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Several years ago, the discovery of a highly tumorigenic subpopulation of stem-like cells embedded within
fresh surgical isolates of malignant gliomas lent support to a new paradigm in cancer biology—the cancer
stem cell hypothesis. At the same time, these ‘‘glioma stem cells’’ seemed to resolve a long-standing conun-
drum on the cell of origin for primary cancers of the brain. However, central tenets of the cancer stem cell
hypothesis have recently been challenged, and the cellular origins of stem-like cells within malignant glioma
are still contended. Here, we summarize the issues that are still in play with respect to the cancer stem cell
hypothesis, and we revisit the developmental origins of malignant glioma. Do glioma stem cells arise from
developmentally stalled neural progenitors or from dedifferentiated astrocytes? Five separate predictions
of a neural progenitor cell of origin are put to the test.
Introduction
Primary tumors of the central nervous system account for less

than 1.5% of all new cancer cases reported in the United States

each year (Central Brain Tumor Registry of the United States,

http://www.CBTRUS.org). However, the majority of these can-

cers are either anaplastic astrocytomas or malignant gliomas.

The more aggressive manifestations of these cancers (WHO

grades III and IV, see Figure 1) are for all intents and purposes in-

curable. Accordingly, astrocytic tumors are the third leading

cause of cancer-related death among middle aged men and

the fourth leading cause of death for women between 15 and

34 years of age (Prados and Wilson, 1993). Pilocytic astrocyto-

mas (WHO grade I) are the most common form of brain cancer

in children (Kleihues and Cavenee, 2007). Some of these pediat-

ric tumors are surgically curable, and many of the others are re-

sponsive to radiation (Kortmann et al., 2003) or conventional

chemotherapy (Packer et al., 1997; Prados et al., 1997); how-

ever, the clinical impact of surgery, radiation, and cytotoxic

drugs on growing children can be significant.

Against this backdrop, malignant gliomas and pediatric brain

cancers have become one of the favored scientific vehicles for

‘‘the cancer stem cell hypothesis.’’ The central tenet of this hy-

pothesis is that solid and liquid tumors alike are composed of

(1) a relatively small subset of slowly cycling cells that undergo

self renewal for an indefinite/unlimited period of time and (2)

a larger population of cells that have committed to a particular

fate and have finite division capacity (Reya et al., 2001). A prac-

tical corollary of the cancer stem cell hypothesis is that cancer

therapies frequently fail because they are directed toward the

wrong cellular targets (Tan et al., 2006).

An important and testable notion with direct relevance to the

cancer stem cell hypothesis is that tumors arise from mutated,

developmentally arrested progenitor cells that normally drive or-

ganogenesis and/or tissue repair. For several reasons, cancers

of the brain lend themselves especially well to critical assess-

ment from this developmental perspective. Adult neural progen-

itors have been identified and mapped to spatially restricted
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regions of the postnatal brain. Marker proteins and antibodies

are available for most of the specific cell types that comprise

the adult brain. Protocols for the culture of normal, multipotent

neural progenitors are well established. Above all, the ‘‘wall

charts’’ for development of the normal brain, though far from

complete, are surpassed in detail only by those for development

of blood.

Cancer stem cells have now been isolated from a wide range

of CNS neoplasms, including gliomas (both adult and pediatric)

anaplastic oligodendrogliomas, and malignant medulloblasto-

mas (Table 1). For neuro-oncologists, the notion that brain

tumors arise from developmentally arrested neural progenitors

seems to resolve some long standing puzzles: Why are these

tumors (especially high-grade gliomas) so notoriously resistant

to radiation and chemotherapy? What accounts for the bizarre

mixture of cell types found in the most aggressive gliomas

(WHO grade IV, a.k.a. glioblastoma mulitiforme; see Table 1)?

Above all, how do any cancers arise in an organ that is well iso-

lated from environmental toxins and—to a first approximation—

mitotically inert?

Despite its considerable teleological charm, the cancer stem

cell hypothesis remains a work in progress. Many aspects of

cancer biology do not lend themselves well to a stem cell per-

spective. Recent developments in the area of stem cell research

refresh a decades-long polemic on the cell of origin for malignant

gliomas. We will start this review by framing the issues that are

currently in dispute with respect to the cancer stem cell hypoth-

esis in general and glioma stem cells in the particular. We will

then critically evaluate five testable predictions of the cancer

stem cell hypothesis.

The Cancer Stem Cell Hypothesis and Astrocytic
Tumors: The Issues at Hand
One practical component of the cancer stem cell hypothesis

addresses the issue of intrinsic resistance to radiation and che-

motherapy. Cancer stem cells are predicted to be difficult tar-

gets for cancer therapeutics because (1) they cycle slowly, (2)
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Figure 1. An Overview of the Astrocytic
Tumors
The World Health Organization (WHO) recognizes
ten major classes of neuroepithelial tumors and
more than 40 subclasses. Of these, 60% belong
to one major class—the astrocytic tumors, which
are parsed into fourgrades inaccordwithhistopath-
ological appearance and clinical prognosis. As indi-
cated, there is a direct relationship between tumor
grade and age of onset and an inverse relationship
between tumor grade and time to death. A subset
of grade IV gliomas are thought to arise via progres-
sion of diffuse astrocytomas (WHO grade II) or ana-
plastic astrocytomas (WHO grade III). Grade IV glio-
mas that arise via progression are referred to as
‘‘secondary gliomas.’’ However, most high-grade
gliomas are diagnosed in patients with no evidence
of a pre-existing, less malignant astrocytoma and
are termed ‘‘primary gliomas.’’ See Kleihues and
Cavenee (2007) for further reading.
express high levels of drug export proteins, and (3) they may not

express or may not depend upon the oncoproteins that are

targeted by the new generation of ‘‘smart drugs,’’ such as Glee-

vec and Iressa. Collectively, these observations and consider-

ations (and speculations) provide a fresh rationale for tumor re-

sistance to therapy and suggest that a new class of agents

should be designed to specifically target cancer stem cells

(Al-Hajj et al., 2004).

However, some cancers respond dramatically to chemother-

apy, including cancers that arise from germ cells (i.e., testicular

cancer) and cancers that clearly have a stem cell component,

such as chronic myelogenous leukemia (Polyak and Hahn,

2006). Acquired resistance to radiation or chemotherapy is

even more difficult to reconcile with the cancer stem cell hypoth-

esis. Selective pressure and clonal expansion of tumor cells with

preexisting mutations for drug resistance provides a plausible (al-

beit more prosaic) explanation for these typical failures of cancer

medicine (Weinberg, 2007). In accord with the clonal expansion

view, high-throughput DNA sequence analysis of breast cancer

stem cells (marked by the cell surface antigen CD44) shows

that the CD44-positive tumor stem cells are genetically more dis-
similar to their CD44-negative counterparts than would be pre-

dicted by the cancer stem cell hypothesis (Shipitsin et al., 2007).

