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In this paper we consider the problem of using exponential sums to approximate 
a given complex-valued function f defined on the possibly unbounded domain 
9 in [Wm. We establish the existence of a best approximation from the set of 
exponential sums having order at most n and formulate a Weierstrass-type 
density theorem. In so doing we extend previously known results which apply 
only in the special cases where 2 is bounded or where m = 1. 

1. INTRODUCTION 

Let 9 be a nonvoid open subset of FP and for 1 <p < co let L,(B) 
be defined in the usual manner with 11 IID being the associated norm. Let 
C,,(B) denote the space of those functions f E C(9) having the property 
that given any E > 0 there exists a compact set KC B such that / f(t)] < E 
whenever t E LB\K. A function y E Cm( 5P) will be called an exponential 
sum of order n provided that the linear space Z[v] spanned by the functions 

[D? -.. @;I y(t), j, ,..., j, = 0, I,..., Di = a/at,, i = I,..., ~2 

has dimension n, cf. [2, p. 1431. Given S C C” and n = 0, I,..., we define 
V,(S) to be the set of all exponential sums y of order at most n which can 
be expressed in the form 

Y(t) = i PAtI cxP(Aj . t) 
j=l 
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where pi(t),..., pi(t) are polynomials in the components I, . . . . . l,,, of t. where 
h, ,..., A,ES, and where A, ‘t AlIf, in “. : X,r,Ct,,r. cp. [2, p. 1441. We 
also define 

If’,(S) -- (J c:,,(S). 
lI , 

In this paper we shall establish a Weicrstrass-type densit!’ theorem bq 
showing that V,(S) is a dense subset of L,,(P) if 1 p . Y-' and of C,,(Q) if 
JI =_ ccj provided that 53 and S satisfy mild hypotheses. We also establish the 
existence of a best /I ‘,)- approximation to a givenf’from the set V,JS) when S 
is closed. In so doing we extend corresponding results from [3] which appl! 
in the special case where 111 I and .‘/ is a semi-infinite interval and results 
from [2] which apply when III I and 9 is bounded. 

Given a nonvoid open set 9 ,: R8’l’ and I 11 x., we deline the car- 
responding spectral set U,,(P) to be the set of those h F C:“’ for which the 
exponential sum j,(t) exp[A t] lies in L,,(Q). For example. for the positive 
cone 

Y- {teGP:r, -0,; I.. ./Ill 

we find 

U,,(P) {h E @“’ : Ke A, . . 0, i I..... 1111 if I 1’ -: % 

I/,(‘s) {h E C’s’ : Ke A, 0, i I..... 1111. 

Jn general, U,,(P) is convex. indeed when 17 .- z the convexit\; IS immediate. 
and when I : _ 11 c’ n; we may use Hiilder’s inequality to show that 
Al/p, -i A,dl7.? E U,,(9) whenever A, . A, t- O,,(P). 17, I. 1’2 I :Ind I /F, 
I /or : I. Moreover, we also I:a\,e 

U,,(9, u 2.J -- U,,(P,) n U,,(‘J’2) if ‘I, , Ye C~ R’ll. 

U,,(& ~-t) (I:‘\) L;,,(V) if I 0, 9 C W’“, and t & R/g, 

and 
UJ9, = (I,/,) U,(.5) it’ // K’” and 1 1’~ / 

If 9 is bounded we obviously have L’,,(Q) P’. On Ihc other hand. it 
c/J .G) Cr” and I ,.< p I x then 9 must have finite measure in P.,8C but 
need not be bounded. e.g.. as ib the case when UT 2 and 9 is the “Gaussian 
star” 

‘2 .It + ;7;2 ‘_ I,’ exi-4 i,?] (‘I’ /.,-’ c’p[ r,q;. 
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In view of the following lemma, the interior, U,O(9), of the spectral set 
will be of importance in the subsequent analysis. 

LEMMA 1. Let 9 be a nonvoid open subset of RF and let 1 <p < CO. 
Then V,( UDo(9)) C L,(9). 

Proof. It is sufficient to show that when h E U,O(B) and k, ,..., k, are 
nonnegative integers with sum k 3 0 the exponential sum 

y(t) = t? *.. t? . exp[h . t] 

lies in L,(9). Accordingly, let 6 > 0 be chosen so small that for each i = 1,. .., 
m and CT = Al the exponential sum 

via(t) = exp[h . t + 8ati] 

lies in L,(B). For i = I,..., m and u = 41 we define the cone 

Hi, = {t E UP : max[l t, I,..., j t, I] = uti}. 

We let xi,, denote the characteristic function of Hi, so that 

I y(t) Xi,@>l = I t? *.. tb . exp[-~d . vi&) . x&l 

G A4 . I Yi&)l, t E R”, 
where 

M = maxi+ . exp[--671 : T > O> q = [k/(ae)]“. 

