and anti-symmetric matrices in Ma, respectively. Moreover, we use Ms

n and M−s
n to

denote the symmetric and anti-symmetric matrices in Mn, respectively.

Corollary 2.8. The following statements hold:

(i) B ∈ Mc,s if and only if it has the form (2.10) with Z having the form (2.9),
where Z1 ∈ Ms

rn1
and Z2 ∈ Ms

rn2
; B ∈ Mc,a if and only if it has the form

(2.10) with Z having the form (2.9) where Z1 ∈ M−s
rn1

and Z2 ∈ M−s
rn2

.

(ii) The dimensions of these spaces are given by the formulas

dimMc,s = r2n1(n2 + 1), and dimMc,a = r2n2(n1 − 1).

(iii) There holds the decomposition

Mc = Mc,s ⊕⊥ Mc,a.

Proof. Note that both Mc,s and Mc,a are linear subspaces of Mc. The first assertion
(i) follows from Theorem 2.4. while the second is apparent by just counting the
dimensions of the matrices Z1 and Z2. Indeed, for the first formula in (ii) Z1 and
Z2 are symmetric matrices of order rn1 and rn2, respectively, and so they have total
dimension

r2

2
n1(n1 + 1)+ r2

2
n2(n2 + 1) = r2n1(n2 + 1).

Similarity, for the second formula in (ii) Z1 and Z2 are anti-symmetric matrices of
order rn1 and rn2 and so their total dimension

r2

2
n1(n1 − 1)+ r2

2
n2(n2 − 1) = r2n2(n1 − 1).

Finally, we show that (iii) is valid. Choose any B ∈ Mc, which by Theorem 2.4
can be written in the form such
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B = SZST, for some matrix Z ∈ Ms.

We decompose B in the form

B = 1

2
S(Z + ZT)ST + 1

2
S(Z − ZT)ST.

Since Z + ZT and Z − ZT are in Ms it follows that 1
2S(Z + ZT)ST ∈ Mc,s and

1
2S(Z − ZT)ST ∈ Mc,a. Moreover, the sets Mc,s and Mc,a are perpendicular because
for any symmetric matrix A and anti-symmetric matrix B we have that 〈A,B〉 = 0
since

〈A,B〉 = trace(ABT) = −trace(AB) = −trace(ATB) = −〈A,B〉.
Thus, (iii) is valid and the proof is complete. �

The proof of the next corollary is similar to that of Corollary 2.8 and so we omit
the details.

Corollary 2.9. The following statements hold:

(i) Both of Ma,s and Ma,a are subspaces of Ma. Moreover, B ∈ Ma,s if and only
if it has the form (2.10) with Z having the form

Z =
(

0 Z1

ZT
1 0

)
(2.11)

where Z1 ∈ Mrn1×rn2; B ∈ Ma,a if and only if it has the form (2.10) with Z

having the form

Z =
(

0 Z1

−ZT
1 0

)
where Z1 ∈ Mrn1×rn2 .

(ii) The dimensions of Ma,s and Ma,a are given by

dimMa,s = dimMa,a = r2n1n2.

(iii) There holds the decomposition

Ma = Ma,s ⊕⊥ Ma,a.

3. Construction of biorthogonal filter banks

In this section, we describe a general construction of vector-valued multivariate
biorthogonal and orthogonal filter banks having a matrix factorization. For these
filter banks, the low-pass filter, its corresponding high-pass filters and its dual filters
have the same support. Moreover, when we choose the matrices to be block centrally
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symmetric, the filters enjoy the property of uniform linear phase which leads to the
symmetry of the corresponding refinable function and wavelets (provided that they
exist). Our presentation and point of view follow closely that were presented in [1]
where only the orthonormal case was considered. We begin by recalling the setup in
that paper.

Let A be a d × d matrix with integer entries such that all its eigenvalues are
greater than one. Let s := |detA|, Zs := {0, 1, . . . , s − 1} and �(A) := {γj : j ∈
Zs} be a complete set of representatives of the distinct coset of Zd/AZd with γ0 = 0.
For each γ ∈ �(A), we define the corresponding coset γ := AZd + γ . The collec-
tion of cosets {γ j : j ∈ Zs} form a partition of Zd . Recall that, it was shown in [1]
that, for any dilation matrix A, there exists a complete set of representers of the dis-
tinct coset of Zd/AZd given by {γj : j ∈ Zs} with γ0 = 0 satisfying the additional
conditions

γs−1 − γj = γs−1−j , j ∈ Zs . (3.1)

For an r × r matrix h of trigonometric polynomials defined by the equation

h(ξ) :=
∑
α∈Zd

aαe−iα·ξ , ξ ∈ Rd ,

where aα ∈ Mr , its polyphase factors are the r × r matrices of trigonometric poly-
nomials {hl : l ∈ Zs} defined for l ∈ Zs and ξ ∈ Rd as

hl(ξ) =
∑
α∈Zd

aAα+γle
−iα·ξ , ξ ∈ Rd .

