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The coexistence of neuronal mitochondrial pathology and synaptic dysfunction is an early pathological fea-
ture of Alzheimer's disease (AD). Cyclophilin D (CypD), an integral part of mitochondrial permeability tran-
sition pore (mPTP), is involved in amyloid beta (Aβ)-instigated mitochondrial dysfunction. Blockade of CypD
prevents Aβ-induced mitochondrial malfunction and the consequent cognitive impairments. Here, we
showed the elimination of reactive oxygen species (ROS) by antioxidants probucol or superoxide dismutase
(SOD)/catalase blocks Aβ-mediated inactivation of protein kinase A (PKA)/cAMP regulatory-element-binding
(CREB) signal transduction pathway and loss of synapse, suggesting the detrimental effects of oxidative stress
on neuronal PKA/CREB activity. Notably, neurons lacking CypD significantly attenuate Aβ-induced ROS. Con-
sequently, CypD-deficient neurons are resistant to Aβ-disrupted PKA/CREB signaling by increased PKA activ-
ity, phosphorylation of PKA catalytic subunit (PKA C), and CREB. In parallel, lack of CypD protects neurons
from Aβ-induced loss of synapses and synaptic dysfunction. Furthermore, compared to the mAPP mice,
CypD-deficient mAPP mice reveal less inactivation of PKA–CREB activity and increased synaptic density, at-
tenuate abnormalities in dendritic spine maturation, and improve spontaneous synaptic activity. These find-
ings provide new insights into a mechanism in the crosstalk between the CypD-dependent mitochondrial
oxidative stress and signaling cascade, leading to synaptic injury, functioning through the PKA/CREB signal
transduction pathway.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Alzheimer's disease (AD) is a chronic neurodegenerative disease
characterized by progressive learning and memory deficits [1,2]. Synap-
tic failure is an early neuropathological hallmark in AD patients and AD
animal models. The cognitive decline in AD is closely correlated to path-
ological synaptic changes, suggesting that synaptic distress is an underly-
ing factor in ADpathogenesis [3,4]. Occurring alongwith synaptic failure,
brainmitochondrial dysfunction is also an early pathology in AD. Human
AD and AD animal models demonstrate mitochondrial pathologies in-
cluding respiration deficits, increased generation/accumulation of free
radicals, impaired energy metabolism [5–13], change in mitochon-
drial dynamics [14–18], and compromised calcium buffer capacity
[19,20]. Recent studies highlighted the significance of mitochondrial
gy and Toxicology and Higuchi
s, 2099 constant Ave. Lawrence,
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Aβ accumulation [5,7,8,11,19,21–23]. The coexistence of mitochondrial
alterations with synaptic perturbation warrants investigation of a link
between synaptic failure and mitochondrial pathology in AD.

Cyclophilin D, a key component of mitochondrial permeability
transition pore (mPTP), plays an integral role in Aβ-induced mito-
chondrial and synaptic injury [19,24,25]. However, the effect of
CypD on Aβ-mediated cell signaling cascades controlling synaptic
plasticity and activity has not been elucidated.

The PKA/CREB signal pathway acts as a key regulator of synaptic
plasticity and learning memory [26–31]. PKA/CREB signaling cascade
is affected in Aβ-rich environment leading to dendritic spine architec-
ture change in an AD mouse model [32], suggesting the deleterious
role of PKA/CREB disturbances in synaptic alteration in AD. To date,
there is no report on the effects of CypD-mediated perturbations on
Aβ-induced disruption of PKA/CREB pathway. Thus, it is essential to
determine whether CypD-dependent regulation of mitochondrial sig-
nal transduction mechanisms via disrupted PKA/CREB signal pathway
contributes to Aβ-induced synaptic injury.

The present study addresses the key questions noted here and eluci-
dates new insights into mechanisms underlying CypD and Aβ-induced
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damage to synaptic structure and function, focusing on synaptic struc-
ture, oxidative stress, dendritic spine alternations, synaptic activity,
and PKA/CREB-associated signal transduction and synaptic function.