Using this pointwise bound we find 

so that y E L,(B). 1 

We note that it is possible for U,(9) to have no interior points, e.g., as is 
the situation when m = 2 and 

9 = {t E R2 : / t, I < (1 + t22)-1 or I t, I < (1 + t12)-l} 

in which case 

U,(B) ={AEC2:ReX, =Reh, =O}. 
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3. EXISTENCE OF GOOD APPROXIMATIONS 

Before presenting a density theorem we lirst prepare two lemmas 

LEMMA 2. Let J’E CJO, z) atid t 0 he ,yircw Tlien there foists .sonie 

even polynomial p such that 

f(t) -p(t)c f . . c I‘or 0 r % (1) 

!S.fiO) 0. tlwn ( I ) also Idds for sonic odd pol~wourial p. 

Proqf: Using Pollard’s solution of the BernsteIn approximation problem 
[4, Theorem 1, p. 4031 (with Q(t) ~1 ’ and w!ith the sequence of partial 
sums from the Maclaurin serieb for cash r) we see that the set of finite linear 
combinations of the function\ 

is dense in C,,(R). This being the case there exists sc)me polynomial rl ‘ruch that 

./( f i) C/(l)C ’ t I.01 I I‘ Y. 

and it follows that (I) holds with the even polynomial 

/J(1) k/(f) q( !)I:! 

A similar construction shows that ( 1 ) holds for an odd polynomial 11 provided 

f‘(O) 0. I 

LEMMA 3. kbr each i I ._... nf /el /, c- C,,[O. L ) /raw a conlpac~t support. 
and let the separable ,fht.tiotl 

be ckflned,for ali t in the rlounrgutiw (‘OIK 

R “C {t c R”f : t, 0 jor i I..... 111: 

Let the parit), comtant 77, I be c~l~o.wr suhtect to the coustrair7r tlrur 

=I ; I {fjJ(O) f 0. i I..... III, and let f 0, 6 0 be giretl. The/l tlwr’e 
exist polyn0tnial.s p, l.... p,(! swl~ that 

I),( ~~- I, 1 r, I’,( t,). Y t, -. % . 12) 

x(t) [rJ,(fl) (’ ri’q “’ [ p,,,(t,,,) c ,‘,,t] (3) 
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uniformly approximates f on R,m so well that 

If@> - Y@>l < E for all t E R,“. (4) 

Proof. Let 1 IX, denote the sup norm on C,[O, co), let 

B = m4.L Im ,..., lfm LA 

and for each i = 1 ,. . ., m let a polynomial pi satisfying the parity constraint (2) 
be selected in such a manner that the function 

has norm 

ci(ti) = fi(tij - pi(ti) emati, 

I Ei lm < P 

ti 3 0 (5) 

(6) 

where p > 0 is chosen so small that 

(B + /3)” - B” < E. (7) 

Such polynomials exist by virtue of Lemma 1. Let y be defined by (3). 
Using Eqs. (3) and (5)-(7) we find 

If(t) - Y(O = 1 fj J;:(td - fi [h(G) - dfi)ll 

< fi [I.h(ti)I + I 44)ll - ii lJ;(Gl 
i=l i=l 

< (B -+ p)” - B” 

whenever t E R,” so (4) holds. 1 

THEOREM 1. Let 9 be a nonvoid open subset of VP, let 1 <p < co, and 
assume that the point A E @” Iies in the interior of the spectral set U,(9). 
Then VJ{h}) is dense in L,(9) if 1 < p < co and in C,(9) ifp = CO. 

Proof. Let f be arbitrarily chosen from L,(9) if 1 <p < co and from 
C,,(g) if p = cc. We must show that we may jl !I,-approximate f as closely 
as we please with the elements of V&(X}). Since the space P’ of continuous 
functions having compact support is dense in L,(9), 1 <p < co, and in 
C,(g) we may assume (with no loss of generality) that f E Y. Moreover, 
since the subalgebra, s4, of finite linear combinations of separable functions 
is Ij I&-dense in Y (as can be seen with the aid of the Stone-Weierstrass 
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theorem [l, p. 1911) we may further assume thatft .rJ or equivalently, thatj‘ 
has the representation 

f(t) dt) exp(A . t). t t R”’ (8) 

where 
yo) ~~ (pArI) ... ~*11(f7J. t E R,‘“. (9) 

and where qI ,..., yol are continuous functions with compact support. 
Finally, since each 97i may be replaced by the sum of its even and odd parts. 
we may still further assume that each p‘i has definite parity 7rr, = I. i.e.. 

