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In this paper we consider the problem of using exponential sums to approximate
a given complex-valued function f defined on the possibly unbounded domain
2 in R™ We establish the existence of a best approximation from the set of
exponential sums having order at most » and formulate a Weierstrass-type
density theorem. In so doing we extend previously known results which apply
only in the special cases where £ is bounded or where m = 1.

1. INTRODUCTION

Let 2 be a nonvoid open subset of R™ and for 1 <<p < o let L, (D)
be defined in the usual manner with || ||, being the associated norm. Let
Co(2) denote the space of those functions fe C(Z) having the property
that given any ¢ > O there exists a compact set K C Z such that | f(t)] < e
whenever te Z\K. A function y e C*(R™) will be called an exponential
sum of order n provided that the linear space #[y] spanned by the functions

[Dit - D™ y(t),  Jyses ju = 0, 1., D, =oot;, i=1,..,m

has dimension »n, cf. [2, p. 143]. Given SC C™ and n = 0, 1,..., we define
V.(S) to be the set of all exponential sums y of order at most » which can
be expressed in the form

() = Y pi(t) exp(d; - t)

j=1
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where p.(t),..., p,(t) are polynomials in the components 7, ..., 1, of t. where
Al..... M €S, and where At < Ayt b AL, . cp. [2. p. 144]0 We
also define

VAS) = [ VusS).
[T

In this paper we shall establish a Weierstrass-type density theorem by
showing that V' _(S) is a dense subset of L (&) if I - p <« oc and of Cyo it

== o0 provided that & and S satisfy mild hypotheses. We also establish the
existence of a best | ' -approximation to a given f'from the set V,(S) when S
is closed. In so doing we extend corresponding results from [3] which apply
in the special case where m I and & is a semi-infinite interval and results
from [2] which apply when /2 - | and & is bounded.

2. THE SPECTRAL SET OF ¥

Given a nonvoid open set “ CR" and 1 - p o we defline the cor-
responding spectral set U, (&) to be the set of those e € for which the
exponential sum y(t) = exp[A - t] lies in L (&), For example. for the positive
cone

o dte Ry, 0,0 ... Al

we find
UAZ) =~ {peTm :Re A, = 0,0 ... ) if 1 p < o,
U &) - (AT Re A, . 0, ... .

in general, U (&) is convex. Indeed when p .- oo the convexity is immediate,
and when | < p < oo we may use Hdlder’s inequality to show that
AJpy - Nalps e Uy(Z) whenever A, A e U (7). py - Lops - Toand 1oy,
1/p, = 1. Moreover, we also have

U &0 Zy) = U2 0 U (&) if 7, @, <R
UJfaz —t) - (1) U (V) if +« 0. 7CR" and te R,
and
Uy = (lipy Upr) it Yo R and 1 op o s

If & i1s bounded we obviously have U (¥) T, On the other hand. if
US%) = C*and 1 = p < oo then Z must have finite measure in R but
need not be bounded, e.g., as is the case when m 2 and & is the “Gaussian

star™
oo qte RE ot expl Lt or o oespl 0t
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In view of the following lemma, the interior, U,%(2), of the spectral set
will be of importance in the subsequent analysis.

LemMmA 1. Let & be a nonvoid open subset of R™ and let 1 < p < 0.
Then V (U,%A2)) C L (2).

Proof. 1t is sufficient to show that when A e U,XZ) and &, ,..., k,, are
nonnegative integers with sum k& > 0 the exponential sum

P(t) = t/1 - £ - expA - o]

lies in L,(2). Accordingly, let § > 0 be chosen so small that for each i = 1,...,
m and ¢ = 41 the exponential sum

Yio(t) = exp[A - t + Sot ]
lies in L,(2). Fori = 1,..., m and ¢ = 41 we define the cone
H;,, ={te R™ :max{| 4, |,..., | . |] = ot;}.
We let y;, denote the characteristic function of H,, so that
| 9O Xio®) = | 21+ £ - exp[—801,] - yurlt) - Xio(O)
< M-y, teRm

where
M = max{r* - exp[—87] : 7 = 0} = [k/(Se)]*.

