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Term rewriting methods are used for solving the persistency problem of parametrized data 
type specifications. Such a specification is called persistent if the parameter part of its algebraic 
semantics agrees with the semantics of the parameter specification. Since persistency mostly 
cannot be guaranteed for the whole equational variety of the parameter specitication, the per- 
sistency criteria developed here mainly concern classes of parameter algebras with “built-in” 
logic. 0 1987 Academic Press, Inc 

1. PERSISTENCY, EXTENSIONS, AND INDUCTIVE THEORIES 

Starting from a many-sorted signature (S, OP) with sorts S and operation sym- 
bols OP an algebraic specification in the sense of ADJ [l] is given by a triple 
SPEC = (S, OP, E), where E is a set of equations between OP-terms. Algebras 
with signature (S, OP) which satisfy E are called SPEC-algebras. For reasons dis- 
cussed extensively in the literature (e.g., in [ 11) the isomorphism class of initial 
SPEC-algebras plays a dominant role. 

A parameterized specification PAR is a pair of two specifications PSPEC and 
SPEC, where the parameter PSPEC is part of the target SPEC. The role of initial 
algebras is taken over by a class of target algebras each of which is “freely 
generated” over some algebra in a given class K of parameter algebras (cf. [2]). 

Such a class of target algebras is called a parameterized data type. [lo] deals 
with the proof-theoretical characterization of the equational variety of 
parameterized data types. This variety turned out to be a certain “inductive” theory 
of the target specification. 

In many cases this characterization works only if PAR is persistent, i.e., if each 
algebra in the corresponding data type “preserves” the parameter algebra where it 
is “freely generated” upon. Persistency is also a sufficient criterion for the “passing 
compatibility” of PAR with actual parameter specifications (cf. ADJ [3]). So this 
paper is devoted to decidable and powerful criteria for persistency. The first step 
towards such conditions is the decomposition of PAR into a “base” specification 
BPAR and the remaining operations and equations of PAR. BPAR is supposed to 
contain those operations and equations of PAR that are necessary for the “contruc- 
tion” of data. Following this strategy it is mostly simple to show that BPAR is per- 
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&tent. Then PAR is persistent, too, if PAR is complete and consistent with respect 
to BPAR which means that the “base” part of the data type specified by PAR 
agrees with the data type specified by BPAR. 

So the tools for solving the persistency problem are the criteria for persistency of 
BPAR given by Theorem 2.12 and the completeness and consistency conditions of 
Theorems 3.4 and 4.7 and 3.5 and 5.14, respectively. They involve normalization 
and confluence properties of term reductions and are tailor-made for parameter 
algebras with “built-in” logic upon which the proof-theoretical characterization of 
parameterized data types given in [ 10, Sect. 33 is also based. 

Besides the well-known notions in term rewriting theory like “confluence” and 
“critical pair” we use some recently introduced ones like “coherence” (cf. [S]), 
“contextual reductions” (cf. [12]) and “recursive critical pairs” (cf. [l I]). They 
should support the reader’s intuition, although their definitions sometimes deviate 
from their meaning in the cited papers. Moreover, the corresponding results presen- 
ted here are different from those given there. 

The paper is organized as follows: Section 2 contains basic definitions and proof- 
theoretical characterizations of completeness, consistency, and persistency (2.12). In 
Section 3 general completeness and consistency theorems (3.4 and 3.5) are given, 
that refer to term reductions, Sections 4 and 5 focus on parameter algebras with 
“built-in” logic and adapt the notions of Section 3 to this case. Decidable criteria 
for the crucial confluence criteria of Theorem 3.5 are developed in Section 5, which 
culminates in the critical pair theorem 5.12. The main results of Sections 4 and 5 are 
summarized by the completeness theorem 4.7, the consistency theorem 5.14, and the 
persistency theorem 5.16. 

Former versions of these results are part of the author’s Ph.D. thesis [9]; id, inc, 
and nat denote identity, inclusion, and natural mappings, respectively. The first 
occurrences of notions used throughout the paper are printed in boldface. 

2. THE SYNTAX AND SEMANTICS OF PARAMETERIZED SPECIFICATIONS 

Let SIG = (S, OP) be a many-sorted signature with a set S of sorts and an 
(S* x S)-sorted set OP of operation symbols. If CE OP,:,, then arity(o) = W, 
sort(a) =s, and we often write 0: w + s. If w = E (empty word), Q is called a con- 
stant. T(SIG) denotes the free S-sorted algebra of OP-terms over a fixed infinite S- 
sorted set X of variables. If t, t’ E T(SIG) and x E X, then t[t’/x J is t with x replaced 
by t’. 

For every S-sorted set A and all sl,..., sn E S, A,, ...sn := A,, x .. . x A,Y,,. Let 
w E S*, s E S, c E OP,,,, and t E T(SIG),. Then root(ot) = 6, arg(ot) = t, sort(&) = s, 
and op(ot) (resp. var(at)) denotes the set of operation symbols (resp. variables) of 
ct. Size(t) is the number of operation symbol occurrences in t. A SIG-equation 1= r 
is a pair of SIG-terms 1 and r with sort(f) = sort(r). Let A be a SIG-algebra. Z(A) 
denotes the S-sorted set of functions from X to A. The unique homomorphic exten- 
sion ofyE Z(A) to T(SIG) is also writtenf: Iffe Z( T(SIG)), t E T(SIG), and x E X, 
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thenf[t/x]EZ(T(SIG)) is defined byf[t/x](x)=t andf[t/x](y)=fv for all YE 
x- (x). 

A satisfies a SIG-equation 1= r if for all f E Z(A) $‘= fr. (This definition extends 
to classes of algebras and sets of equations as usual.) 

2.1. DEFINITIONS (specification and semantics). An (equational) specification 
SPEC = (S, OP, E) consists of a many-sorted signature SIG = (S, OP) and a set 
E of SIG-equations. Alg(SPEC) denotes the class of SIG-algebras that satisfy E. 
The free SPEC-congruence =SPEC is the smallest SIG-congruence on T(SIG) that 
contains all pairs (J, fr) with E= r in E and f E Z( T(SIG)). =spEC is also called 
the free theory of SPEC. 

G(SIG) denotes the free S-sorted algebra of OP-terms over the empty set. 
Gen(SPEC) is the class of “finitely generated” SIG-algebras that satisfy E, i.e., every 
a E A is the interpretation of some ?E G(SIG). The inductive SPEC-congruence 
-SPEC is given by all pairs (t, t’) E T(SIG)’ such that for all f E Z(G(SIG)) 

ft = SPEC ft’. --SpEC is also called the inductive theory of SPEC. Note that the restric- 
tion of -sPEC to G(SIG)’ coincides with =SPEC. 

Two facts are well known (cf. [4] (resp. [l])). 

2.2. THEOREM. 1. Alg(SPEC) satisfies t = t’ iff t =SPEC t’. 
2. Gen(SPEC) satisfies t = t’ iff t =spEe t'. 

2.3. DEFINITIONS (parameterized data types). A parameterized specification 
PAR is a pair of two specifications PSPEC and SPEC. The forgetful functor from 
Alg(SPEC) to Alg(PSPEC) is denoted by UPAR, while FPAR stands for its left 
adjoint. For every class K of PSPEC-algebras the parameterized data type specified 
by (PAR, K) is given by 

PDTPAR, K= {F,,,(A)(AEK}. 

Let PSIG = (PS, POP), PSPEC = (PS, POP, PE), SPEC = (S, OP, E) and 
PX = {x E XI sort(x) E PS). Regarding PX as constants we obtain the signature 
SIGX = (S, OP v PX) and the specification SPECX = (S, OP v PX, E). qPECX 
is called the inductive theory of PAR. 

Analogously to Theorem 2.2, there is the following proof-theoretical charac- 
terization of the data type specified by (PAR, Alg(PSPEC)): 

2.4. THEOREM [lo, 1.71. PDT(PAR, Alg(PSPEC)) satisfies t = t’ iff t =SpECX t’. 

2.5. DEFINITIONS (persistency, completeness, and consistency). Let ID be the 
identity functor on Alg(PSPEC). We recall from category theory that there is a 
functor transformation qpAR : ID + Up,, FPAR such that for all B E Alg(SPEC) each 
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homomorphism h: A + UPAR(B) uniquely extends to a homomorphism h*: 
FPAR(A) + B such that UPAR(h*) 0 qPAR(A) = h. 