For brain cancers in particular, skeptics complain that glioma

stem cells are defined in operational ways that have little or no

bearing on brain development (see below). Moreover, even if

their existence is conceded, the cellular and developmental ori-

gins of ‘‘glioma stem cells’’ can be contended. Do these cells ac-

tually arise from postnatal neural progenitors? Alternatively, are

glioma stem cells the progeny of mature glia or committed glial

progenitors that have dedifferentiated to a more stem-like state?

The latter point of view, though somewhat counterintuitive, has

gained credibility with recent reports on genetic reprogramming

of adult skin cells to pluripotent embryo stem cells by transfec-

tion with small sets of transcription factors (Nakagawa et al.,

2008; Okita et al., 2007; Takahashi et al., 2007; Wernig et al.,

2007). These extreme examples of genetic reprogramming are

low-frequency events in culture. Moreover, insertional muta-

genic events may contribute to the process because retroviral

expression vectors have thus far been required to transduce

the transcription factors. Nevertheless the skin-to-stem cell

transformations do illustrate the fundamental genetic plasticity
Table 1. Milestones in the History of the Glioma Stem Cell

� Mid-to-late 19th century: Lobstein, Cohnheim, and others comment on similarities between embryogenesis and the biology of cancer

cells (1).

� 1926: Bailey and Cushing develop the brain tumor classification system from which modern taxonomies derive. The system emphasizes the

histological resemblance of brain tumor cells to cells of the developing CNS (2).

� Mid 60s: Metcalf, Sachs, and others develop in vitro clonogenic assays to display the cellular progenitors of blood (3 and 4).

� 1966: Altman and Das describe postnatal neurogenesis in rats (5).

� 1988: Weissman and coworkers isolate the multipotent hematopoietic stem cell (6).

� 1992: Reynolds and Weiss identify postnatal neural progenitors (neurosphere cultures) (7).

� 1994: Dick and coworkers isolate malignant stem cells from human acute myeloid leukemia (8).

� 2000: Prospective isolation of human CNS stem cells (9).

� 2002–2004: Cancer stem cells isolated from adult and pediatric astrocytomas (10–13).

(1) Rather (1978); (2) Bailey and Cushing (1926); (3) Bradley and Metcalf (1966); (4) Ichikawa et al. (1966); (5) Altman and Das (1966); (6) Spangrude et al.

(1988); (7) Reynolds and Weiss (1992); (8) Lapidot et al. (1994); (9) Uchida et al. (2000); (10) Ignatova et al. (2002); (11) Galli et al. (2004); (12) Hemmati

et al. (2003); (13) Singh et al. (2003).
Neuron 58, June 26, 2008 ª2008 Elsevier Inc. 833
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of replication-competent cells. Within this context, the conver-

sion of committed astrocytes or astrocyte progenitors into

multipotent neural progenitors seems to be a small and easily

surmountable challenge. Indeed, one cannot rule out that rever-

sion to a less-differentiated state might be a normal, albeit rare,

event in healthy CNS tissue.

These unresolved issues in cancer cell biology and malignant

glioma are the focus of this review. We will begin with a quick

synopsis of glioma stem cell biology and a brief overview of

the candidates for ‘‘glioma cell of origin.’’ We will then address

the cell of origin issue by considering five testable predictions

of the cancer stem cell hypothesis.

Glioma Stem Cells: Definitions
Neural stem cells are classically defined as cells active in devel-

opment, cell turnover, or repair that are (1) self-renewing and (2)

multipotent. Although the definition of ‘‘glioma stem cell’’ was ini-

tially coined to reflect these two cardinal properties, there is

growing recognition that cancer stem cells, while self-renewing,

cannot be considered multipotent because the differentiated

progeny derived from a transformed precursor are genetically

abnormal. The operational definition of glioma stem cell is a tu-

mor subpopulation that can self-renew in culture, perpetuate

a tumor in orthotopic transplant in vivo, and generate diversified

neuron-like and glia-like postmitotic progeny in vivo or in vitro.

Glioma stem cells meeting these criteria grow as neuro-

spheres in culture and can express CD133 (a.k.a. Prominin-

1)—a cell surface antigen that is also a known marker of multipo-

tent stem cells in blood and other tissues, including the brain

(Galli et al., 2004; Singh et al., 2003; Yuan et al., 2004). The

CD133-positive cells isolated from human brain tumors can initi-

ate formation of ‘‘neurospheres’’ when cultured under nonadher-

ent conditions in medium supplemented with EGF and FGF.

When these growth factors are removed and the tumor neuro-

spheres are cultured under adherent conditions in serum-

supplemented medium (or, in some studies, LIF-supplemented

medium), individual cells began to express marker proteins as-

sociated with neurons and glia (Galli et al., 2004; Hemmati

et al., 2003; Ignatova et al., 2002; Singh et al., 2003). Notably,

the repertoire of neuronal and glial marker proteins that are ex-

pressed under these conditions recapitulates, the repertoire of

multipotent neural progenitors (Galli et al., 2004; Hemmati

et al., 2003; Singh et al., 2003).

Such CD133-positive, neurosphere-forming cancer stem cells

are typically a minor subset of the total cells within glioma. How-

ever, they are by far the most tumorigenic component of the tu-

mor. For example, disaggregated cells from fresh surgical iso-

lates of malignant glioma will form tumors when inoculated into

the cranium of immune suppressed mice; typically though, an in-

noculum of at least 105 cells is required to initiate tumor growth.

By contrast, as few as 100 CD133-positive cells will suffice to ini-

tiate tumor formation (Singh et al., 2004). Interestingly, in accord

with the cancer stem cell hypothesis, the CD133-positive glioma

stem cells are relatively resistant to radiation (Bao et al., 2006a).

Glioma Stem Cells: Caveats
There are exceptions to the stem cell properties noted above and

experimental pitfalls for the unwary. For example: (1) Not all of
834 Neuron 58, June 26, 2008 ª2008 Elsevier Inc.
the cells that fit the operational definition of a glioma stem cell

are marked by CD133. Some gliomas contain CD133-negative

cells that, in every other respect, fit the operational definition of

a cancer stem cell (Beier et al., 2007). (2) CD133 is expressed

on cells that are not glioma stem cells—for example, endothelial

cells. Slowly cycling endothelial cells are expected to be intrinsi-

cally resistant to radiation and could (in principle at least) com-

plicate the analysis of radiosensitivity studies such as those

conducted by Bao et al. (2006a). (3) Experiments with tumor xe-

nograft models may lead to underestimation of the percentage of

tumor-initiating or ‘‘tumor-sustaining’’ cells (Kelly et al., 2007). (4)

Some of the cellular heterogeneity seen in high-grade gliomas

may reflect the recruitment of nonmalignant neural or glial pre-

cursors into the tumor milieu (Assanah et al., 2006). These non-

malignant progenitors could contribute to the neurosphere pop-

ulation in vitro and obfuscate the interpretation of cell culture

experiments. (5) Single neurospheres are not usually derived

from single cells. Even in the absence of agitation or manipula-

tion, free-floating neurospheres are highly motile entities. Time-

lapse video microscopy shows that individual neurospheres

are rapidly drawn toward each other and merge to form larger

neurospheres, irrespective of whether cultures are passaged at

conventional density or very low density (Singec et al., 2006).