Using this pointwise bound we find

Iyll, =

b

Z yr Xio

i,0

< Z Hy .XiaHD
i,0

<MY lvelly, < o

so that ye L(2). |

We note that it is possible for U,(2) to have no interior points, e.g., as is
the situation when m = 2 and

D ={eR: | <(+t5)Tor |t <(1 4+ (51

in which case
U 2) ={aeC?®:Re A, = Re A, =0}
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3. EXISTENCE OF GOOD APPROXIMATIONS
Before presenting a density theorem we first prepare two lemmas.

LEMMA 2. Let fe C)l0, ) and ¢ -0 be given. Then there exists some
even polynomial p such that

f(ry —-pitre ' < e for O - - o, (h

If f(0y - 0. then (1) also holds for some odd polvnomial p.

Proof. Using Pollard’s solution of the Bernstein approximation problem
{4, Theorem 1, p. 403] (with @(r) - ¢’ and with the sequence of partial
sums from the Maclaurin series for cosh r) we see that the set of finite linear
combinations of the functions

rre ! w00l
1s dense in Cy([R). This being the case there exists some polynomial ¢ such that
foehy - ylne - e for SRR S
and 1t follows that (1) holds with the even polynomial
ptty gty - qC-012

A similar construction shows that (1) holds for an odd polynomial p provided

J - 0. 1

LEMMA 3. For each i ... m et f, € Cy[0. 1) have a compact support.
and let the separable function

F iy e )

be defined for all t in the nonnegative cone

R {te R q, 20 for i l..... .
Let the parity constant , I be chosen subject 1o the constraint that
o= = L fu0)y 70,0 - L...,m, and let € 0,0 0 be given. Then there
exist polynomials p ..... P, Stich that

pi( ”;[1') Ty '17/‘(,1)* RN PR O (2)
i~ o m and such that the separuble exponential sum

e

() - [l e ] [paden) e 13
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uniformly approximates f on R.™ so well that
Lf() —y)| <e  forall teR,™ 4
Proof. Let| |, denote the sup norm on Cy[0, c0), let

B = max{|f1 |oo 3eets }fm Ico},

and for each i = 1...., m let a polynomial p, satisfying the parity constraint (2)
be selected in such a manner that the function

;) = flt:) — pdt) e, t, =0 (5)
has norm
leilw <P (6)
where 8 > 0 is chosen so small that
(B+B)m—~ B™ <e. (7
Such polynomials exist by virtue of Lemma 1. Let y be defined by (3).

Using Egs. (3) and (5)-(7) we find

10 = yor = | [T — TT it — <)

m

<TL0AwI + e — T 15

i=1
< (B Py — B

< €
whenever t € R,™ so (4) holds. |

THEOREM 1. Let @ be a nonvoid open subset of R™, let 1 << p < o0, and
assume that the point A € C™ lies in the interior of the spectral set U (D).
Then V,({}) is dense in L (2) if 1| <p < 0 andin C(P)if p = .

Proof. Let f be arbitrarily chosen from L, (2) if 1 <p < o and from
Cy(2) if p = co. We must show that we may || || ,-approximate f as closely
as we please with the elements of V. ({A}). Since the space .% of continuous
functions having compact support is dense in L (2), 1 <p << o0, and in
Cy(2) we may assume (with no loss of generality) that fe &. Moreover,
since the subalgebra, .7, of finite linear combinations of separable functions
is || |l,-dense in & (as can be seen with the aid of the Stone-Weierstrass
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theorem [1, p. 191]) we may further assume that f € </ or equivalently, that f
has the representation

SO = g expd-t), teR” (8)

where
‘P(t) — (Pl(rl) (p1n(rm)~ tG Rm, (9)

and where ¢, ,.... ¢, are continuous functions with compact support.
Finally, since each @; may be replaced by the sum of its even and odd parts.
we may still further assume that each ¢, has definite parity =, == 1. i.e.