Let K be a class of PSPEC-algebras. (PAR, K) is persistent if for all A E K, 
qPAR(A) is bijective. 

Let BPAR = (PSPEC, BSPEC) be a parameterized subspecification of PAR, i.e., 
BSPEC = (BS, BOP, BE) is componentwise included in SPEC. Let BSIG = 
(BS, BOP) and EXT = (BSPEC, SPEC). Since UPAR = UBPAR 0 UEXT, qpAR(A): 
A-rU PARFPAR(A) uniquely extends to qpAR(A)*: FBPAR(A) + UEXTFPAR(A) such 
that U,pAR(rlpAR(A)*)osBPARo=l?pAR(A): 

‘IBPAR(A) 

qpARwl (1) /uBpARi,pARm 

UPARFPAR(A) = UBPAR UEXTFPAR(A 1 

PAR is complete (consistent) w.r.t. (BPAR, K) if for all A E K qpAR(A)* is surjec- 
tive (injective). 

An immediate consequence of these definitions is 

2.6. DECOMPOSITION LEMMA FOR PERSISTENCY. Let (BPAR, K) be persistent. I” 
PAR is complete and consistent with respect to (BPAR, K), then (PAR, K) is per- 
sistent. 

2.7. EXAMPLE. Let BOOL be a specification of Boolean algebras, i.e., BOOL 
consists of a sort bool, constants true and false, operation symbols 1, A , v , *, 
o, and the Boolean algebras axioms. Moreover, 

DATA = BOOL + 
sorts: entry 
opns: eq: entry entry -+ boo1 
eqns: eq(x, x) = true 

eq(x, y) = eqb, xl 
(eqk Y) A My, 2)) * eqb, z) = true 

BSET = DATA + 
sorts: set 
opns: a: + set 

ins: set entry -+ set 
eqns: ins(ins(s, x), x) = ins(s, x) 

ins(ins(s, x), y) = ins(ins(s, y), x) 

(el) 
(e2) 
(e3) 

(e4) 
(e5) 
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SET==BSET+ 
opns: has: set entry -+ boo1 

del: set entry + set 
if-bool: boo1 boo1 boo1 -+ boo1 
if-set: boo1 set set + set 

eqns: has (0, x) = false 
has(ins(s, x), y) = if-bool(eq(x, y), true, has(s, y)) 

deU0, x) = 0 
del(ins(s, x), y) = if-set(eq(x, y), del(s, y), ins(del(s, y), x)) 
if-bool(true, b, b’) = b 
if-bool(false, b, b’) = b’ 
if-set(true, s, s’) = s 
if-set(false, s, s’) = s’ 

(W 

W 

(4 

W) 

WV 

W) 
(el2) 

(el3) 

Following the strategy developed in this paper we will show that for a certain 
class Log of DATA-algebras, which will be given in Section 4, (SET, Log(DATA)) 
is persistent. 

We proceed with the representation of parameterized data types by classes of 
initial algebras which is essential for the proof-theoretical characterization of com- 
pleteness and consistency (2.9). 

2.8. DEFINITION AND THEOREM [ 10, 1.51. Let A E Alg(PSPEC). The specification 

SPEC(A) = (S, OPu A, Eu d(A)) 

has all operation symbols of SPEC together with all elements of A as constants, 
while the set of equations of SPEC is extended by the equational diagram of A, 
d(A), that consists of all equations a(a) = cA(u) with 0 E POP and a E Aarity(o). 

FPAR(A) gets an (OP u A )-algebra by interpreting each constant a E A by 
vPAR(A )(a). Moreover, f’PAR(A) is an initial object in Alg(SPEC(A)). 

Using the well-known quotient term algebra representation of initial algebras (cf. 
ADJ [ 11) we can formulate completeness and consistency as free theory properties: 

2.9. THEOREM. Let BSIG(A) = (BS, BOP u A ) and SIG(A) = (S, OP u A ). 

1. PAR is complete w.r.t. (BPAR, K) iff for all A E K, s E BS and t E 
G(SIG(A)), some t’E G(BSIG(A)) satisfies t =SPECCAj t’. 

2. PAR is consistent w.r.t. (BPAR, K) iff for all A E K and t, t’ E G(BSIG(A)), 

t =spEc(A) t’ implies t =BspEC(a) t’. 
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Proof. Let A E K and EXT(A) = (BSPEC(A), SPEC(A)). Since BSPEC(A) is a 
subspecification of SPEC(A), there is a unique homomorphism h such that the 
following diagram commutes: 

G(BSIG(A)) I”’ 

I 

P U,,,(,,G(SIG(A)) 
“at 

I 
nat (1) 

G(BSWA))I =BSPEC(A) 7 U,x,i.dWWA ))/ =SPEC(A) 

Let B := FBPAR (A) and C := FpAR(A). By Theorem 2.8, B and C are initial objects 
in Alg( BSPEC(A )) and Alg( SPEC(A )), respectively. Hence 

B = G(BSWA ))/ =BSPEC(A) and C’ = G(SWA I)/ =SPEC(A). (2) 

Furthermore, qpAR(A)*: B -+ U&C) (cf. 2.5) is a BSIG(A)-homomorphism 
because for all SEA. 

vPAR@)*lad = vPAdA )*(vBPAR(A)(u)) = vPARtA )ta) = ac.. 

Vice versa, let h: B -+ U,,,(C) be the composition of h and the isomorphisms given 
by (2). For all a E A, 

u BPAR(h)o q BPARcA )ta) = UBP,4R (M%) = ha,) = a, = YlP.4R(A)(Q). 

Hence h = qpAR(A)*. Therefore, PAR is complete w.r.t. (BPAR, K) 

iff for all A E K, qpAR(A )* is surjective 
iff for all A E K, h is surjective 
iff for all A E K, s E BS, and t E G(SIG(A)),s, some 

t’E G(BSIG)(A)) satisfies t =spEC(Ajt’, 

and PAR is consistent w.r.t. (BPAR, K) 

iff for all A E K, q pAR(A)* is injective 
iff for all A E K, h is injective 
iff for all A E K and t, t’ E G(BSIG(A)), 

t =SPEC(A, t’ implies t =BSPEC(AJ t’. l 

Besides, the persistency theorems 2.8 and 2.9 provide a useful criterion for 
the validity of equations in parameterized data types: PDT(PAR, K) satisfies a 
set E’ of SIG-equations if PAR is complete w.r.t. (BPAR, K) and (PSPEC, 
(S, OP, EuE’)) is consistent w.r.t. (BPAR, K). 

The characterization of completeness and consistency given by Theorem 2.9 will 
be further investigated in the next section. The rest of this section deals with criteria 
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for the other condition for decomposing a persistency proof, namely persistency of 
the base specification BPAR. 

The proof-theoretical conditions “maximal completeness” and “maximal con- 
sistency” defined below deal with variables instead of elements of a particular 
parameter algebra. Hence they characterize persistency of PAR with respect to all 
parameter algebras (Theorem 2.12). 

2.10. DEFINITIONS. PAR is maximally complete if for all s E PS and t E G(SIGX), 
r =sPECX t’ for some t’ E T(PSIG) (cf. 2.3). PAR is maximally consistent if for all 
t, t’ E T(PSIG) t =sPECX t’ implies t =PSPEC t’. 

2.11. DEFINITION. The simple reduction relation generated by E, -fE, is the 
smallest relation on T(SIG) (resp. Z(T(SIG))) such that 

(i) for all l=r in E andfEZ(T(SIG)),f7-,Efi, 
(ii) for all aEOP, o(t, ,..., ti ,..., t,) -+E~(t, t! ,..., , ,..*, t,) if tj +E ti, 

(iii) for allf,gEZ(T(SIG))f-+Egiffor allxEX,f~+~gx. SE, +-+E, and 
*-‘E denote the reflexive, symmetric, and reflexive-transitive closures of E, respec- 
tively. 