Neurosphere merger events are clearly germane to the property

of multiple fate choice—one of the defining characteristics of

a cancer stem cell.

Overshadowing all of these tactical concerns is a strategic

problem: Stem-like properties in a neoplastic cell cannot be

taken as evidence prima facie of a developmental origin from

a ‘‘stalled’’ neural progenitor. The cancer stem cell hypothesis

and the cellular origins of cancer are separate and distinct is-

sues. Graphic evidence of the disconnect between a stem-like

phenotype and a stem cell origin comes from studies on leuke-

mias where it has been shown that committed progenitor cells

can be transformed into leukemia stem cells by misexpression

of the oncogenic fusion protein MLL-AF9 (Krivtsov et al., 2006).

In the case of malignant glioma, there are at least three neural

cell types that could, in principle, serve as cell of origin for glioma

stem cells. These are (1) mature ‘‘dedifferentiated’’ glia, (2) ‘‘re-

stricted’’ neural progenitors that are normally unipotent, and (3)

multipotent neural progenitors (see Figure 5).

Cellular Progenitors of Glioma Stem Cells I:
The Case for Mature Glia
Prior to the discovery of replication-competent neural progeni-

tors in the postnatal brain (Reynolds and Weiss, 1992), mature

astrocytes or committed astrocyte progenitors were thought to

be the only replication-competent cells in the postnatal brain

and thus the only cells capable of malignant transformation.

The conceptual problem with mature or committed glia as tumor

progenitors is that the transformed glia would have to dedifferen-

tiate to produce the malignant, multipotent cells that are embed-

ded within human gliomas. This ‘‘retrograde differentiation’’

might seem counterintuitive; however, it has recently been

shown that genetic cocktails of just a few transcription factors

can convert normal skin cells into totipotent embryonic stem

cells (Nakagawa et al., 2008; Okita et al., 2007; Takahashi

et al., 2007; Wernig et al., 2007). Within this context, the
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conversion of a terminally differentiated astrocyte into a multipo-

tent neural progenitor seems to be a small and easily surmount-

able challenge.

Multiple studies have shown that early cortical astrocytes can

be targeted in vitro or in vivo with oncogenes or activated signal-

generating proteins to produce tumors in animal models with

convincing glioma histology (Bachoo et al., 2002; Blouw et al.,

2003; Ding et al., 2001; Holland et al., 1998a; Rich et al., 2001;

Sonoda et al., 2001; Uhrbom et al., 2005; Weiss et al., 2003;

Xiao et al., 2005). For example, Bachoo et al. (2002) isolated

neonatal astrocyte cultures from p16Ink4a/p19Arf null mice and

infected these cells with a retrovirus encoding a mutated,

constitutively active version of the EGF receptor (EGFRvIII). Neu-

rospheres generated from these genetically modified astrocytes

could form gliomas when implanted into the brains of SCID mice

(Maher et al., 2001). However, there are important caveats to

most of these studies.

Several lines of evidence suggest that in vitro and in vivo cel-

lular targeting paradigms select for a less mature cell in the as-

troglial lineage. First, retroviral expression vectors can only in-

fect proliferating cells and are thus biased toward immature

progenitors relative to their terminally differentiated progeny.

Second, such transformation-competent astrocyte cultures

can be generated from the neonatal cortex but not the adult

cortex, arguing for selection of a less mature astrocytic cell

type (Laywell et al., 2000). Indeed, culture of adult cortical as-

trocytes has proved extremely difficult. Third, cultured ‘‘astro-

cytes’’ are generally characterized by only one marker, GFAP,

which is found on multipotent precursors as well as reactive

astrocytes (see below). Finally, in vivo targeting studies suffer

from a lack of reliable and specific regulatory sequences to

drive gene expression specifically in mature cortical astrocytes.

In this regard, the commonly used marker GFAP is quite prob-

lematic because it is expressed in neural stem cells as well as

some committed astrocyte progenitors and cortical astrocytes

(Doetsch et al., 1999). Thus, a major remaining challenge for the

dedifferentiation hypotheses of glioma is the development of

genetic systems capable of selective transmission of oncogenic

events solely to mature astroglial cells. The critical need to dis-

cover novel markers of mature astrocytes was articulated in the

summary statement of the NINDS-sponsored ‘‘Workshop on

Astrocyte Function in Health and Disease (http://www.ninds.

nih.gov/news_and_events/astrocyte_function_health_disease.

htm).

Cellular Progenitors of Glioma Stem Cells II:
The Case for ‘Restricted’ Neural Progenitors
The discovery of replication-competent multipotent neural pro-

genitor cells in the postnatal brain (Reynolds and Weiss, 1992)

created an attractive alternative candidate for the glioma cell of

origin. Because such stem cells have the machinery for self-

renewal already activated, maintaining this activation may be

simpler then turning it on de novo in a more differentiated cell;

that is, fewer mutations might be required to maintain self-

renewal then to activate it ectopically (Reya et al., 2001).

‘‘Restricted progenitors’’ of the brain are able to proliferate but

are generally defined as unipotent. Examples include granule cell

neuron precursors of the cerebellum and oligodendrocyte pre-
cursors in vivo. These restricted progenitors might first need to

acquire the self-renewal potential of multipotent progenitors to

have the opportunity to experience additional mutations that

would lead to transformation. Some insight into this process

can be taken from the hematopoietic system wherein restricted

lymphoid and myeloid progenitors fail to self-renew detectably

upon transplantation (Mikkola and Orkin, 2006; Tenen, 2003). In-

troduction of the MLL-AF9 fusion protein into committed granu-

locyte-macrophage precursors is sufficient for leukemic trans-

formation including generation of self-renewing stem cells

(Krivtsov et al., 2006).

Kondo and Raff have shown that committed oligodendroglial

progenitors can reacquire stem-like properties after extensive

treatment in vitro (Kondo and Raff, 2000), which results in chro-

matin remodeling and reactivation of the primitive neural epithe-

lial marker, Sox2 (Kondo and Raff, 2004). Interestingly, Sox2

expression is prevalent in human gliomas (Schmitz et al.,

2007), consistent with the possibility that similar mechanisms

could be involved in the process of transformation of a restricted

neural (glial) precursor to transformed cell type.