2. Methods

2.1. Mice

Animal studies were approved by the Animal Care and Use Commit-
tee of University of Kansas in accordance with the National Institutes of
Health guidelines for animal care. Transgenic mice expressing a mutant
form of the human amyloid protein precursor (APP) bearing both the
Swedish (K670N/M671L) and the Indiana (V717F) mutations (J-20
line) [33], were crossed with Ppif−/− mice to generate CypD-deficient
mAPP mice (mAPP/Ppif−/−). Offspring of Tg mice were identified by
PCR using primers for each specific transgene as previously described
[19]. Twelve month old mice of either sex were used for the study.

2.1.1. Neuronal culture
Primary neuronal cultures were previously described [19]. Primary

neurons weremaintained in culture for 14 days before treatment. Neu-
rons were incubated with probucol (10 μM) or superoxide dismutases
(SOD, 200 U/ml)/Catalase (250 U/ml) for 30 min prior to the addition
of Aβ (5 μM) for 2 h.

2.2. Measurement of PKA kinase activity

Mice cortical tissues or cultured neurons were lysed with extraction
buffer (10 mMTris–HCl pH 7.4, 100 mM sodium chloride, 1 mMEDTA,
1 mM EGTA, 1 mM sodium fluoride, 20 mM sodium pyrophosphate,
2 mM sodium orthovanadate, 1% Triton X-100, 10% glycerol, 0.1% SDS,
0.5% deoxycholate, 1 mM PMSF) containing protease inhibitor cocktail
(Calbiochem, set V, EDTA free) and homogenized on ice. Proper amount
of samples was added and the levels of intracellular PKA kinase activity
were measured by PKA Kinase Activity Assay Kit (Assay Designs)
according to manufacturer's instructions.

2.3. Preparation of oligomeric Aβ1–42

Oligomeric Aβ1–42 was prepared from synthetic Aβ1–42, as pre-
viously described [19,34]. Oligomeric composition of Aβ1–42 solution
was characterized by mass spectrometry.

2.4. Immunoblotting analysis

Mice cortical tissues or cultured neurons were homogenized in ex-
traction buffer (10 mM Tris–HCl pH 7.4, 100 mM sodium chloride,
1 mM EDTA, 1 mM EGTA, 1 mM sodium fluoride, 20 mM sodium py-
rophosphate, 2 mM sodium orthovanadate, 1% Triton X-100, 10%
glycerol, 0.1% SDS, 0.5% deoxycholate, 1 mM PMSF) containing prote-
ase inhibitor cocktail (Calbiochem, set V, EDTA free). After centrifuga-
tion at 13,000 rpm at 4 °С, an equal amount of supernatant proteins
was subjected to the immunoblotting with the following primary an-
tibodies: mouse anti-phospho (ser133)-CREB IgG (Cell Signaling
Technology), rabbit anti CREB IgG (Cell Signaling Technology), rabbit
anti phospho (Thr197)-PKA C IgG (Cell Signaling Technology), mouse
anti-PKA C IgG (BD Biosciences Pharmingen), rabbit anti-synaptophysin
(Dako), mouse anti-α-Tubulin (Sigma). The immunoantigen was
detected by goat anti-mouse or rabbit IgG conjugated with horseradish
peroxidase (Sigma). We used NIH Image-J computer program for the
quantification of the intensity of the immunoreactive bands.

2.4.1. Phosphorylated CREB and total CREB determination
The levels of phospho (Ser133)-CREB were measured after 10 min

of exposure to 50 μM glutamate of neurons, which were pretreated
with either 5 μM oligomeric Aβ1–42 alone or co-incubation of
oligomeric Aβ1–42 with 3 μM rolipram or 5 μM forskolin. Rolipram
or forskolin was added 30 min before the addition of Aβ1–42. After
2 h Aβ1–42 preincubation, the culture medium was replaced by glu-
tamate buffer (20 mM Hepes, 119 mM NaCl, 5 mM KCl, 2 mM CaCl2,
1 μM Glycine, 300 μM Glucose, 50 μM Glutamate). The osmolarity of
glutamate buffer was adjusted to 325 mOsm by using sucrose, and
pH was adjusted to 7.3 with 10 N NaOH. Cortical tissues or cultured
neurons were homogenized in extraction buffer containing protease
inhibitor cocktail. The levels of phospho-CREB and total-CREB in neu-
ron were detected by immunoblotting and the levels in mice brain
were determined by Enzyme-linked immunosorbent assay (ELISA)
according to the manufacturer's instructions (Invitrogen).