2.12. PERSISTENCY THEOREM I. (PAR, Alg(PSPEC) ) is persistent iff PAR is 
maximally complete and maximally consistent. 

ProoJ (only if) By assumption, qpAR( T(PSIG)/ =pspEC) is an isomorphism. 
Since 

f’pm(WSIG)/ =PSPEC) = GWGXY =SPECX 

[ 10, 1.63, we conclude 

T(PSIG)/ =PSPEc N Up,,(G(SIGX)/ =spmx). 

The surjective (resp. injective) part of this isomorphism is maximal completeness 
(resp. consistency) of PAR. 

(if) First we observe that for all KE Alg(PSPEC), (PAR, K) is persistent iff 
PAR is complete and consistent w.r.t. (PPAR, K), where PPAR = 
(PSPEC, PSPEC). So it suffices to use Theorem 2.9 to show that 
( PAR, Alg( PSPEC) ) is persistent. 

Let A E Alg(PSPEC), SE PS, and t E G(SIG(A)),. Then there are UE G(SIGX) 
and SE Z(A) such that t =fu. Since PAR is maximally complete, there is 
U’ E r( PSIG) with u =sPECX u’. 

Hence t =sPECcAJ fu’ E G(PSIG(A)). Therefore, PAR is complete w.r.t. (PPAR, 
Alg(PSPEC)) (cf. 2.9.1). It remains to show that PAR is consistent w.r.t. (PPAR, 
Alg(PSPEC)) (cf. 2.9.2). So let t, t’~ G(PSIG(A)) such that t =spEc.AJ t’. Then 
there are a least number n and t, ,..., t, E G(SIG(A)) such that tl = t, t, = t’, and for 
all l<i<n, ti++Evd(A)ti+I. Moreover, there are FEZ and ui~G(SIGX), 
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1 < i < n, such that f‘u, = ti andf is injective on WY= 1 var(u,). Maximal completeness 
of PAR implies u, = SPECX u: for some ul E T( PSIG). 

Next we show that for all 1 < i < n, 

If ti +-+E ri+ , , then 
f"; =PSPEC(A)h:+I. (*) 

u: =SPECX ui +--p u,+1 =SPECX4+1, 

and we conclude u,! =PSPEC u:+ , from maximal consistency of PAR. Hence (*) holds 
true. 

If tic--) d(A) ti+ i , then there are v, u’ E T(PSIG), u E T(SIG) and z E var(u) n PX 
such thatfv =fv’ is in d(A), ui = u[v/z], and ni+, = u [ v’/z]. Maximal completeness 
of PAR implies u =SPECX u’ for some u’ E T( PSIG). Hence 

u; =SPECX ui = u[“/zl =SPECX u’c”/zl 

so that by maximal consistency of PAR, u,! =PSPEC u’[v/z]. Analogously, 
u: + 1 =PSPEC u’[v’/z]. Therefore, 

f~l=PSPEC(A)f(~'C~/~1~=~'CfUI~IC~~/~l~~~1 

m ~'Cf~'l~lCfxl~I~~~1=f~~'C~'/~l~=PSPEC(A)f~:+I. 

Hence (*) holds true. 
r, t’ E G(PSIG(A)) implies ui , u, E T(PSIG) and thus by maximal consistency of 

PAR, u, =PSPEC u; and u, =pspE&. Finally, (*) yields 

t =.b, =PSPEC(A) jii; = PSPEClA) f”:, =PSPEC(A) fun = l’. 

Therefore, PAR is consistent w.r.t. (PPAR, Alg(PSPEC)). (The main idea of this 
proof is due to Ganzinger [6, Theorem 51.) 1 

2.13. COROLLARY. (PAR, Alg(PSPEC)) is persistent if for all GE OP, 
sort(a) E PS implies 0 E POP and iff or all 1= r in E sort(l) E PS implies that 1= r is 
in PE. 

2.14. EXAMPLE (cf. 2.7). Using Corollary 2.13 we immediately observe that 
((DATA, BSET), Alg(DATA)) is persistent. 

3. COMPLETENESS AND CONSISTENCY PROOFS BY TERM REWRITING 

Assuming that the “base” (BPAR, K) is persistent we turn to refinements of the 
proof-theoretical characterization of completeness and consistency given in the last 
section (2.9). From now on we suppose that S = BS and for all A E Alg(PSPEC) 
and s E S, G(SIG(A)), is nonempty. 
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A first step is the decomposition of the free SPEC(A)-congruence into simple 
reductions and the free BSPEC(A)-congruence: 

3.1. DEHNITI~N. Let A E Alg(PSPEC). A set R of SIG(A)-equations is 
Church-Rosser w.r.t. A if for all s E BS and t, t’ E G(SIG(A)),, t =pspEc(Aj t’ implies 

t t’ 

R * 
I 

e R 
I 

Z4 =BSPEC(A) ” 

for some U, U’ E G(BSIG(A)). 

3.2. LEMMA. Suppose that for each I = r in E-BE, op(l) contains at least one 
operation symbol of OP - BOP. For all A E K let E(A) be a subset of =BspEC(A). Zf 
(E- BE)u E(A) is Church-Rosser w.r.t. A, then PAR is consistent w.r.t 
(BPAR, K). 

Proof. Let t, t’ E G(BSIG(A)) such that t =spEC(aj t’. By assumption, 

tE-BEj”EcAjj* *i(E-BE)“EcA) 

Z4 =BSPEC(A) u’ 

for some U, U’ E G(BSIG(A)). Since for each I= r in E - BE, op(l) n 
(OP - BOP) # 0, we have t =BsPEC(Aj u and t’ =BsPEC(Aj u’. Thus by Theorem 2.9.2, 
PAR is consistent w.r.t. (BPAR, K). 1 

Localizing the Church-Rosser property by “confluence” and “coherence” con- 
ditions goes along with restricting equations to “normalizing” ones. 

3.3. DEFINITIONS. Let A E Alg(PSPEC) and R be a set of SIG(A)-equations. t’ E 
G(BSIG( A)) is an R-normal form of t E G(SIG(A)) if t sR t’. R is normalizing w.r.t. 
A if for all t E G(SIG(A )) t has an R-normal form. R is confluent w.r.t. A if for all 
t E G( SIG(A)) all R-normal forms t,, t, of t satisfy tl =BSPEC(A) t2. 

(t,, t2) E G(SIG(A)) is uniformly R-convergent w.r.t. A if some R-normal forms 
t{, t; of t, (resp. t2) satisfy t; =sspEc(AJ t;, written t, I,,, t,. 

R is coherent w.r.t. A if for all t, t, , t, E G(SIG(A)), 

R 

/ 

I\ 
implies t, JR,4 t,. 

BE 
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R commutes with another set R’ of SIG(A)-equations if for all t, t, , t2 E G(SIG(A )), 

fl 
R 

/ 
* 

t 

* 

\ 
R’ 

t2 

II 
R’ 

\ 
implies 

= 

/ 
R 

t2 

for some t’ E G(SIG(A )). 

3.4. COMPLETENESS THEOREM I. For all A E K let E(A) be a subrelation of 
=BSPECCA). Iffor all AE K, Eu E(A) is normalizing w.r.t. (BPAR, K), then PAR is 
complete w.r.t. (BPAR, K). 

Proof The statement immediately follows from Theorem 2.9.1. m 

3.5. CONSISTENCY THEOREM I. Suppose that for each I= r in BE var(r) s var(f) 
and for each I = r in E - BE, I contains at least one operation symbol of OP - BOP. 
For all A E K let E(A) be a subrelation of =BSPECcA,. If (E - BE) u E(A) is nor- 
malizing, confluent, and coherent w.r.t. A and commutes with (A(A) v A(A) - ‘) - 
(E(A) u E(A)-‘) (cf. 2.8), then PAR is consistent w.r.t. (BPAR, K). 