In the postnatal brain, cycling neural progenitors encompass

the diffuse NG2 progenitor cell population (Diers-Fenger et al.,

2001; Levine and Stallcup, 1987). NG2 cells are the most actively

cycling cells in the adult brain, and they have been reported

to have multipotent qualities (Belachew et al., 2003; Liu et al.,

2007). The majority of NG2 cells express Olig2, which is required

for oligodendrocyte lineage development (Ligon et al., 2006b),

consistent with the proposal that NG2 cells are fundamentally

similar to, or give rise to, oligodendrocyte precursors (Baracskay

et al., 2007). Others have argued that NG2 cells comprise a

distinct (fourth) neuroepithelial lineage (Greenwood and Butt,

2003; Nishiyama, 2007). In any case, NG2 cells can undergo

reprogramming in culture to produce neurons and astrocytes

via epigenetic mechanisms as described for oligodendrocyte

precursors (Liu et al., 2007). Fate mapping in vivo also supports

contributions to gray matter astrocytes (Zhu et al., 2008), al-

though it is unclear whether such NG2 cells with increased

potential represent a distinct functional subset or whether NG2

marks several classes of cells with distinct capabilities to form

astrocytes or oligodendrocytes (Tamura et al., 2007).

Cellular Progenitors of Glioma Stem Cells III:
The Case for Multipotent Neural Progenitors
Multipotent neural progenitors, found in specialized niches such

as the dentate gyrus and subventricular zone (SVZ), have been

extensively scrutinized, and have recently been suggested as

cells with potential to form gliomas (for reviews see Sanai

et al., 2005; Vescovi et al., 2006). Alvarez-Buylla and colleagues

have described several basic subclasses of SVZ progenitor cells

on the basis of histology and immunohistochemical and ultra-

structural characteristics (Alvarez-Buylla et al., 2001; Doetsch

et al., 1999). As indicated in Figure 2, quiescent ‘‘type B’’ stem

cells that expresses the astrocytic marker GFAP and exhibits

other morphological features of astrocytes are capable of re-

sponding to growth factors such as EGF and PDGF. Mitogen-

treated type B cells give rise to transit-amplifying type C cells

that in most cases will go on to form neuroblasts of the rostral mi-

gratory stream. However, type B cells can also give rise to
Neuron 58, June 26, 2008 ª2008 Elsevier Inc. 835
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oligodendrocytes during normal development and after white

matter injury (Hack et al., 2005; Menn et al., 2006). Interestingly,

treatment with antimitotic agents such as cytosine-b-D-arabino-

furanoside destroys type C but not type B cells, a finding that

could be relevant for understanding the recurrence of brain can-

cer after chemo- and radiotherapy (Sanai et al., 2005).

As illustrated in Figure 2, these functional subgroups of the

normal SVZ provide a conceptual framework for investigating

features of gliomagenic stem cells as well as the cell of origin

for glioma. For example, the normal type B cell captures essen-

tial properties of quiescence, self-renewal, and multipotentcy

that one might ascribe to a cancer stem cell. Do glioma

stem cells arise from developmentally stalled neural progenitors

such as the type B cell? In the sections below, five separate

predictions of a neural progenitor cell of origin are put to the

test.

Prediction 1: Neural Progenitors and Brain Tumor Stem
Cells Are Driven by Common Signaling Pathways
Four examples of signal transduction pathways that modulate

growth and differentiation of neural progenitor cells during devel-

opment and also in the postnatal brain are depicted schemati-

cally in Figure 3. As indicated, mutations of key regulatory ele-

ments within these pathways are associated with adult gliomas

and pediatric medulloblastoma.

During development, Notch signaling promotes formation and

suppresses differentiation of radial glia (Gaiano et al., 2000). In

the postnatal brain, Notch promotes survival of neural progeni-

tors and thereby expands the population of these cells both in

vitro and in vivo (Androutsellis-Theotokis et al., 2006). The Notch

signaling pathway is constitutively active in many high-grade gli-

omas and glioma cell lines—conceivably through an autocrine/

juxtacrine loop mechanism involving coordinate expression of

Notch and Notch ligands (Purow et al., 2005). The activation

state of Notch in these tumors and tumor cell lines has lead to

Figure 2. Neural Progenitor Subtypes in the
Subventricular Zone
(Top) Coronal section through the postnatal adult
mouse forebrain depicts subventricular zone
(SVZ) progenitors in situ including type B (blue),
C (amber), and A (green) cells, as well as ciliated
ependymal cells (pink) that line the lateral ventricle
(see Alvarez-Buylla et al. [2001] for further read-
ing). (Bottom) Type B cells divide very slowly and
express the markers indicated. They give rise to
transient amplifying type C cells that in turn gener-
ate type A neuroblasts that contribute to the rostral
migratory stream in most cases. However, a frac-
tion of type C cells express Olig2 and NG2 and can
form myelinating oligodendrocytes. The potential
of type B cells to produce oligodendrocyte precur-
sors might relate in principle to tumor-compe-
tence for glioma.

the proposal that Notch pathway inhibi-

tors might be employed in glioma therapy

(Kanamori et al., 2007).

Mitogens such as EGF, FGF, PDGF, and

LIF promote the growth of adult neural

progenitor cells from the subventricular

zone or dentate gyrus and are used routinely for neurosphere

cell culture (Jackson et al., 2006; Reynolds and Weiss, 1992; Shi-

mazaki et al., 2001; Vescovi et al., 1993). Amplification and/or ac-

tivating mutations in EGF and PDGF receptors are seen in adult

high-grade gliomas (Kesari et al., 2006). PDGF ligand/receptorau-

tocrine loops arealso a common feature of malignantgliomas in all

grade levels (Guha et al., 1995; Hermanson et al., 1992; Lokker

et al., 2002). The receptors for EGF, FGF, PDGF, and LIF all acti-

vate the canonical Ras/Raf/MAPK signaling axis (Weinberg,

2007). Loss-of-function mutations in NF1 (encoding a GTPase)

promote activation of the Ras/Raf/MAPK signaling axis and are

associated with low-grade astrocytomas in patients with heredi-

tary neurofibromatosis (Hochstrasser et al., 1988).

A parallel signaling pathway for growth factors and their

receptor tyrosine kinases involves the formation of phosphati-

dylinositol 3 phosphate via activation of phosphatidylinositol

3 kinase (PI3K). Activating mutations in this PI3K are etiologic

in a subset of high-grade gliomas (Samuels et al., 2004). The

trophic functions of PI3K on anabolic metabolism and survival

are opposed by the tumor-suppressor gene PTEN, which is

deleted in a high percentage of malignant gliomas (Duerr

et al., 1998; Furnari et al., 2007; Liu et al., 1997; Rasheed

et al., 1997).

Although they are less frequent than low-grade astrocytomas,

malignant medulloblastomas are actually the most common

malignant brain tumor of childhood (Grovas et al., 1997). Medul-

loblastomas are thought to originate from granule neuron precur-

sor cells in the external granular layer of the developing cerebel-

lum. Sonic hedgehog is a critical mitogen for these precursor

cells (Wechsler-Reya and Scott, 1999). Hereditary loss-of-func-

tion mutations in the Sonic hedgehog receptor Patched lead

to constitutive activation of the Sonic hedgehog pathway and

a predisposition to medulloblastoma in Gorlin syndrome (Bale

et al., 1998; Goodrich et al., 1997; Gorlin, 1987). Loss-of-function

mutations in ‘‘Suppressor of Fused’’ (SF) have been detected in
836 Neuron 58, June 26, 2008 ª2008 Elsevier Inc.
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sporadic medulloblastomas (Taylor et al., 2002), and these mu-

tations would likewise be expected to activate the Sonic hedge-

hog signaling axis (Figure 3).