We can reverse this process and construct the matrix of trigonometric polynomials h
from its polyphase factors hl , l ∈ Zs , by the formula

h(ξ) =
∑
l∈Zs

hl(A
Tξ)e−iγl ·ξ , ξ ∈ Rd .

The construction of multivariate compactly supported biorthogonal or orthonormal
multi-wavelets using multiresolution analysis (MRA) leads to the following two
questions (see, for example, [2]).

(i) Find an r × r matrix of trigonometric polynomials m0 and it its dual m̃0 such
that their polyphase factors m0,l , m̃0,l , l ∈ Zs , satisfy the perfect reconstruction con-
dition

W0(ξ)
∗W̃0(ξ) = 1

s
Ir , ξ ∈ Rd , (3.2)

where W0 and W̃0 are rs × r matrices defined by

W0(ξ) := (
m0,l(ξ) : l ∈ Zs

)
, W̃0(ξ) := (

m0,l(ξ) : l ∈ Zs

)
, ξ ∈ Rd .

We call W0 and W̃0 the polyphase vectors corresponding to m0 and m̃0, respectively.
(ii) Find r × r matrices mj , m̃j , j ∈ Zs \ {0}, of trigonometric polynomials such

that the rs × rs block matrices composed of their polyphase factors given by
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W(ξ) := (
mj,l(ξ) : j, l ∈ Zs

)
, W̃ (ξ) := (

m̃j,l(ξ) : j, l ∈ Zs

)
, ξ ∈ Rd

satisfies

W(ξ)∗W̃ (ξ) = 1

s
Irs, ξ ∈ Rd . (3.3)

There is an extensive literature associated with the problems (i) and (ii), especially
for dyadic dilation (see, for example, [2,5–9,12,13]). However, even in this special
case there is no general method to solve them. By using block central symmetric
matrices, we resolve these problems for a large family of filter banks which have a
matrix factorization.

To explain our method, for any ξ ∈ Rd , we let D(ξ) be the rs × rs diagonal block
diagonal matrix of trigonometric entries defined by

D(ξ) := diag
(

e−iγ0·ξ Ir , . . . , e−iγs−1·ξ Ir
)

and denote by X the r × rs matrix function defined by

X(ξ) :=
(

e−iγ0·ξ Ir , . . . , e−iγs−1·ξ Ir
)
, ξ ∈ Rd .

We choose the low-pass filters m0, m̃0 to have the form

m0(ξ) = 1

s
X(ξ)

(∏
j∈ZN

UjD(ATξ)U−1
j

)
V0, ξ ∈ Rd ,

m̃0(ξ) = 1
s
X(ξ)

(∏
j∈ZN

ŨjD(ATξ)Ũ−1
j

)
Ṽ0, ξ ∈ Rd ,

(3.4)

where the matrices Uj , Ũj , j ∈ ZN , are arbitrary rs × rs real block centrally sym-
metric matrices with

Ũj = (UT
j )

−1, (3.5)

and V0, Ṽ0 are arbitrary rs × r real matrices satisfying

V T
0 Ṽ0 = sIr . (3.6)

We first show below that m0 and m̃0 defined in (3.4) form a dual pair of filters satis-
fying the perfect reconstruction condition (3.2).

Theorem 3.1. Suppose that m0, m̃0 are trigonometric polynomials defined in (3.4)
for some rs × rs real matricesUj , Ũj , j ∈ ZN and some rs × r real constant matri-
ces V0, Ṽ0. The following statements about m0 and m̃0 hold:

(i) If Uj and Ũj , j ∈ ZN, satisfy (3.5) and V0, Ṽ0 satisfy (3.6), then m0 and m̃0
satisfy the perfect reconstruction condition (3.2).