Proof By Lemma 3.2, it is sufficient to show that R = (E- BE)u E(A) is 
Church-Rosser w.r.t. A. So let s E BS and t, t’ E G(SIG(A)), such that t =sPEC(A) t’. 
There are a least number n and t, ,..., t,, U, ,..., U, E G(SIG(A)) with t, = t, u,, = t’, 
and for all 16kn ui SEeBEt, and 

0) ui +R ti+l, Or 

(ii) Ui-‘BEfi+l, or 
(iii) ti+, +BE~i, or 
(iv) tj+ 1 +E(A) 4, or 
(v) Uic-tA(A)-E(A) ti+l. 

We prove t 1 R t’ by induction on n; n = 1 implies t’ ir, R t, and t 1 R t’ follows from 
the normalization and confluence of R w.r.t. A. Since E(A) c =BSPEC.Aj and for each 
l=r in E-BE, op(l)n(OP-BOP)#@, 

for all ZJ E G(BSIG(A)), U+Ru’ implies Z4 =BSPEC(,4) u’. (*) 

Let n > 1. By the induction hypothesis, t, JR.,, t’. Hence by the confluence of R, it 
remains to show t, JR.A t,. 
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The proof proceeds by deriving t, JR,A 2 t in each of the cases (ib(iv) for i= 1. If 
i = 1 satisfies (i), we have 

E-B”“l, R 

t1 t2 

and infer t , 1 R t2 from normalization and confluence of R. 
If i = 1 satisfies (ii), then 

E-BE 
t1 ( * Ul 

R 

J 

BE 
* 

\ 

G t2 

for some c; E G(BSIG(A)). If u1 is R-normal, then t, = u1 and u1 =BSpECCAJ t,. There 
is an R-normal form t; of t,, and we conclude t2=BSPEC(A) t; by (*). Hence 
tl =BSPEC(A) G SO that tl 1 R,A t,. If u1 is not R-normal, there is UE G(SIG(A)) such 
that 

Since R is coherent w.r.t. A, we have v LR,A t2. Therefore t, JR,A t2 by confluence 
of R. 

If i = 1 satisfies (iii), we have 

E-BE 

J 
* 

t1 t; 

for some t;E G(BSIG(A)). If t, is R-normal, then t2=BSpECcA) ui and thus u1 = t,. 
There is an R-normal form t’, of t,, and we conclude t, =BspEc(A) t’, by (*). Hence 
t, =BSPEC(A) t; SO that tl JR,.4 2 t . If t, is not R-normal, there is v E G(SIG(A)) such 
that 

E-BE 

J 

R 
* * 

\ 

t1 t; 
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Since R is coherent w.r.t. A, we have u1 J-R,A v. Therefore t, lR,A t, by the nor- 
malization and confluence of R. 

If i= 1 satisfies (iv), we have 

E-BE 
1, + * Ul ( 

E(A) 
12 

and infer t, JR t, from the normalization and confluence of R. 
If i= 1 satisfies (v), then 

E-BE 
t1 + * Ul 

R 

J 
* 

t; t2 

for some t; E G(BSIG(A)). Since R commutes with (d(A) u d(A) -‘) - 
(E(A) u E(A)-‘), there is t; E G(SIG(A)) such that 

Hence t;EG(BSIG(A)) and thus tl 1R.A t,. 1 

4. PARAMETERS WITH “BUILT-IN" LOGIC 

From now on we deal with parameters including Boolean operators and restrict 
parameter algebras to those where the Boolean operators are interpreted as in 
propositional logic. In addition, we use if-then-else operators to simulate con- 
ditional axioms by equations. 

GENERAL ASSUMPTION. Suppose that BOOL (cf. 2.7) is a subspecification of 
PSPEC. Moreover, let if,!3 be a subset of S such that for all s E ifs SIG contains an 
operation symbol if-s: boo1 s s -+ s and E includes the equations 

if-s(true, x, y) = x and if-s(false, x, y) = y. 

Vice versa, for each I = r in E, 

(i) sort(l) = boo1 implies 14 {true, false}, 
(ii) sort(f) # boo1 implies t E {true, false} for all bool-sorted subterms t of 1. 
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4.1. DEFINITIONS. Let PEXT = (BOOL, PSPEC). The class Log(PSPEC) is 
given by all PSPEC-algebras A such that U PEXT(A) is the Boolean algebra 
{true, false}. Hence we drop the equations true = true and false = false from the 
equational diagram of A (cf. 2.8). For all A E Log(PSPEC), LE(A) denotes the set 
of BSIG(A)-equations 1= r with 1 E G(BSIG(A)),,,, - (true, false}, r E {true, false} 
and I= BSPEC(A) r. 

4.2. LEMMA. Let (BPAR, Log(PSPEC)) be persistent and A E Log(PSPEC). 

(1) For all tc G(BSIG(A)),,,, either t = true or t = false is in LE(A). 

(2) Suppose that for all I’= r’ in BE var(r’)cvar(El). Let l=r be in LE(A), 
f~ z(WIG(A))) and RcBEuLE(A)ud(A)ud(A)-’ (cf.2.8). Then jldRt 
implies t 3 LEcA, fr, 

ProoJ Let A E Log(PSPEC). By assumption, A N UBPAR FBPAR(A). By 
Theorem 2.8, FBpAR (A) z G(BSIG(A))/=BSpEC(A). Hence (1) follows from 
UP&A) N (true, false}. 

(2) Case 1. (r = true) Since I does not contain variables, fl= I E G(BSIG(A)). 
Thus j7 +R t imp1ies fr = BSPEC( A ) t because for all I’= r’ in BE, var(r’)Evar(l’). 
Hence 

z =BSPEC(A) fl=BSPEC(A) fr = r = trues (*) 

By (l), t #false. So we have either t = true and thus t = r = fr or t E 
G(BSWA )L,I - {true, false} and thus by (*), t -+LE(AJ true = r = fr. 

Case 2. (r = false) The proof proceeds analogously to Case 1. i 

Next we define a reduction relation with conditions (contexts) to simulate reduc- 
tions via LE(A). 

4.3. DEFINITION. Let BOOT = T(BSIG),,,,. The contextual reduction relation 
generated by E, ( ~~;p}pEBoOT~ is the family of smallest relations on T(SIG) such 
that 

(i) for all te T(SIG) and pEBOOT t IjEip t, 

(ii) for all l=r in E,~EZ(T(SIG)) and przBOOTfl %;,;,fr, 
(iii) for all cry OP, o(t, ,..., ti ,..., t,) ETp ) o(t, ,..., ti ,..., t,) if ti %E;p ti, 
(iv) for all s~ifS and t,, t,~ T(SIG),: 

if+, fly t2) E*, ’ tl and if-Sk4 fly t2) E+lp* t2, 
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(VI t%;Jw/ t” if t 5 E;p t’ and t’ ir, E;y t”, 
(vi) t iiFp v y t’ if t liEip t’ and t %t-.:y t’, 

(vii) for all t, t’ E T(SIG), t fE:ralse t’. 
The following lemma draws the connection between contextual and LE(A)- 

reductions. Contexts are now restricted to “base” terms so that contextual reduc- 
tions can be regarded as “hierarchical” ones. 

4.4. LEMMA. Let (BPAR, Log(PSPEC)) he persistent. Then all 
AEL~~(PSPEC), ~GZ(G(SIG(A))) and f’eZ(G(BSIG(A))) with f sEuLE,AjS’ 
(cf. 2.11) satisfy 

ft *,ft’ 
EU U?(A) 

if t E*, * t’ and f ‘p = true is in LE(A). 

Proof: We show (*) by induction on the least number of derivation steps 
4.3(i)-(vii) that lead to t sFp t’. 

If the last derivation step that generates t fcP t’ is given by 4.3(i), (ii), or (iii), 
we are done by the definition of %“E and the induction hypothesis. 

If the last step is 4.3(iv), then we have two subcases: 

(a) t = if-s(p, t’, tz) for some s E ifs and t2 E T(SIG). Then ft = 
if-s(fp, ft’, ft2) -+LE(Aj if-s(true, ft’, ft,) +E ft’. 