What do these data say about the cancer stem cell hypothesis

and glioma cell of origin? As predicted by the hypothesis, CNS

cancer stem cells do appear to co-opt mitogenic cues that reg-

ulate the growth of normal neural progenitors. However, the

receptors for EGF, FGF, Shh, and Notch ligands are broadly ex-

pressed. In cell culture, EGF and FGF are known to promote the

growth of normal astrocytes derived from the neonatal cortex.

Thus, the outcome of prediction 1 is ambiguous with respect

to the cellular origins of CNS cancer stem cells.

Prediction 2: Signaling Pathways that Constrain
the Growth of Normal Progenitor Cells Are Suppressed
in Brain Cancers
Cell cycle progression of all mammalian cell types is governed by

the ‘‘RB signaling axis.’’ The central, cell-intrinsic features of this

signaling axis have been extensively reviewed (Adams and Kae-

lin, 1998; Gartel and Radhakrishnan, 2005; Pei and Xiong, 2005;

Sherr and Roberts, 1999). As indicated in Figure 4, there are

three key negative regulators in the RB signaling axis. All three

of the negative regulator elements in the RB signaling axis mod-

ulate the proliferation of neural progenitor cells.

Targeted disruption of p16INK4a has little effect on the anatomy

of the SVZ in young mice or on the replicative potential of SVZ

progenitor cells derived from young mice; however, deletion of

p16INK4a can partially oppose an age-related decline in the abun-

dance and self-renewal potential of SVZ neural progenitors (Mo-

lofsky et al., 2006). Targeted deletion of p21 opposes the relative

quiescence of neural progenitors in the adult forebrain, leading

to a transient surplus of these cells. This initial increase in the ab-

sence of p21 function is followed by a depletion and long-term

decrement in stem cell replicative potential. In aggregate, the

Figure 3. Common Mitogenic Cues for
Neural Progenitors and Brain Tumor Stem
Cells
Common gene amplifications, activating muta-
tions, or autocrine loops are indicated in red font.
Common deletions or loss-of-function mutations
are indicated in blue font. See text for details.
Note that the Hedgehog pathway is implicated
strongly in the cerebellar tumor, medulloblastoma,
whereas its roles in glioma are contended.

p21 null phenotype suggests that p21

contributes to the relative quiescence of

neural progenitors, which is necessary

for life-long maintenance of neural stem

cell self-renewal (Kippin et al., 2005).

Mice lacking p53 display an elevated

rate of cell proliferation in the adult SVZ.

This enhanced proliferation in vivo corre-

lates with an increase in the relative num-

ber of SVZ cells capable of forming neu-

rospheres in vitro and with an increased

number of stem cells within the neuro-

spheres that form (Meletis et al., 2006).

The Polycomb group gene silencer Bmi1 lies genetically up-

stream of the RB signaling axis and plays key roles in sustaining

the replication-competent state of normal neural progenitors. At

postnatal stages, knockout of Bmi1 dramatically reduces fore-

brain SVZ neural progenitors (Molofsky et al., 2003; Zencak

et al., 2005). As indicated in Figure 4, the postnatal requirement

for Bmi1 function is thought to reflect the repressive functions of

Bmi1 on the p16Ink4a/p19Arf gene products (Molofsky et al.,

2005). Targeted gene disruption reveals little or no requirement

of Bmi1 in the developing CNS. However, recent studies using

shRNA technology to achieve an acute knockdown of Bmi1

have shown a critical role for Bmi1 function for neural stem cell

self-renewal in the developing CNS. Surprisingly, the cell cycle

target for Bmi1 in the developing brain is not p16Ink4a/p19Arf

but rather p21 (Figure 4) (Fasano et al., 2007).

In addition to general regulators of the cell cycle, lineage-re-

stricted control mechanisms have recently been described.

The bHLH transcription factor Olig2 is expressed exclusively

within the central nervous system, where it contributes to the

cell cycle control of neural progenitors. During development,

Olig2 is expressed in progenitors that give rise to oligodendro-

cytes and certain neuronal subtypes, including motor neurons

in the developing spinal cord (Lu et al., 2002, 2000; Novitch

et al., 2001; Takebayashi et al., 2000; Zhou and Anderson,

2002; Zhou et al., 2000). In the adult CNS, Olig2 is expressed

in myelinating oligodendrocytes but is observed also in mito-

gen-treated ‘‘transit-amplifying cells’’ of the SVZ (Jackson

et al., 2006). Olig2 is also expressed in NG2-positive glia and re-

quired for the development of these cells (Ligon et al., 2006b).

Olig2 sustains the replication-competent state of neural progen-

itors (Lee et al., 2005b), perhaps in part through suppression of

p21 gene expression (Ligon et al., 2007).

Overlaps between the genes and gene products that regulate

stem cell proliferation and the genetic lesions that underlie
Neuron 58, June 26, 2008 ª2008 Elsevier Inc. 837
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malignant gliomas are readily apparent. The most common ge-

netic lesions found in primary high-grade gliomas consist of

loss-of-function mutations in the p16Ink4a and p19ARF negative

effectors of the RB signaling axis. However, RB itself is some-

times targeted. Gain-of-function mutations in the positive effec-

tor CDK4 are also observed (Figure 4) (Sauvageot et al., 2007).

The Bmi1 gene product is expressed in almost all human brain

tumors irrespective of grade. The expression of Bmi1 has been

shown to contribute to the malignancy of p16Ink4a/p19ARF double

null murine gliomas (Bruggeman et al., 2007). This observation is

superficially at odds with the known role of Bmi1 in repressing

the function of p16Ink4a/p19Arf (Molofsky et al., 2005). As indi-

cated in Figure 4, the p16Ink4a/p19ARF-independent function of

Bmi1 might reflect an epistatic relationship with Olig2 and p21

(Fasano et al., 2007). The Olig2 transcription factor is expressed

in 100% of adult astrocytomas, irrespective of grade (Ligon et al.,

2004). In adult gliomas, Olig2 expression marks essentially

100% of the CD133-positive putative glioma stem cells. Olig2

is also required for tumor formation in the same p16Ink4a/

p19ARF double null murine model of adult gliomas used by Brug-

Figure 4. Common Cell-Intrinsic Mechanisms Sustain Replication
Competence of Normal and Gliomagenic Neural Precursors
Generic components of the retinoblastoma (RB) cell cycle regulatory appara-
tus are shown. Negative regulators shown in blue are often deleted in malig-
nant glioma, while positive regulators shown in red are frequently amplified,
overexpressed, or mutated to a constitutively active state (reported frequen-
cies indicated to the right of each symbol) (Sauvageot et al., 2007). The Poly-
comb gene silencer Bmi1 is thought to be a critical regulator of p21 gene ex-
pression during development and of p16Ink4a/p19Arf expression in the
postnatal brain. The bHLH transcription factor Olig2 is expressed in essentially
100% of glioma stem cells (as defined by coexpression of CD133) and directly
suppresses expression of p21. See text for details.
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geman et al. (2007). Finally, as noted above, Olig2 suppresses

the expression of p21 (Ligon et al., 2007).