2.5. MitoSox Red staining and flow cytometry assay

Neurons were exposed to 0.5 μM MitoSox Red (Invitrogen) for
30 min. After the staining, the culture mediumwas changed and neu-
rons were kept in an incubator (5% CO2, 37 °C) for 20 min. After-
wards, neurons were trypsinized from the plates and subjected to
flow cytometry (Becton Dickinson FACS Calibur) assay. The flow
cytometric data were analyzed by Flowjo 7 (Tree Star). Unstained
cells (no MitoSox red staining) were used as a control to detect the
specific MitoSox signal. Gates to determine percent of MitoSox-
positive cells were set to exclude unstained control cells [35].

2.6. Neuronal synaptic density

Synaptic density of cultured neurons was measured by counting
synaptophysin clusters attaching to neuronal dendrites and presented
as the number of synaptophysin clusters permicron of dendrite. Neurons
were fixed in 4% paraformaldehyde for 20 min and then blocked in 10%
goat serum for 30 min. Synaptophysin was visualized by rabbit anti-
synaptophysin IgG (Dako) followed by goat anti-rabbit IgG conjugated
with TRICT (Sigma-Aldrich Corp.). Neuronal dendrites were visualized
by mouse anti-MAP2 IgG (Boehringer Mannheim) followed by goat
anti-mouse IgG conjugated with FITC (Sigma-Aldrich Corp.). Images
were takenunder aBiorad confocal and analyzedbyNIH Image J program.

2.7. Electrophysiology

Brain slices were prepared from 12-month-old mice. Mice brain
was sliced in ice-cold oxygen modified artificial cerebrospinal fluid
(ACSF, 125 mM NaCl, 2.5 mM KCl, 2 mM CaCl2, 1.5 mM MgCl2,
26 mM NaHCO3 and 10 mM glucose). Brain slices were then recov-
ered in ACSF for 60 min at 32 °С. 1 μM tetrodotoxin was added to
the bath while patch recording. Whole-cell recording was conducted
on pyramidal neurons in hippocampal CA1 region. The patch pipettes
were filled with intracellular solution containing 115 mM cesium
methanesulfonate, 20 mM CsCl, 10 mM HEPES, 2.5 mM MgCl2,
10 mM sodium phosphocreatine, 4 mM Na2ATP, 0.4 mM Na3ATP
and 0.6 mM EGTA, pH 7.3. The spontaneous miniature excitatory
postsynaptic currents (mEPSCs) were recorded by using MultiClamp
700A (Axon Instrument) and the events were analyzed using Axon
clampfit (Axon Instrument, version 8.2.0.235).

2.8. Dendritic spine density and morphology measurements in vivo

CA1 neurons from mice brain slices were microinjected by using
patch pipettes filled with intracellular solution as described above
containing 0.1% Lucifer yellow CH (Sigma-Aldrich Corp.). Spines on
basal dendrites of CA1 neurons were visualized by rabbit anti-Lucifer
yellow Ig G (Sigma-Aldrich Corp.) followed by goat anti-rabbit IgG
Alexa 488 (Invitrogen). Images were taken under a Biorad confocal
and Z stacks were gathered at 0.2 μm increments. The types of spines
were recognized based on the measurements. Spines were defined as
stubby type if they had a length to neck diameter ratio less than 2.
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Spines with a length to neck diameter ratio more than 2 were catego-
rized as mushroom type if the ratio of head to neck diameter more
than 1.3 fold or thin spines if the ratio of head to neck diameter was
less than 1.3 fold [36]. Data were analyzed by using Axiovision LE
(Zeiss) software. Analysis of synaptic density and morphology was
performed by an investigator blinded to mice genotypes.

2.9. Statistical analysis

Weperformed statistical analyseswith Student's t-test and one-way
analysis of variance (ANOVA) as well as post-hoc ANOVA (Tukey's)
using the Statview statistics software when appropriate. P b 0.05 was
considered significant. All data are expressed as means ± s.e.m.