(b) t=if-s(q,t,, t’) for some sEifS, t,ET(SIG), and lq=p. Assume that 
f’q = true is in LE(A). Since f’p = true is in LE(A) by assumption, we would obtain 

true =BSPEC(A) f ‘q * lf’q =BSPEC(A) false. 

This contradicts Lemma 4.2( 1). Thus again by Lemma 4.2( 1 ), f ‘q = false is in 
LE(A). Therefore ft = if-s(fq, ftl, ft’) sEEvLEcAJ if-s(false, ftl, ft’) dE ft’. 

If the last derivation step of t sEip t’ is given by 4.3(v), then there are 
q, q’ E BOOT and t” E T(SIG) such that t %+E;q t”, t” 5 E;y, t’, and p = q A q’. Hence 
yq = true and f ‘q’ = true are in LE(A). Otherwise we would obtain a contradiction 
to Lemma 4.2 analogously to case (b) above. Thus by the induction hypothesis, 
ft 5 EuLEcAjft” andft” ~iEuLE,A,ft’so thatft sEuLEcA,ft’. 

If the last derivation step of t %“E;p t’ is given by 4.3(vi), there are q, q’ E BOOT 
such that t sFy t’, t s-*E;4z t’, and p = q v q’. Hence f ‘q = true or f ‘q’ = true is in 
L,?(A). Otherwise we would obtain a contradiction to Lemma 4.2( 1) analogously to 
case (b) above. Thus w.1.o.g. f’q = true is in LE(A), and by the induction 
hypothesis, ft fEu LEcA j ft’. 

If the last derivation step of t sEip t’ is given by 4.3(vii), we have p = false. This 
contradicts Lemma 4.2( 1) because by assumption, f ‘p = true is in LE( A). Hence ( *) 
is trivial in this case. 1 

Contextual reduction properties that correspond to 3.3 are defined by 4.5 and 
4.10 below. 
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4.5. DEFINITION. Let TV G(SIGX) (cf. 2.3). t has contextual E-normal forms 
t i ,..., t,E G(BSIGX) if there are n E N and pi ,..., p,,~B00T such that 

Pl ” . * f v pn =BspEo true and for all 1 < i 6 n t % E;pi ti. E is contextually normaliz- 
ing if all t E G(SIGX) have contextual E-normal forms. 

To reduce normalization of E u LE(A) to contextual normalization of E we have 
to guarantee that SPEC(A) does not identify true and false. 

4.6. LEMMA. Suppose that (BPAR, Log(PSPEC)) is persistent. Let 
A E Log(PSPEC). E v LE(A) is normalizing w.r.t. A if E is contextually normalizing. 

Proof. Let t E G(SIG( A)). There are u E G(SIGX) and f~ Z(A) such that t = fu. 
By assumption, there are n E N, p1 ,..., p, E BOOT, and u1 ,..., u, E G(BSIGX) such 
that p, v ... v pn =BsPEC true and for all 1 < i < n u *-, E;p, ui. Assume that for all 
1 d i < n, fpi = false is in LE(A). Then 

true =BSPEC(A) fpl ” ’ * ’ ” fpn =BSPEC(A) fa1sey 

which contradicts Lemma 4.2( 1). Thus for some 1 < i d n, fpi = true is in LE(A ). 
Hence by Lemma 4.4, 

t=fu .v,*,,,,,fu,EG(BSIG(A)). I 

4.7. COMPLETENESS THEOREM II. Suppose that (BPAR, Log(PSPEC) ) is per- 
sistent. If E is contextually normalizing, then PAR is complete w.r.t. (BPAR, 
Log( PSPEC) ). 

Proof. The statement immediately follows from Lemma 4.6 and completeness 
theorem 3.4. 1 

4.8. EXAMPLE. (cf. 2.7) Let E= (e6 ,..., e13). One easily observes that E is con- 
textually normalizing if 

for all t, t’ E G(BSIGX),,, has( t, x), del(t, x), and if-set(x, t, t’) have con- 
textual E-normal forms. (*I 

Condition (*) follows by induction on size(t) + size( t’) because we obtain 

has( @, x) -J false, 

has(Wt, xh Y 1 e7.eqTx ,,) ’ true, . . 

has(ins(t, xl, Y) e7.1ejj(x y)’ has(& Y), 3 I 

deUW9 4, Y) e9.eqrx ,,) b del(t, y), 3 , 
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del(ins(t, xl, Y) ,,,;le~~X,yI+ ins(Wt, Y), ~1, 

if-set(x, t, t’) ~-x. t, 

if-set(x, t, t’) s; t’ 

for all t, t’ E G(BSIGX),,,. Since ((DATA, BSET), Log(DATA)) is persistent (cf. 
Example 2.14), we conclude from Theorem 4.7 that (DATA, SET) is complete 
w.r.t. ((DATA, BSET), Log(DATA)). 

Local criteria for confluence and coherence require the “new” equations E - BE 
to be normalizing (cf. Theorem 3.5). “Base” equations (BE) are often not nor- 
malizing. Hence we can use Noetherian induction-to lift local criteria-only with 
respect to E-BE. But BE must be considered, too. The lack of normalization of 
BE is circumvented by working with parallel BE-reductions which combine 
independent simple reductions in one step. 

4.9. DEFINITION. The parallel reduction relation generated by E, +E, and its 
reflexive closure s>E are the smallest relations on 7’(SIG) (resp. Z( T(SIG))) such 
that 

(i) for all t E T(SIG), t s>E t, 
(ii) for all f, g E Z( T(SIG)), f SE g if for all x E X fx sE gx, 

(iii) for all 1= r in E, fl aE gr if f SE g, 

(iv) t 5->E t’ if t aE t’, 

(v) for all a~0P, o(t ,,..., tn) aEo(t’, ,..., t:) if 3 1 <i<n: tj aE t,! and V 
1 <i<n: ti 3Et;. 

Hence a parallel reduction step may replace “horizontally” as well as “vertically” 
independent redices (see Fig. 1). 

4.10. DEFINITION. (t, , t, ) E T(SIG)* is contextually E-convergent if there are 
n E fV, pi ,..., p,,, q, ,..., qn E BOOT, t: ,..., t:, tf ,..., ti E T(SIG) such that 

(i) (P, * qJ v ... v (P, A qn)=sspEC true, 

FIGURE 1 
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(ii) for all l<i<n, 
E; PI 

fl *+ fi’ 

= BE 

I 

t2 
* 

E; Y, 
+ t;. 

4.11. LEMMA. Let (BPAR, Log(PSPEC)) be persistent and E be contextually 
normalizing. Let A E Log(PSPEC). Zf ( t, , t2 ) E T(SIG) IS contextually E-convergent, 
then for allf, g E Z(G(SIG(A))) f sBE g implies 

ftl 
Eu Lx(A) 

* + u1 
= BE 

gt2 * b 
1 

Eu LE(A) u2 

for some ztr, u2 E G(SIG(A)). 

Proof: By assumption, there are n E N, p1 ,..., p,, q ,,..., q,EBOOT, ti ,..., t:, 
tf,..., t;E T(SIG) such that 4.10(i), (ii) hold true. Let f, gEZ(G(SIG(A))) with 
f ~LlBEg- 

Since E is contextually normalizing, Lemma 4.6 implies f SE” LE(AJ f’ and 
g *-* 1 t v LECAj g’ for some f’, g’ E Z(G(BSIG(A))). 

Assume that for all 1 d id n (f’pi A f’qi) = false is in LE(A). Then 

true=BSPEC(A) (f'p, * f'ql) v “’ v (f’& A f’qn)=BSPEC(A) fa1se 

which contradicts Lemma 4.2( 1). Hence again by Lemma 4.2(l), there is 1 <i < n 
such that (f'p, A f'q;) = true is in LE(A). Thus f’pi= true is in LE(A). 
Analogously, one obtains that g’q, = true is in LE(A). Therefore Lemma 4.4 implies 

5. CRITICAL PAIR CONDITIONS FOR CONSISTENCY 

This section is the most technical one. We show that contextual convergence of 
certain critical pairs is sufficient for confluence, coherence, and commutativity of 
(E- BE) u LE(A) (cf. 3.3, 3.5). The assumptions of Section 4 are still valid. 