What do these data say about the glioma cell of origin? Glioma

mutations found in general regulators of the cell cycle are equally

compatible with neural progenitors or mature astrocytes as tu-

mor cell of origin. However, Olig2 is not found in mature astro-

cytes (Lu et al., 2000; Takebayashi et al., 2000; Zhou et al.,

2000). The gliomagenic requirement for Olig2 (albeit in a mouse

tumor model) provides a small edge in favor of neural progenitors

as cell of origin for glioma.

Prediction 3: Neural Progenitors Are Competent
for Transformation by Mutations Found in Human
Brain Tumors
‘‘Tumor competence’’ is a necessary feature of glioma progeni-

tor cells. The property of tumor competence in humans is pro-

vided by hereditary cancer syndromes such as Li-Fraumeni, ret-

inoblastoma, or familial breast cancer syndromes caused by

germline deletions of p53, RB, or BRCA, respectively. Patients

with these hereditary cancer syndromes develop a narrow spec-

trum of spontaneous tumors despite tissue-wide distribution of

the affected genes (Weinberg, 2007). Of particular relevance

to the CNS, germline mutations of the PTCH gene, encoding a re-

pressor of the Hedgehog pathway (see Figure 3), give rise to

medulloblastoma in patients with Gorlin syndrome (Hahn et al.,

1996; Johnson et al., 1996). The fact that Gorlin syndrome pa-

tients—and also Ptch+/� mice (Goodrich et al., 1997)—typically

develop cerebellar tumors, but not forebrain glioma, indicates

a particular susceptibility of a subset of precursor cells in the

anterior posterior axis to respond to this particular oncogenic

pathway.

There are several strategies to define progenitor compart-

ments that are ‘‘competent’’ to produce tumors in vivo. Because

the many studies employing this strategy in brain cancer re-

search have been comprehensively reviewed (Furnari et al.,

2007), we will confine our own discussion to a few illustrative

cases. For example, expression of V(12) Ha-ras under control

of GFAP regulatory sequences directs activated Ras signaling

to this cellular compartment, yielding molecular insight into gli-

oma formation and a highly penetrant model (Ding et al., 2001;

Shannon et al., 2005).

Oncogenic rodent ecotropic retroviruses have provided useful

insights into gliomagenesis (Assanah et al., 2006), but this

approach targets a relatively broad range of proliferating cells

including multipotent and restricted progenitors. Other viral sys-

tems select for certain classes of precursor cells. For example

the adeno-associated virus serotype 5 (AAV5) utilizes PDGF

receptors for initial entry into the host cell (Di Pasquale et al.,

2003; Lotery et al., 2003). AAV5 expression vectors have been

used to fate map the progeny of PDGF receptor-positive type

B progenitor cells in the SVZ (see Figure 2) (Jackson et al.,

2006); however, a potential complication in this experiment is

that PDGFRa is also expressed on NG2 cells and oligodendro-

cyte precursors that are also present in the SVZ might also

be targeted.

Holland and Varmus developed a more flexible means of tar-

geting replication-competent avian sarcoma (‘‘RCAS’’) virus

expression vectors to specific cellular subcompartments in the
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brain. The RCAS protocol uses promoter/enhancer regulatory

sequences of interest to drive expression of TVA, the cell surface

receptor for ALV avian retrovirus (Holland et al., 1998a; Holland

and Varmus, 1998). Subsequent infection with avian sarcoma vi-

rus expression vectors in such transgenic mice is possible only

in TVA-positive cells. This RCAS system has been used to intro-

duce oncogenes (e.g., Ras), cell cycle regulatory factors (e.g.,

CDK4), growth factors (FGF, PDGF), growth factor receptor mu-

tants (e.g., activated EGFRvIII), and signal-generating proteins

(e.g., Akt) into subsets of nestin- or GFAP-expressing cells with

additional temporal-spatial control conferred by infection (Dai

et al., 2001; Holland et al., 2000, 1998a, 1998b; Holland and Var-

mus, 1998; Holmen and Williams, 2005; Tchougounova et al.,

2007). The RCAS, GFAP-tva system has also been used to target

type B adult neural stem cell populations (Figure 2) in fate-

mapping studies (Menn et al., 2006) and has provided a means

to introduce oncogenic events into this subclass of neural

stem cells, which are implicated in gliomagenesis based on other

studies. Despite its intrinsic flexibility as a platform for glioma

modeling, the RCAS system is ultimately limited by reliability

and specificity of the regulatory sequences to drive TVA gene

expression in the rodent brain. Based on drawbacks discussed

above regarding the available GFAP and Nestin promoters,

new TVA-based transgenics based on regulatory elements

from lineage- and/or stage-specific markers of stem cells and

glial subtype developmental programs could provide important

new tools for gliomagenic studies.

Parada and his associates have developed a true in vivo

genetic model for malignant glioma that nicely illustrates the

phenomenon of tumor competence. In this model, GFAP-cre

recombinase transgenic mice are used to achieve targeted dele-

tion of a floxed Nf1 tumor suppressor gene in a p53 null back-

ground. The underlying genetic lesions for the tumors that arise

in this model system are present from the onset in all GFAP-pos-

itive cells of the brain, including SVZ progenitors and the more

mature astroglial cells of cortical white matter. Nevertheless

the majority of the tumors that arise in this system at early times

appear to originate from the SVZ (Zhu et al., 2005) wherein reside

the GFAP-positive type B neural progenitor cells (Doetsch et al.,

1999). As a whole, the phenomenon of tumor competence

makes a rather compelling argument for neural progenitor cells

as cell of origin for malignant gliomas. Multiple murine models

show that neural progenitors are susceptible to malignant trans-

formation by genetic lesions found in human tumors. By con-

trast, other cell types bearing identical lesions in vivo are not

transformed.

It should be noted that none of the animal studies show that

malignant gliomas arise directly from multipotent neural progen-

itors. In the genetic model described by Zhu et al. (2005) for ex-

ample, all descendants of the GFAP-positive multipotent B cells

will be genetically equivalent. The ultimate list of genetic equiva-

lents includes type D transit-amplifying cells, some NG2-positive

glia, and some oligodendrocyte progenitors (see Figure 2). Oli-

godendrocyte progenitors and NG2-positive glia are capable

of migrating extensive distances away from the SVZ, and yet

the majority of tumors arise initially within the SVZ. The spatial re-

striction could mean that only B cells and/or transit-amplifying

D cells are competent for malignant transformation. However,
there is an alternative explanation. One principle weakness in

the competence argument is the question of cell autonomy.

It could be argued for example that mature astrocytes in the

model of Zhu et al. (2005) actually are competent for malignant

transformation, but their malignant potential is not displayed be-

cause the cells are not positioned within a permissive ‘‘mitogenic

niche.’’ As has been noted, mature astrocytes or astrocyte pro-

genitors are competent for malignant transformation when onco-

genic mutations are introduced in vitro under conditions permis-

sive for growth (Bachoo et al., 2002; Bruggeman et al., 2007).