3. Results

3.1. Aβ disturbs PKA/CREB signaling transduction pathway through
oxidative stress

PKA activity significantly relies on PKA catalytic subunit (PKA C)
phosphorylation on its Thr197 site, which is an integral part in PKA/
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CREB signal transduction pathway. Given that reactive oxygen species
(ROS) is a determined factor for disturbing PKA C Thr197 phosphory-
lation [37] and that Aβ is a known strong inducer of ROS production,
we determine whether Aβ disturbs PKA/CREB signaling transduction
through oxidative stress. To evaluate the effects of oxidative stress on
Aβ-impaired PKA/CREB signaling cascades, we employed antioxidant
probucol or SOD/catalase to extinguish extracellular as well as intracel-
lular ROS as described in our previous studies [19,38,39]. Neurons were
incubated with antioxidant probucol or SOD/catalase for 30 min prior
to the addition of Aβ for 2 h. Aβ treatment significantly inhibited PKA
C phosphorylation (Fig. 1A) and PKA activity (Fig. 1B), while probucol
or SOD/catalase treatment protected against Aβ-induced deleterious ef-
fects on PKAC phosphorylation and PKA activity (Fig. 1A–B). Since CREB
is a downstream target of PKA regulation, we extended our study by
assessing CREB phosphorylation (pCREB) in response to glutamate
stimulation. Glutamate is a strongmediator of CREB activation and pre-
vious study showed that glutamate-stimulated CREB phosphorylation is
associated with PKA activity [40]. Our results showed that the applica-
tion of probucol or SOD/catalase significantly reversed Aβ-reduced
CREB phosphorylation (pCREB) (Fig. 1C1–C2). Probucol or SOD/catalase
alone (without Aβ) had no effects on the baselines of p-PKA C levels,
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PKA activity or pCREB (Fig. 1A–C2). These data suggest that Aβ-associated
oxidative stress is involved in PKA/CREB perturbations in Aβ-insulted
neurons.
3.2. CypD deficiency attenuates Aβ-induced mitochondrial ROS production
and restores Aβ-perturbed PKA/CREB signaling transduction pathway in vitro

Previous studies have demonstrated that CypD-mediatedmitochon-
drial permeability transition pore (mPTP) is a critical mechanism un-
derlying Aβ-induced mitochondrial and intracellular oxidative stress
in Aβ-insulted neurons. We then performed studies to determine if
CypD-mediated mitochondrial ROS is associated with Aβ-disrupted
PKA activity. First, cultured nonTg and Ppif−/− neurons were exposed
to Aβ and subjected to the detection of mitochondrial ROS production
by employing MitoSox Red, a specific mitochondrial ROS indicator
using flow cytometry. NonTg neurons showed substantially higher per-
centage of cells positive for MitoSox Red staining than Ppif−/− neurons
(36.36 ± 1.41% versus 22.75 ± 0.7% in gated area, Fig. 2A) at the expo-
sure to Aβ. There's no significant difference in the percentage ofMitoSox
Red positive cells between nonTg and Ppif−/− vehicle-treatment groups.
Furthermore, we employed cyclosporine A (CsA), a pharmacological in-
hibitor for blocking CypD activity. NonTg neurons were pre-exposed to
5 μM CsA or vehicle (no CsA) for 1 h before the co-incubation with Aβ
for 2 h, and then subjected to MitoSox Red staining. Aβ-treated nonTg
neuronal mitochondria demonstrated significantly decreased MitoSox
Red staining intensity in the presence of CsA, suggesting the application
of CsA substantially suppressed Aβ-induced mitochondrial ROS eleva-
tion (Fig. 2B. Aβ-treatment vs. CsA and Aβ co-treatment, P = 0.019).
The treatment of CsA alone was without significant effect on MitoSox
Red intensity (Fig. 2B. CsA-treatment vs. control. P > 0.05). These data
suggest that the blockage of CypD by genetic depletion or pharmacolog-
ical inhibition suppresses Aβ-induced increase in mitochondrial ROS
production/accumulation.

To determine the involvement of CypD in Aβ-instigated PKA/CREB
signaling transduction change, we next evaluated alterations in PKA
activity in Aβ-treated cultured neurons in the presence (nonTg) and
absence (CypD-deficient, Ppif−/−) of CypD. Aβ treatment caused a
time-dependent decrease in PKA activity in nonTg neurons compared
to the vehicle treatment (Fig. 3A, Aβ 2 h: 0.76 ± 0.047, Aβ 6 h:
0.72 ± 0.032, Aβ 12 h: 0.61 ± 0.057, Aβ 24 h: 0.59 ± 0.037 vs.
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MitoSox Red-positive cells was quantified by flow cytometry. (B) CsA treatment significant
vehicle:1 ± 0.056). In contrast, PKA activity in Ppif−/− neurons
remained constant over the entire period of Aβ-treatment for 2 to
24 hours; and Aβ-insulted nonTg neurons demonstrated significantly
suppressed PKA activity in comparison to their corresponding
Aβ-treated Ppif−/− neurons. Utilization of KT5720, a selective inhibitor
of PKA activity that acts as an antagonist at the PKA-ATP binding site of
the PKA C, efficiently inhibited PKA activity in both types of neurons
(Fig. 3A). These results indicate that lack of CypD rescues Aβ-induced
inactivation of PKA.