To prepare the critical pair conditions we introduce superposition relations (5.1 
and 5.8) as those reductions where the left-hand side of the applied equation 1= r 
overlaps a given prefix t of the term to be reduced (see Fig. 2). 

57 l/34/2-3-4 
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ft = A t 

1 
E -A r 

FIGURE 2 

5.1. DEFINITION. The simple superposition relation generated by E, 
{-‘E;/;~}~EZ(T(SIG)),IET(SIG)--X, is the family of smallest relations on T(SIG) such 
that 

(i) for all i=r in Eji jE;/;.fr ifft=J, 

(ii) for all 0 E OP, fa(ll,..., fi,..., t,) +E;f;o(r ,,_.., f ,,...r,n ,fg(tl,..., t:,..., t,), if 
fti -b  E;f;t, .ftc!. 

Let n(ft jE;/;, t’) (resp. n(t +E t’)) denote the least number of derivation steps 
5.1(i), (ii) (resp. 2.11(i), (ii)) that lead to ft -+E;f., t’ (resp. t +E t’). 

5.2. PROPOSITION. Zf ft -+E;/;r t’, then there are I= r in E, t, E T(SIG), t, E 
T(SIG) -X and x~X such that t = to[tl/x], ft, =fr, and t’=f[fr/x](t,,), i.e., 1 
“overlaps” t in ft, 

Proof: Straightforward induction on n(ft + E; I‘;r t’). fi 

5.3. PROPOSITION. Let t, t’ E T(SIG), and f E Z( T(SIG)) such that ft -+ E t’, but 
not ft +E;f:r t’. Then there are x~var(t) and t,E T(SIG) such that fx +E t,, 
n(fx ‘E t,) 6 n(ft ‘E t’), and 

(i) t’ = f [tJx](t) if t has unique variable occurrences, 
(ii) t’ f E f [ tJx]( t), otherwise. 

Proof. Straightforward induction on n( ft -+ E t’). 1 

5.4. DEFINITION. E is linear if for each 1= r in E each variable occurs at most 
once in 1. 

The next lemma provides a syntactical criterion for the commutativity property 
in the consistency theorem 3.5. 

5.5. LEMMA. Suppose that (BPAR, Log(PSPEC)) is persistent, E - BE is 
linear, for each 1= r in E - BE var(r) c var(l) and 1 does not contain operation 
symbols of POP - {true, false}. Then for all A E Log(PSPEC) (E-BE) u LE(A) 
commutes with (d(A) u d(A)-‘) - (LE(A) u LE(A)-‘). 
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Proof. Let R=(E-BE)uLE(A), R’=(d(A)ud(A)-‘)-(LE(A)uLE(A)-‘) 
and 

t1 

R 

/ 

\ 
R’ 

12. 

We show 
t1 

R’ 

\ 
= 

l4 for some U. 
7 (*) 

= 
R 

/ 
t2 

by induction on n(t -+R t,)+n(t hR, t2). 

Case 1. t=fland tl=fr for some Z=r in R andfEZ(T(SIG(A))). 
Case 1.1. t +R,;f;l t,. By Proposition 5.2, there are I’ = r’ in R’, t, E T(SIG(A)), 

t3 E T(SIG(A)) - X and x E X such that 1= t,,[tJx], ft3 =J’, and t2 = f[fr’/x](t,,). 
Case 1.1.1. 1 = r is in E - BE. Hence I’ E {true, false} of 1 contains some 0 E 

(POP - (true, false 1) u A. The second case contradicts an assumption of the lemma. 
Assume that 1’ = true. Since I’ = r’ is in d(A) u d(A)-‘, we have r’ E G(BSIG(A)). 

By Lemma 4.2(l), r’ #false. By the assumption in 4.1, r’ #true. Hence r’ E 
G(BSIG(A)) - (t rue, false} and thus I’ = r’ is in LE(A)-‘, in contradiction to the 
fact that 1’ = r’ is in R’. Therefore I’ # true. Analogously, I’ #false. 

Case 1.1.2. I= r is in LE(A). Since R’ cd(A) u d(A)-‘, Lemma 4.2(2) implies 
t2 =+ L/T(A) t1. 

Case 1.2. Not t +R,;f;, t2. By Proposition 5.3, there are x E var(Z) and t, E 
T(SIG(A)) such that fx + R, t, and t, =f[tdx](l). Hence 

tl=fr 

R’ 

\ = 

fCtJxl(r). 7 
/ 

R 

t2 
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Case 2. t =J’ and t, =f;’ for some I’ = r’ in R’ and ,f E Z( T(SIG(A))). 
Case2.1. t +R;f;,. t,. By Proposition5.2, there are I=r in R, t,E T(SIG(A)), 

t,ET(SIG(A))-Xand .x~Xsuch that I’=t,,[tJx], ft3=fl and t,=f[ji/x](to). 

Case 2.1.1. 1= r is in E - BE. Hence 1 E Xu {true, false} or 1 contains some 
g E (POP - {true, false}) u A. Both cases contradict an assumption. 

Case 2.1.2. I= r is in LE(A). Hence t, = l$ {true, false} implies to = x and 
thus I= I’ and tl = fr = r = r’= fr’ = t, because r, r’E {true, false}, but by 
Lemma 4.2( 1 ), true #BSPEC(Aj false. 

Case 2.2. Not t -+ R;/;,. t, . By Proposition 5.3, there are XE var(1’) and 
t.,c T(SIG(A)) such that fx +R t, and t, = f[t.Jx](/‘). This contradicts the fact 
that 1’ does not contain variables. 

Case3. t=cr(u ,,..., ui ,..., uj ,..., u,), t, = ~~(24, ,..., ri ,..., ui ,..., u,), t, = o(u, ,..., u ,,..., 
s ,,...., u,), U, -+R ri, and uj jRs s,. 

Case 3.1. i= j. By the induction hypothesis, 

r, 
R’ 

\ 
= 

vi for some vi. 
= 

/ 
R 

s, 

Hence, 

t2 

Case 3.2. i # j. Then 

a(~, ,..., ri ,..., sj ,..., 24,). 

/ 
R 

t2 

Hence (*) holds true and thus R commutes with R’. B 
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fl 

7 l’ =fr 
hiA 

A 
1 

l = 
1' E 

FIGURE 3 

1 A r' 
= t 

Using the superposition relation we can easily define a critical pair of E into I = r 
as a pair of 

(i) the substituted right-hand sidefr and 
(ii) the result t of reducingfl by some equation 1’ = r’, where I’ overlaps 1, as 

shown in Fig. 3. 

5.6. DEFINITION. Let fr + E;f;, t and 1 = r be a SIG-equation. (fi, t ) is called a 
critical pair of E into I = r. 

5.7. LEMMA. Let A E Log(PSPEC). Suppose that for each 1= r in E-BE op(l) 
contains at least one operation symbol of OP- BOP. Then there are no critical pairs 
of E- BE into LE(A) or of LE(A) into E-BE. 

Proof Assume that (t i, t, ) is a critical pair of E - BE into LE( A). Then there 
are Z=r in LE(A) and f EZ(T(SIG(A))) such that fl -+E--BE;/;I t, and t, = fr. By 
Proposition 5.2, there are I’ = r’ in E - BE, to E T(SIG(A)), t3 E T(SIG(A)) - X and 
xeX such that 1= t,,[tJx], ft3 =fr’, and t, = f[fr’/x](t,,). Since var(l)= 0, we 
have 

I= kJftJx1 = dY’/xl~ 

which contradicts the fact that op(Z) c BOP u A, but op(Z’) n (OP - BOP) # 0. 
Assume that ( tl, t2) is a critical pair of LE(A) into E - BE. Then there are 1= r 

in E-BE and ~EZ(T(SIG(A))) such that fl+LE~A~;f;,t, and t2=fr. By 
Proposition 5.2, there are I’ = r’ in LE(A), t, E T(SIG(A)), t3 E T(SIG(A)) - X and 
XEX such that I= to[t3/x], ft3 =ji”, t, = f[fr’/x](to). Hence sort(t,) = bool, but 
t, $ {true, false >. Thus to = x and we obtain 

I= t3 and I’ =jl’= ft3 

so that op(l) E BOP, which contradicts the assumption that op(l) n 
(OP-BOP)#@. 1 

In parallel reductions we may have several equations li = ri applied to the same 
term 24. If all outermost li overlap a given prefix t of u, we get a “superposing” 
parallel reduction (see Fig. 4). 
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5.8. DEFINITION. The parallel 
{jE;f:r}/EZ(T(SIG)),rET(SIG)--X, is the 

Z( T(SIG))) such that 

FIGURE 4 

superposition relation generated by E, 
family of smallest relations on T(SIG) (resp. 