Although it is beyond the scope of this review, considerable

attention is now being focused on symbiotic relationships be-

tween neural stem cells, glioma stem cells, and the blood vascu-

lar system (Bao et al., 2006b; Calabrese et al., 2007; Shen et al.,

2004; Yang and Wechsler-Reya, 2007). Disruption of the support

system afforded by the mitogenic niche might be a viable thera-

peutic strategy.

Prediction 4: Brain Tumors Will Initiate and/or Cluster
near the Germinal Centers of the Brain
If gliomas are derived from multipotent type B cells of the SVZ

in humans, then brain cancers might be expected to cluster

within or near this germinal region, at least at the time of incep-

tion (Figure 2). If gliomas arise from committed astrocytes or

NG2 cells, a more diffuse distribution of tumors might be ex-

pected. As indicated in Figure 5, the raw clinical data are actually

more consistent with astrocytes or NG2-positive glia as tumor

cells of origin. At the time of diagnosis, malignant gliomas are

typically imaged within the brain parenchyma at a distance

from the SVZ in subcortical white matter, along blood vessels

and in subpial collections. However, malignant gliomas prolifer-

ate rapidly and also migrate rapidly along white matter tracts and

throughout all layers of the brain. Thus, at later stages of glioma

development, when patients become symptomatic from the

mass effect of a large tumor, the initial anatomical ties to the

SVZ might be obscured.

This hypothetical scenario is gaining support from several lines

of evidence. In the GFAP-cre, floxed Nf1, p53�/� astrocytoma

model (described above), gliomas arise with high penetrance

and at predictable times (Zhu et al., 2005). Accordingly, the tu-

mors can be tracked from their onset by cranial MRI and by im-

munohistochemical analysis of brains from animals euthanized

at sequential stages of development. These data show that the

SVZ is the site where gliomas first develop. At early times, focal

zones of hyperplasia are noted in the SVZ of affected mice. At

later times, thin streams of mitotic cells are observed along tracts

of white matter leading to the cortex. Ultimately, these migratory

stalks are obscured. The trophic and/or chemotactic factors that

regulate migration of glioma progenitors in this model, as well as

human glioma, are unclear. In this respect, it is interesting to con-

sider that EGFR overexpression, found commonly in human

glioma, is sufficient to confer migratory properties to neural pro-

genitors (Aguirre et al., 2005). Similarly, SVZ c-cells are EGF re-

sponsive and respond with mass-like proliferations, high motility,

and migration along white matter tracts and blood vessels

(Doetsch et al., 2002). Other studies suggest that PTEN and

HIF signaling in tumor cells and stroma, respectively, also
Neuron 58, June 26, 2008 ª2008 Elsevier Inc. 839
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Figure 5. Speculative Relationship of Glioma Cell of Origin to Subsets of Developmentally Distinct Neural Progenitors
(Top) The embryonic CNS is patterned by organizing signals (e.g., Sonic hedgehog [Shh]) and activity of homeodomain and bHLH transcription factors into dis-
crete domains of progenitor cells in the anterior-posterior and dorsal-ventral axes. Such pattering could relate to ultimate heterogeneity and tumor competence of
subsets of persistent neural progenitors in the adult brain. Shown at left are prosomere and rhombomere boundaries of the embryonic brain. At right, restricted
domains of neuronal and glial progeny subtype production suggested by recent work are indicated. (Bottom) If gliomas are derived from multipotent type B cells
of the SVZ in humans, then brain cancers might be expected to cluster within or near this germinal region, at least at the time of inception. Subsequently, they
could migrate to the cerebrum. Alternatively, gliomas might arise from committed astrocytes or NG2 cells. See text for details.
dramatically regulate tumor cell migration (Blouw et al., 2003;

Xiao et al., 2005).

As previously mentioned, because human gliomas usually

present at a late stage, and due to the relatively low resolution

of current imaging modalities, it has not been possible to serially

track tumor progression from progenitors of the SVZ. In recent

work, the spatial relationship of the contrast-enhancing gliomas

to the SVZ was examined, revealing a significant subset of tu-

mors that either contacted or were located with proximity to

the SVZ (Lim et al., 2007). Thus, the possibility that human glioma

could arise from fundamentally similar cells as those resident in

the SVZ remains open and is a compelling area for further re-

search (Sanai et al., 2005; Vescovi et al., 2006). In summary,

the weight of the imaging data from mouse models and a recent

clinical study are modestly supportive of the hypothesis that

adult neural progenitors in the SVZ serve as cell of origin for gli-

oma stem cells. However, if brain cancers indeed arise in the

SVZ, one must assume that the tumorigenic precursors migrate

rather rapidly to more favorable ‘‘mitogenic niches’’ of the brain

for tumor expansion before clinical symptoms arise.
840 Neuron 58, June 26, 2008 ª2008 Elsevier Inc.
Prediction 5: Genes that Govern Replication
Competence of Neural Progenitors Will Serve
as ‘Gatekeepers’ for Development of CNS Cancers
A final prediction of the cancer stem cell hypothesis is that similar

lineage-restricted genetic requirements for development and

survival of stem cells during organogenesis will apply to cognate

primary cancers (Garraway and Sellers, 2006). For example, the

transcription factor MITF is required both for normal melanoblast

development and generation of melanoma (McGill et al., 2002).

Common genetic requirements for tissue development and

tumor formation support the proposition that proliferation and

survival of tumor cells may be dependent on the same ‘‘gate-

keeper’’ pathways that govern early phases of organogenesis.

In principle, these tissue-type-specific gatekeeper functions

could be targeted for cancer therapy with the benefit that ‘‘off

target’’ collateral damage to other organs would be limited.

In the CNS, OLIG2 might be considered an example of one

such gatekeeper for malignant stem cells in glioma because

it regulates two cardinal features of stem cells: multipotency

and self-renewal. The archetypal hematopoietic stem cell can
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produce multiple differentiated lineages depending on environ-

mental conditions. In the CNS, neurospheres capable of gener-

ating neurons, astrocytes, and oligodendrocytes can be cultured

from certain parts of the brain in the presence of mitogens such

as FGF and/or EGF. The mitogen-induced expansion of these

multipotent neurospheres seems to select for cells that express

Olig2 (Ligon et al., 2007). Olig2 function, moreover, is necessary

to regulate the full potential of such cells to produce all three neu-

ral lineages: neurons, astrocytes, and oligodendrocytes (Zhou

and Anderson, 2002). Pathological overtones of the link between

Olig gene function and cell proliferation are found in human

astrocytomas, wherein 85% of all proliferating cells and virtually

100% of all CD133-positive cells are positive for Olig2 expres-

sion. In ‘‘genetically relevant’’ p16Ink4a/p19Arf null, EGFRVIII-pos-

itive tumor neurospheres, a model of WHO grade III astrocytoma

(Bachoo et al., 2002), Olig2 function is necessary for tumorigen-

esis (Ligon et al., 2007).