PA—t) = @Al LeR P L m. (10)

By hypothesis A lies in the interior of U,(%) and thus there exists some
8 > 0 such that each of the exponential sums

yi{t) - exp[r -t i do; - t], jooe ., 2m

lies in L,(%) where o;, j  1,...,2" is an enumeration of the 2" vectors
(+1...., 1) from R™. We define

S(8) = oty o b i, te R”
noting that the function
Pty - expfr -t -+ Ss(t)]
also lies in L ,(2) since

I SN U R

i

and that | ¢ ||, > 0 since & is nonvoid.
Now let € > 0 be selected. In view of Lemma 3 there exists some separable
polynomial
Pty pilty) o Pt

such that p; and ¢, have the same parity =;, i 1., m, and such that
sup{| E(t)] : 1, = 0fori = l,...,m} < €|l i,

where
E(t) = [p(t) — p(t)] exp[—3s(t)],  te R™

Since p; and ¢, have the same parity it follows that

S At - 1
CENL < el g,
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This being the case the exponential sum
() = p(t) exp(r - t)
from V({1}) satisfies

If =yl =1 Eil, <IEllw [, <e

and since € > 0 is arbitrary, the proof is complete. |

4. EXISTENCE OF BEST APPROXIMATIONS

The following result is an extension of the existence theorem presented in
[2] for the case where & is bounded.

THEOREM 2. Let @ be a nonvoid open subset of R™, let S C C™ be closed,
let 1 <p< oo, and let n = 1,2,.... Then every fe L,(2) has a best || ||,-
approximation from V,(S).

Proof. Let 9,C %, C - be an expanding sequence of nonvoid bounded
open sets in R™ with union 2, and for each p =1, 2,... let the seminorm
I Il»,. be defined on L, (2) by

N Nl =1 xull (11)
where

) =1 if ted,,
(12)

=0 otherwise.

Let fe L,(2) be selected, and let the minimizing sequence y,, y.,... be
chosen from V,(S) in such a manner that

lim|lf—y, [, = inf{|[ f — I, : y € Va(S).

This sequence is || [|,-bounded and thus || [[, ,-bounded for each fixed p =
1,2,.... This being the case, we see by using the lemma in [2] that after
passing to a subsequence, if necessary, we may effect a decomposition

y, =0, +x, where v,, x, € V,(S), v = 1, 2,... 13)
and find some v € V,(8) = V,(S) such that
lim H v, —v “p.u = 05 B’ = 15 25"' (14)

liminfllg + % lpu =18 lpu  forevery geLy@), p=1,2... (15
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This being the case

W —vly, o liminf | f— ¢ - x
liminf  f - v, .
liminf i f  », . .
inf{il f - v i, eV US)

vipou

for each 1, 2,...,and since & - (J¥, we have
e, infl e e FLUS)L

Since v e V(S) equality must hold, i.e.. v is a best © | -approximation to /
from V,(S). 1

Note. In the preceding theorem the blanket hypothesis that & is a
nonvoid open set can be weakened to the hypothesis that % is a measurable
set with a nonvoid interior and with a boundary having zero measure. When
& 1s bounded, the closure of S is a necessary and sufficient condition for
every fe L (&) to have a best i | ,-approximation from V,(S), but when & is
unbounded this closure hypothesis is not the best possible. For example.
when m — | or 1, a necessary and sufficient condition for existence is
that S be closed in U (%), cp. [3. Theorem 3]. Unfortunately. when n - 2
and m 2= 2 this is no longer the case. and no such optimum closure hypothesis
for S is known in this situation.

THEOREM 3.  Ler & be a nonvoid open subset of R, let 1 - p - o and
let fe L(%). Let n - 1,2.... and let S be a closed subset of T". Let &, .
&,y - be an expanding sequence of nonvoid bounded open subsets of R™ with
union &, and for each v 1.2... let v, be a best | |, ~approximation to |
from V. (S) where the seminorm | -, is defined by (11) and (12). Let some
subsequence of { y,} and some v € V (S) be selected so that (13)-(15) hold. Then
vis a best |, | ~approximation to f from V (S).

Proof. Let » be a best . -approximation to f from "(S). Then tor
each fixed . - 1, 2,... we have

b f v, diminf f ¢ - x
=liminf i f -
< lminfi f oy,

Hm inf!l f— y

AR

v

LT
2.

so that
f l“)) : f ,1‘ o

l.e., v is a best approximation. [
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