(p,( -t,) ~- n, q-At,). ti E R, i I..... 117. (10) 

By hypothesis h lies in the interior of U,,(P) and thus there exists borne 
8 > 0 such that each of the exponential sums 

y,(t) exp[A t ; Soj t], ; I,..., 2’” 

lies in L,(3) where oj, j I . . . . . 2”‘, is an enumeration of the 2”’ vectors 
( -Ll,..., + I) from KY’. We define 

s(t) f, “’ I t,,, . t F IL!‘” 

noting that the function 

*w exp[A t L f%(t)] 

also lies in L,(a) since 

and that ~I $ III) -- 0 since % is nonvoid. 
Now let E > 0 be selected. In view of Lemma 3 there exists some separable 

polynomial 
/J(t) P,(f,) .‘. P,,,(f,n) 

such that pi and ?7 have the same parity T, , i I...., IH, and such that 

SUp{i E(t)1 : t, - 0 for i ~=- 1: . . . . r,ri c:. E/II $ ,jl) 

where 

E(t) == [y(t) ~ p(t)1 exp[--Ss(t)l, t E w. 

Since pi and yi have the same parity it follows that 
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This being the case the exponential sum 

from V&(A)) satisfies 

y(t) = At) ev@ . t) 

and since E > 0 is arbitrary, the proof is complete. 1 

4. EXISTENCE OF BEST APPROXIMATIONS 

The following result is an extension of the existence theorem presented in 
[2] for the case where 9 is bounded. 

THEOREM 2. Let 9 be a nonvoid open subset of R”, let S C Cm be closed, 
let 1 <p < CO, and let n = I, 2 ,.... Then every f E L,(9) has a best II Ill)- 
approximation from Vn(S). 

Proof. Let BI C gZ _C ..’ be an expanding sequence of nonvoid bounded 
open sets in [w” with union 9, and for each p := 1, 2,... let the seminorm 
]I &,W be defined on L,(9) by 

where 

llf II?I,W = Ilf. xu /ID (11) 

XPW = 1 if tESw, 
(12) =o otherwise. 

Let f E L,,(9) be selected, and let the minimizing sequence y1 , y, ,... be 
chosen from V,(S) in such a manner that 

lim Ilf - Y, IlB = inftllf - Y /lp : Y E ~n(W. 

This sequence is 11 jj,-bounded and thus 11 /I,,,-bounded for each fixed p = 
1, 2,.... This being the case, we see by using the lemma in [2] that after 
passing to a subsequence, if necessary, we may effect a decomposition 

YY = V” + X” where v, , x, E V,(S), v = 1, 2 ,... (13) 

and find some v E V,($) = V,(S) such that 

lim [/ v, - v llP,U = 0, p = I,2 )... (14) 

lim inf II g + xv Lu 3 II 8 IIBsu for every g 6 L,(9), p I= 1, 2 ,.... (15) 
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This being the case 

for each p I, 2,..., and since L/ iJr/,, we have 

.I’ ~ 1’ ,, inf( ;,f’ J’ ,, : 1’~ I’,,(S);. 

Since v t V,(S) equality must hold, i.e.. I’ is a best ,,-approximation to f’ 
from V,(S). 1 

Note. In the preceding theorem the blanket hypothesis that ‘1 is a 
nonvoid open set can be weakened to the hypothesis that 5’ is a measurable 
set with a nonvoid interior and with a boundary having zero measure. When 
9 is bounded, the closure of S is a necessary and sufficient condition for 
everyj’t L,,(P) to have a best ~ ,,-approximation from V,,(S), but when 9 is 
unbounded this closure hypothesis is not the best possible. For example. 
when 01 ~- I or II I. a necessary and aufticient condition for existence is 
that S be closed in U,,(P). cp. [3. Theorem 31. Unfortunately. when II 2 
and t?z 3: 2 this is no longer the case. and no such optimum closure hypothesis 
for S is known in this situation. 

THEOREM 3. Let 9 be u ~~o~~it/ opct~ .~h~t of UP. kt 1 p -I- . Nlld 

let ,f’E L,,(P). Let I1 I. 2 . . . and let S be a closed subset of’ ~2”‘. Let 9, ‘: 
pz (- be at7 expanding scyurt7w qf’17017~oid how~rted opet7 subsets qf’ IFeJil M,itll 

uflior7 9. aixl.for each 13 I. ?.... let .1‘,. he a best / ,,,,-a~)prosinlatioil to ,f’ 
from C’,(S) nlhere the seminornr ~ ,,,, is tlcyfrnerl bj, ( 1 I ) and ( I?). Let .sotlw 

subsequrnce of { y,,j and sotw r F C’,,(S) be selected so that ( l3)-( 15) l~olcl. Ti7pn 
z‘ is a best i j ,,-approxitvation to ,ffkonl I’,,(S). 

Proqf: Let J’ be a best ,,-approximation to ,/ from C’,,(S). Then t’o~ 
each fixed p I, 2,... we have 

/ ,f ~~ I’ /I./i lim inf ~ ,f’ r s,.’ ,,., 1 
lim ini‘, ,f’ .I‘, ii.“ 
lim inf / ,f’ J’,, ,,,,, 
lim inf f’ ~~ J’ ,,,1 
.I- .I’ ;, . 

so that 

f 1‘ ,’ .f’ .I‘ ,I. 

i.e.. L‘ is a best approximation. 1 
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