In summary, there is a common genetic requirement for repli-

cation competence in a subset of neural progenitors and for

tumor formation in a murine model of primary glioma. This obser-

vation supports the cancer stem cell hypothesis and cannot be

reconciled with committed astrocyte progenitors or their prog-

eny as cell of origin for glioma. Further work is needed to deter-

mine whether these observations are relevant to the biology of

other forms of CNS cancer in adults and children and, in partic-

ular, whether gliomas with other oncogenic mutations than those

tested above also require OLIG2 function.

Cancer Stem Cells and the Cell of Origin for Malignant
Glioma: Reprise
Malignant cells with stem-like properties have been found in

a wide range of adult and pediatric brain cancers. Do these can-

cer stem cells arise from developmentally arrested progenitor

cells that drive normal brain development and tissue repair?

Five testable predictions of this hypothesis are more or less sup-

ported by the literature reviewed here. However, in the words of

Enrico Fermi, ‘‘Experimental confirmation of a prediction is

merely a measurement. An experiment disproving a prediction

is a discovery.’’ We have noted ambiguities, loopholes, gray

areas in the data, and additional work to be done for each of

the predictions tested here. Committed progenitors for blood

or brain can clearly acquire stem-like properties when trans-

formed in vitro (Bachoo et al., 2002; Krivtsov et al., 2006). A ret-

rograde, somatic-to-stem cell path may be an occasional or

even a frequent route to the neoplastic state for some types of

brain cancer. It is only Ockham’s razor, applied to the data in

toto, that currently favors a multipotent stem cell origin for malig-

nant glioma.

In accord with the subjective state of the field, terms such as

‘‘tumor-initiating cells’’ or ‘‘tumor-propagating cells’’ are some-

times substituted for ‘‘cancer stem cells’’ because the later

term implies unwarranted insight into the tumor cell of origin

(Hill and Perris, 2007; Kelly et al., 2007). We agree that the

‘‘stem cell’’ descriptor is somewhat prejudicial. However, for

CNS tumors, the cancer stem cell hypothesis has thus far pro-

vided (1) a template for experimental design and (2) an incentive

for neuro-oncologists to think about fundamental problems in

brain development. Going forward, we believe that the benefits
of terms such as ‘‘cancer stem cell’’ or ‘‘glioma stem cell’’ as

consciousness-raising devices justify some modest conces-

sions to semantic rigor.

The Road Ahead
Prominent milestones in the cancer stem cell hypothesis and

glioma stem cells are summarized in Table 1. Note the pivotal

role of hematology and the hematologic malignancies in devel-

opment of the cancer stem cell paradigm. However, analogies

between cancers of the blood and cancers of the brain can

only be taken so far. Further progress may come at the points

where development of blood and brain diverge.

Unlike hematopoiesis, CNS development proceeds in precise

relation to position in the dorsal-ventral and anterior-posterior

axes (Kiecker and Lumsden, 2005; Tanabe and Jessell, 1996)

(Figure 5). For example, bHLH and homeodomain proteins ex-

pressed in spatially restricted domains of the ventral neural

tube and forebrain have been shown to govern oligodendrocyte

and astrocyte subtype specification (Hochstim et al., 2008; Lu

et al., 2002; Muroyama et al., 2005; Petryniak et al., 2007;

Zhou and Anderson, 2002). Recent studies show that progenitor

zones within the adult SVZ are likewise spatially diversified. Stem

cells that are separated from each other by distances of far less

than a millimeter can have very different fates (De Marchis et al.,

2007; Merkle et al., 2007; Young et al., 2007). Differences in pro-

genitor pools within the anterior-posterior axis of the CNS (Klein

et al., 2005; Lee et al., 2005a) might also be reflected in the

molecular phenotype or behavior of gliomas (Sharma et al.,

2007). In future years, a precise characterization of progenitor

cell subtypes with specific markers may shed light on new tu-

mor-competent subsets in the postnatal brain.

Neural progenitors also obey temporal restrictions that deter-

mine their ability to produce neurons or glia during development

(Anderson et al., 2001; Edlund and Jessell, 1999; Ligon et al.,

2006a; Liu and Rao, 2004). With respect to human glioma, tem-

poral restriction on progenitor cells is probably best exemplified

by dramatic differences observed in the location and underlying

mutations observed in pediatric versus adult glioma. Adult glio-

mas are typically found in the supratentorial region and are char-

acterized by mutation of PTEN, INK4A/ARF, P53, and activation

or upregulation of EGFR expression (Figures 3 and 4). In con-

trast, pediatric astrocytomas are prominently found in infratento-

rial locations such as the brainstem. Few of the genetic lesions

associated with adult gliomas (e.g., PTEN mutation and EGFR

amplification) have been found in pediatric gliomas (Biegel and

Pollack, 2004; Pollack et al., 1997, 2006; Ullrich and Pomeroy,

2006). The time of onset, location, and different genetic proper-

ties of pediatric and adult glial tumors suggest different modes

of tumorigenesis.

Overshadowing all of these academic concerns is the issue of

targeted therapy. All of the mutations currently associated with

malignant glioma lie in genes and signaling pathways that are

broadly expressed and generally required for cell growth and

survival (Figures 4 and 5). In principle (if not quite in practice),

small molecule inhibitors of growth factor receptors such as

EGFR and intracellular signal-generating proteins such as PI3 ki-

nase are no more selective for brain cancer cells than radiation or

conventional chemotherapeutic drugs. If cancer genetics cannot
Neuron 58, June 26, 2008 ª2008 Elsevier Inc. 841
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deliver targeted therapy, are there opportunities at the interface

of development biology and cancer cell biology?

Already, monoclonal antibodies to a drug export protein found

in progenitor cell subsets of normal skin have been shown to

have therapeutic value against human melanoma stem cells (or

melanoma-initiating cells) in mouse xenograft models (Schatton

et al., 2008). Other potential drug targets may be embedded in

transcription factors that direct the fate choice decisions of un-

committed progenitor cells. As noted above (‘‘Prediction 5’’),

the MITF and Olig2 transcription factors, required for develop-

ment of normal melanoblasts and CNS progenitors, respectively,

serve also as ‘‘gatekeeper’’ genes for malignant melanoma and

malignant glioma. Transcription factors are currently regarded

as suboptimal targets for drug development. However, some

transcription factor functions can be opposed at posttransla-

tional levels, and new chemical technologies may enable direct

inhibition of critical protein-protein interactions (Bernal et al.,

2007; Walensky et al., 2004).

These practical overtones of the cancer stem cell hypothesis

cannot come soon enough. A new generation of targeted thera-

peutics would be a boon to growing children with low grade as-

trocytomas who are currently being treated with radiation and

cytotoxic drugs. For adults with malignant glioma, the need is

for effective therapies of any sort. The median interval from diag-

nosis to death for adult patients with glioblastoma multiforme is

currently only 14 months.
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