(ii) The conditions m0(0) = Ir , m̃0(0) = Ir hold if and only if

X(0)V0 = sIr , X(0)Ṽ0 = sIr .

(iii) If V0 = Ṽ0, then both m0 and m̃0 have accuracy of order at least 1, that is,

m0(2π(A
T)−1ωl) = m̃0(2π(A

T)−1ωl) = δ0lIr ,
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for all ωl, l ∈ Zs belonging to �(AT), an arbitrary complete set of the repre-
sentatives of the distinct coset Zd/ATZd with ω0 = 0.

Proof. We first show (i). To this end, we note that the polyphase vectors W0 and W̃0
corresponding to m0 and m̃0 are

W0(ξ) = 1

s

∏
j∈ZN

(
UjD(ATξ)U−1

j

)
V0, ξ ∈ Rd

and

W̃0(ξ) = 1

s

∏
j∈ZN

(
ŨjD(ATξ)Ũ−1

j

)
Ṽ0, ξ ∈ Rd ,

respectively. Therefore, we conclude that

W ∗
0 W̃0 = 1

s2
V T

0

∏
j∈ZN

(
(U−1)TN−j−1D(−AT·)UT

N−j−1

)

×
∏
j∈ZN

(
ŨjD(AT·)Ũ−1

j

)
Ṽ0.

Since D(−·)D = Irs , Uj , Ũj , j ∈ ZN satisfy (3.5) and V0, Ṽ0 satisfy (3.6), we con-
clude that m0, m̃0 satisfies the perfect reconstruction condition (3.2).

To show (ii), we use Eq. (3.4) to get that

m0(0) = 1

s
X(0)V0, m̃0(0) = 1

s
X(0)Ṽ0,

from which (ii) follows.
Finally, we turn to the proof of (iii). From Theorem 2.2 of [1], we conclude that the

condition V0 = Ṽ0 implies that V0 = Ṽ0 = (Ir , . . . , Ir )
T. We furthermore observe

for n ∈ Zs that

m0(πn) = 1

s
X(πn)

∏
j∈ZN

(
UjD(2πωn)U

−1
j

)
V0,

where πn := 2π(AT)−1ωn. Since D(ξ) is 2π-periodic, we see that D(2πωn) equals
to the identity matrix Irs for n ∈ Zs . Noting the definition of X(ξ), we conclude that

m0(πn) = 1

s

∑
j∈Zs

e−iγj ·πnIr , n ∈ Zs .

Now, using the identity

1

s

∑
j∈Zs

e2π i(A−1γj )·ωn = δ0n, n ∈ Zs ,

(see, for example, [4]), we conclude that m0(πl) = δ0lIr . Similarly, by changing the
symbol Uj to Ũj , we can verify m̃0(πl) = δ0lIr . �
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Remark. The conditions m0(0) = Ir and m0(0) = Ir mean that m0 and m̃0 are
low-pass filters. In [1], we have shown that the equations

X(0)V0 = sIr , V T
0 V0 = sIr

have the unique solution V T
0 = X(0). But in biorthogonal case, V0 and Ṽ0 are not

uniquely determined by the equations

X(0)V0 = X(0)Ṽ0 = sIr , V T
0 Ṽ0 = sIr .

Recall that the low-pass filter m0 has uniform linear phase if there exists a µ ∈ Zd

such that for all ξ ∈ Rd

m0(ξ) = eiµ·ξm0(ξ).

We call an rn × r matrix V an block centrally symmetric vector if V = HnV , where
Hn is the basic block centrally symmetric matrix defined in Section 2.

Theorem 3.2. Suppose that the complete set �(A) = {γj : j ∈ Zs} with γ0 = 0 of
representatives of the distinct coset of Zd/AZd satisfies (3.1). IfUj and Ũj , j ∈ ZN,

are block centrally symmetric matrices and V0, Ṽ0 are block centrally symmetric
vectors, then both of m0 and m̃0 defined in (3.4) have uniform linear phase.

Proof. We only need to verify that m0 has linear phase since its dual m̃0 can be dealt
with similarly. We must find a vector µ ∈ Zd such that

m0(ξ) = eiµ·ξm0(ξ), ξ ∈ Rd .

Our choice for µ is that

µ := (NA + I )γs−1.