(i) for all Z=rin E,ftaEif;,gr ifft=flandjs>.g, 
(ii) for all oEOP, fo(t, ,..., t,) *E;f;oCr ,,,_,, l,l~(t; ,..., t;) if 3 l<i<n: 

ftiJEf, t( and V 1 <i<n: fti SEti. . ., 

Let n(ft *E;f;, t’) (resp. n(t aE t’)) denote the least number of derivation steps 
5.8(i), (ii) (resp. 4.9.(i)-(v)) that lead to ft aE;,f;,t’ (resp. t aE t’). 

5.9. PROPOSITION. Ifft =sEifir t’, then there are t, E T(SIG), g E Z( T(SIG)), n > 0, 
and for all 16 i < n, ii = ri in E, tj E T(SIG) - X, and xi E X such that t = t,[ti/xi ( 
1 <i<n], fti=fli, fSE g and t’= f[gr,/x,I 1 <i<n](to), i.e., II,..., Z, “overlap” t 
in ft. 

Proof: Straightforward induction on n(ft *E;f.r t’). 1 

5.10. PROPOSITION. Let t, t’ E T(SIG) and fE Z( T(SIG)) such that t has unique 
variable occurrences, ft aE t’, but not ft *E;f;r t’. Then there are n > 0, x, ,..., x, E 
var(t) and t, ,..., t,E T(SIG) such thatfx; jEti and tt=f[ti/xiI 1 <i<n](t). 

Proof: Straightforward induction on n(ft *E t’). 1 

Parallel critical pairs of E into I= r arise in situations like the one shown in 
Fig. 5, where 1, = rl, I, = r2, and I3 = r3 are in E. 

A more complicated case of a parallel overlapping can occur if I, shares a sub- 
term of I and a prefix of I,, e.g., see Fig. 6. Applying (I, = r, ) E E on one hand and 
(1= r), (I, = r2) E E’ on the other hand leads to a recursive critical pair of E into E’. 

FIGURE 5 
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FIGURE 6 

5.11. DEFINITIONS. Let j7 => E;f;l t and 1 = r be a SIG-equation. (fr, t ) is called a 
parallel critical pair of E into I = r. 

Let E’ be a set of SIG-equations, I= r in E’, and g, h E Z( T(SIG)). Suppose that 
J + E;f;, t and f %-F g. Then (t, gr ) is a recursive critical pair of E into E’. 

E is terminating if there are no infinite sequences t, +E t2 +E t3 -+E.. . 
t is E-reducible if t +E t’ for some t’. 

5.12. CRITICAL PAIR THEOREM. Suppose that (BPAR, Log(PSPEC)) is per- 
sistent. 

Let E-BE be linear, terminating, and contextually normalizing (cf 4.5) for each 
1= r in BE var(r) c var(1) and for each 1= r in E-BE, 1 contains at least one 
operation symbol of OP- BOP. 

Let A eLog(PSPEC). (E- BE)u LE(A) is confluent and coherent w.r.t. A 
(CJ 3.3) if 

(i) all critical pairs of E - BE into E - BE, 

(ii) all parall 1 e critical pairs of BE into E - BE, 

(iii) all recursive critical pairs of E - BE into BE 

are contextually (E- BE)-convergent (cf: 4.10). 

Proof. Let R = (E - BE) u LE(A ). A simple proof by Noetherian induction 
w.r.t. + R shows that R is confluent w.r.t. A if for all t, tl, t, E G(SJG(A)) 

t1 

R 

/ 

t implies t1 iR,A t, (cf. 3.3). 

\ R 

(1) 

L 
t2 
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Suppose that for all t, t,, t, E G(SIG(A)) 

(1 (1 (1 
R 
* +t, 

R 

/ 

R 

/ 

t or t implies = BE (2) 

\ 
R 

v 

(2 (2 (2 -+ (4 

for some t,, t, E G(SIG(A)). We prove by Noetherian induction w.r.t. +R that (2) 
implies (1) and coherence of R w.r.t. A. 

By Lemma 4.6, R is normalizing w.r.t. A. Hence if t, is not R-reducible, we have 
t, E G(BSIG(A)) and thus ~,EG(BSIG(A)) so that t, JR,A t,. If t3 is R-reducible, 
then t, + R t5 for some t, E G(SIG(A )). We obtain t, JR,A t, by induction hypothesis 
and thus t, 1 R,A t2. Hence it remains to show (2): 

(a) Let 

\ 
R 

f2 

Induction on n(t -fR t,)+n(t +R t2) leads to (2): 
Case 1. t=fl and tl =fr for some l=r in R andfEZ(T(SIG(A))). 
Case 1.1. t -+ R ;,;, t,. Then (t, , t2) is a critical pair of R into I = r. 

Case 1.1.1. (t,, t2) is a critical pair of E-BE into l=r and l=r is 
E - BE. By assumption, (t, , t2) is contextually (E - BE)-convergent. Since t, , t 
G( SIG( A )), we conclude 

R 
(1 * + UI 

= BE 

* 
I 

(2 R ‘U2 

in 
‘2 E 

for some u i, u2 E G( SIG(A )) from Lemma 4.11. 
Case 1.1.2. (ti, f2) is a critical pair of E-BE into LE(A) or of LE(A) into 

E - BE. This contradicts Lemma 5.7. 
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Case 1.1.3. (ti, t2) is a critical pair of LE(A) into l=r and Z=r is in U(A). 
Hence t + LE(Aj t,, and we conclude from Lemma 4.2(2) that t, qLEcAj ti. 

Case 1.2. Not t -+A;f;l t2. By Proposition 5.3, there are x E var(l) and 
t, E T(SIG(A)) such that fx -+ R t, and t, =f[tJx](l). Hence 

t,=fr 

R 

\ = 

Case 2. Analogously to Case 3 of Lemma 5.5 (with R’ = R). 

(b) Let 

t1 

R 

/ 

Induction on n(t -+ R I,) + n(t *BE 22) leads to (2): 
Case 1. r=fl and t, =fr for some I=r in R andfEZ(T(SIG)). 

Case 1.1. t jBEifil t,. Then (t, , tz > is a parallel critical pair of BE into 1 = r. 
Case 1.1.1. I = r is in E - BE. By assumption, (t I, t2) is contextually 

(E - BE’)-convergent. Since t , , t, E G( SIG(A)), we conclude 

for some ui, u2 E G(SIG(A)) from Lemma 4.11. 
Case 1.1.2. l=r is in LE(A). Since t %‘BE t,, Lemma 4.2(2) implies 

t, =+ L.!?(A) t1. 

Case 1.2. Not t *BE;f;, tz. By Proposition 5.10, there are n > 0, x 1 ,..., x, E var(l) 
and ui,..., U, E T(STG(A)) such that fxi 3 BE ui and t, =f[ui/xiI 1 d i 6 n](f). Hence 
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BE 

\ 
sz 

f[uJx,I l< i<nl(r). 

/ 
R 

t2 

Case2. t=$, t2=gr, and f SBEg for some l=r in BE and AgE 
z(VWA))). 

Case 2.1. t + R;,;, t i. Then (t i , gr ) is a recursive critical pair of R into BE. 
Case 2.1.1. t + E- BE;f;[ tl. By assumption, (t,, t2) is contextually (E - BE)- 

convergent. Hence by Lemma 4.11, 

R 
t1 * ’ UI 

= BE 

for some U, , u2 E G(SIG(A )). 