Let us confirm that this is a correct choice. By (3.4), we have that

m0(ξ) = 1

s
X(−ξ)

∏
j∈ZN

(
UjD(−ATξ)U−1

j

)
V0, ξ ∈ Rd

while our hypothesis on �(A) lead us to conclude that

e−iγs−1·ATξD(−ATξ) = HD(ATξ)H, ξ ∈ Rd ,

and

e−iγs−1·ξX(−ξ) = X(ξ)H, ξ ∈ Rd .

Combining these equations, we get that

m0(ξ) = 1

s
eiµ·ξX(ξ)H

∏
j∈ZN

(
UjHD(ATξ)HU−1

j

)
V0, ξ ∈ Rd ,

from which it follows that

m0(ξ) = 1

s
eiµ·ξX(ξ)

∏
j∈ZN

(
(HUjH)D(ATξ)(HU−1

j H)
)
HV0, ξ ∈ Rd .
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Theorem 2.4 implies that the inverse of Uj , j ∈ ZN, is a centrally symmetric from
which the result follows. �

Our next task is to construct high-pass filters corresponding to the dual pair of
low-pass filters given by (3.4) which is accomplished by matrix extensions for m0
and m̃0. Indeed, in this case, the matrix extension for the low-pass filters m0 and m̃0
is realizable. Specifically, we extend the rs × r matrix V0 and Ṽ0 which satisfy (3.6)
to rs × rs real matrices

V := (V0, V1, . . . , Vs−1), Ṽ := (
Ṽ0, Ṽ1, . . . , Ṽs−1

)
,

respectively, such that

V TṼ = sIrs .

Now, we define r × r matrices of trigonometric polynomials mj and m̃j , j ∈ Zs \
{0} by the equation


mj(ξ) = 1

s
X(ξ)

(∏
k∈ZN

UkD(ATξ)U−1
k

)
Vj , ξ ∈ Rd ,

m̃j (ξ) = 1
s
X(ξ)

(∏
k∈ZN

ŨkD(ATξ)Ũ−1
k

)
Ṽj , ξ ∈ Rd .

(3.7)

The next theorem ensures that the matrices mj and m̃j of trigonometric polynomials
constructed in (3.7) are the high-pass filters corresponding to the low-pass filters m0
and m̃0.

Theorem 3.3. The trigonometric polynomials mj and m̃j , j ∈ Zs \ {0}, defined by
(3.7) are high-pass filters corresponding to the low-pass filter m0 and m̃0 defined by
(3.4) with V0 = Ṽ0.

Proof. We have known that the condition V0 = Ṽ0 implies that

V0 = (Ir , . . . , Ir )
T.

Furthermore, by using Eq. V TṼ = sIrs , we know that

V T
0 Vj = 0 and V T

0 Ṽj = 0, for all j ∈ Zs \ {0}.
It is clear that mj , m̃j , j ∈ Zs \ {0}, are high-pass filters because

mj(0) = 1

s
V T

0 Vj = 0, m̃j (0) = 1

s
V T

0 Ṽj = 0.

It remains to prove that the two polyphase matrices W and W̃ formed from mj and
m̃j , j ∈ Zs , satisfy

W ∗(ξ)W̃ (ξ) = 1

s
Irs, ξ ∈ Rd .

It follows from (3.4) and (3.7) that the polyphase matrices W and W̃ corresponding
to mj and m̃j , j ∈ Zs are as follows
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W(ξ) = 1

s

∏
j∈ZN

(
UjD(ATξ)U−1

j

)
(V0, V1, . . . , Vs−1) , ξ ∈ Rd ,

and

W̃ (ξ) = 1

s

∏
j∈ZN

(
ŨjD(ATξ)Ũ−1

j

) (
Ṽ0, Ṽ1, . . . , Ṽs−1

)
, ξ ∈ Rd .

Thus

W ∗W̃ = 1

s2
V T

∏
j∈ZN

(
(U−1

N−j−1)
TD(−AT·)UT

N−j−1

) ∏
j∈ZN

(
ŨjD(AT·)Ũ−1

j

)
Ṽ .

Since D(−·)D is the identity matrix of order rs, matrices Uj , Ũj , j ∈ ZN satisfy
(3.5) and V TṼ = sIrs , we conclude that

W ∗W̃ = 1

s
Irs,

proving the result. �

To close this paper, we remark that the matrices Vj , Ṽj , Uj , Ũj , j ∈ ZN in the
construction of the low pass filters and high pass filters may be chosen such that
the refinable functions and wavelets have certain desirable accuracy, support and
vanishing moment properties. This is an interesting future research project.
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