Case 2.1.2. t -+LE(Aj;/;, t,. By Proposition 5.2, there are I’ = r’ in LE(A ), 
to E T(SIG(A)), t, E T(SIG(A)) - X, and XE X such that I= t,[t,/x] and ft4 =fl. 
By general assumptions on E and LE(A ) (cf. Sect. 4), t, = X. Hence t =p = ft4 = 
I’ E G(BSIG(A)) so that 

tl =BSPEC(A) t =BSPEC(A) f2. 

By Lemma 4.2, persistency of (BPAR, Log(PSPEC)) implies tj =BspEo(A) r’ for 
i = 1. 2. Therefore 

24. 

Case 2.2. Not t +R;J;, t,. By Proposition 5.3, there are XE var(l) and t, E 
T(SIG(A)) such thatf. +R t,, n(fx ‘R t,)dn(t -+R tl). and t, %Rf[t.x/x](l). 
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Case 2.2.1. fx = gx. Then 

t1 “* + fCtxlxl(4 

I 
BE 

t, = gr = g[fx/x](r) + gCtx/xl(r). 

Case 2.2.2. fx 2 BE gx. Since n(fx *BE gx) < n(t aBE t2), we conclude by 
induction hypothesis that 

t, “* ’ ux 
= BE 

B 

for some u,, v, E G(SIG(A)). Therefore 

t1 : ’ fC%lxl(o 

I 
BE 

t, = gr +-+ dv,/xl(r). 

Case 3. t =a(u, ,..., ui ,..., u,), tl =a(~, ,..., u; ,..., u,), t,=a(ul ,..., v,), ui hR ui, and 
there is Is {l,..., n} such that for all ke Z uk aBE ok and for all kE {l,..., n} -I 
uk=vk. 

Case 3.1. i E I. By the induction hypothesis, 

R 
2~; * + ri 

= BE 

1 
Vi R* ’ Si 

for some rir sic G(SIG(A)). Hence 

tl 
R 
* * 4Ul,...r ri,..., U,) 
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Case 3.2. i $ I. Then 

/ 
R 

2, = (T(u, )...) 24i )...) u,) 

5.13. EXAMPLE (cf. 2.7). Let PAR = (DATA, SET) and BPAR = (DATA, 
BSET). One immediately verifies all assumptions of Theorem 5.12 (cf. Exam- 
ples 2.14 and 4.8) except for the termination of E- BE and the critical pair con- 
ditions For the termination we refer to the recursive path ordering method 
(cf. [S, 7]), which applied to E-BE= {(e6),..., (e13)) provides a straightforward 
termination proof. 

Assume that there is a critical pair of E - BE into E-BE or a recursive critical 
pair of E - BE into BE. In both cases we would have I= Y in E, f E Z( T( SIG)) and 
t E Z’(SIG) such that ~‘7 -+E BE;.,;, t. By Proposition 5.2, there would be I’ = r’ in 
E-BE, ~,ET(SIG), ~,ET(SIG)-Xandx~Xsuch that I=t,[t,/x],ft,=fl’, and 
t=f[fi’/x](to). Since for all I=r in E-BE op(l)n(OP- BOP)= {root(l)), we 
conclude t, = x, I= I’, and r = r’. Thus we have no recursive critical pair of E - BE 
into BE, and if (fr, t ) is a critical pair of E - BE into E - BE, then fr = fr’ = t. 

Let (t,, t2) be a parallel critical pair of BE into E - BE. Then t, = ji and 
fl==. BE;j;, t, for some I = r in E - BE and f E Z( T(SIG)). By Proposition 5.9, there 
are t, E T(SIG), g E Z( T(SIG)), n>O, and for all 1 di<~, I,=ri in BE, 
z+ET(SIG)-X, and xi~Xsuch that l=t,[uJxj~ 1 bidn], fui=Jli, f ~~~-8, and 
t2=f[gri/xj11,<i~n](to). 

Case 1. t, = has(x,, y), ui = ins(s, x), and 1= r is e7. 
Case 1.1. fs = ins( fs’, fx) and I, = r, is e4. Then 

tl = Westfx, fv), true, Wfs, fv)), 

t2 = has(ins(gs’, gx), fy) 

so that 

t1 
E - BE, 7 eq(j4, f.v ) 

’ has(fs, fv) 

and = I BE 
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Since 

@WY Xv) A eqkx, Sy)) v leq(fx, fv) 

=BSPEC eq(fx? fv) ” iedfx7 fv) =BSPEC true, 

(t,, t2) is contextually (E - BE)-convergent. 

Case 1.2. fs = ins(fi’, fx’) and 1, = r, is e5. Then 

t 1 = Wes(fx, fv), true, Wfs, fv) 1, 

t2 = has(ins(ins(gs’, gx), gx’), fj~) 

so that 

and 

Since 

t2 

((es(fx, fv) v (=q(.k fv) A eq(fC fi))) 

Wfi’, iv 1 
= BE 
I ha@‘, fv). 

A (eq(gx’, ./..I v (leq(gx’, fv) A eqkx, fu)))) 
v (les(fx, fv) A -i(fx’, fv) A leqkx’, fv) A leq(gx, fi)) 

=BSPEC ((eq(fx? fv) ” eq(fx’y fu)) A (eq(gx’3 fv) ” eq(&% fu))) 

v (leq(fk fv) A -i(fx’, fv)) 

=BSPEC edfx? hd ” eq(fx’y fv) ” (ieq(fxy fi) A ieq(fx’3 fv)) 

=BSPEC truey 

( t 1, t 2 ) is contextually (E - BE)-convergent. 

Case 2. t0 = del(x,, y), uI = ins(s, x), and I = r is e9. Analogously to Case 1 we 
can deduce that (t 1, t2) is contextually (E- BE)-convergent. 
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Hence all parallel critical pairs of BE into E - BE are contextually (E - BE)- 
convergent, and we conclude from Theorem 5.12 that for all A E Log(PSPEC) 
(E- BE) u LE(A) is confluent and coherent w.r.t. A 

Theorems 3.5 and 5.12 and Lemmata 4.6 and 5.5 imply 

5.14. CONSISTENCY THEOREM II. Suppose that (BPAR, Log(PSPEC) ) is per- 
sistent. Let E - BE be linear, terminating, and contextually normalizing, for each I = r 
in BE, var(r) c var(l) and, for each I= r in E - BE, 1 contains at least one operation 
symbol of OP- BOP, but no operation symbols of POP- (true, false}. If all critical 
pairs of E-BE into E - BE, all parallel critical pairs of BE into E - BE and all 
recursive critical pairs of E - BE into BE are contextually (E - BE)-convergent, then 
PAR is consistent w.r.t. (BPAR, Log(PSPEC)). 

5.15. EXAMPLE (cf. 2.7). Let PAR = (DATA, SET) and BPAR = (DATA, 
BSET). Using Theorem 5.14 we conclude from Example 5.13 that PAR is con- 
sistent w.r.t. (BPAR, Log(PSPEC)). By Example 4.8, PAR is complete w.r.t. 
(BPAR, Log(PSPEC)). Hence by Example 2.14, the decomposition lemma for 
persistency (2.6) implies that (PAR, Log(PSPEC)) is persistent. 

Putting together all “syntactical” criteria developed in this paper we obtain 

5.16. PERSISTENCY THEOREM II. (PAR, Log(PSPEC)) is persistent tf PAR con- 
tains a “base” spectfication BPAR such that 

(i) for all o E BOP, sort(o) E PS implies g E POP, 
(ii) for all l= r in BE, var(r) ~var(l), and sort(l)E PS implies that I= r is 

in PE, 
(iii) for all I= r in E- BE, 1 contains at least one operation symbol of 

OP - BOP, but no operation symbols of POP - {true, false}, 
(iv) E - BE is linear, terminating and contextually normalizing, 
(v) all critical pairs of E-BE into E- BE, all parallel critical pairs of BE 

into E-BE, and all recursive critical pairs of E-BE into BE are contextually 
(E - BE)-convergen t. 

(Note also the “Boolean assumptions” at the beginning of Sect. 4.) 
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