Then, we examined the phosphorylation of the PKA C Thr197 (p-PKA
C) in Aβ superimposed neurons. Aβ-treated nonTg neurons had a 45%
decrease in p-PKAc compared to the vehicle control (Fig. 3B). No changes
of p-PKA C were observed in Ppif−/− neurons (Fig. 3B). The close corre-
lation of decrease in p-PKA C to reduced PKA activity indicates that
Aβ-induced dephosphorylation of PKA C is responsible for inhibiting
PKA activity, and that CypD deficiency attenuates Aβ-induced inhibitory
effect on PKA activation.

At last, we examined the effect of CypD deficiency on Aβ-induced
CREB phosphorylation. In the presence of Aβ, glutamate-induced
pCREB was significantly reduced in nonTg neurons as compared with
the vehicle control (Fig. 3C); while the pCREB level was substantially
preserved in Aβ-insulted CypD-deficient neurons (Fig. 3C). The addition
of rolipram (3 μM) or forskolin (5 μM) that activates PKA reversed
Aβ-induced depression of pCREB (Fig. 3C), indicating that the PKA acti-
vation is critical for enhancing CREB activity against Aβ toxicity. It is
noted that the expression levels of total CREB remained no significant
changes among indicated groups of cells. These studies indicate that
CypD abrogation protects against Aβ-induced down-regulation of the
PKA signaling cascade.
3.3. CypD deficiency rescues Aβ-induced loss of synapses associated with
PKA/CREB signaling transduction pathway preservation

PKA/CREB signaling transduction pathway plays an essential role in
controlling and regulating synaptic plasticity. To address whether
CypD-deficiency protected PKA/CREB signal transduction pathway con-
nects to synaptic damage in Aβ-insulted neurons, we analyzed the ef-
fect of CypD depletion on Aβ-induced synaptic loss. Synapses were
identified as synaptophysin-positive clusters attaching to dendrites.
The recruitment of the presynaptic protein, synaptophysin to form
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synaptophysin-positive clusters is synaptic activity dependent and in a
rapid manner [41]. Synaptophysin expression level in Aβ treated
nonTg and Ppif−/− neurons were detected by Western blot. The
level of synaptophysin expression was significantly reduced by 50%
in Aβ-treated nonTg neurons compared to the vehicle treated groups
(Fig. 4A). CypD deficiency largely reversed Aβ-induced decrease in
synaptophysin expression (14% decrease in Ppif−/− neurons compared
to nonTg neurons in the presence of Aβ). Synaptic density was quanti-
fied as the number of synaptophysin positive clusters per micron of
dendrite length. After Aβ treatment, synaptic density in nonTg neurons
was decreased by 41% in comparison to those in vehicle-treated con-
trols (Fig. 4B, Aβ: 0.415 ± 0.024 versus vehicle: 0.647 ± 0.021);
while CypD deficiency largely reversed Aβ-induced decrease in
synaptic density (Fig. 4B, Ppif−/−: 0.510 ± 0.018 versus nonTg:
0.415 ± 0.024). Forskolin, PKA activator, protected against Aβ-
induced synaptic density loss (Fig. 4B, Forskolin: 0.656 ± 0.022 ver-
sus Aβ: 0.415 ± 0.024), indicating that Aβ-induced loss of synapses
associated with PKA/CREB signaling transduction pathway. CypD-
deficiency also largely reversed Aβ-induced decrease in postsynaptic
GluR1 cluster (S1).
In furtherance, antioxidant probucol or pharmacological scavengers
of ROS (SOD/catalase) were added to neurons in culture to determine
the effect of oxidative stress. As shown in Fig. 4C, antioxidants remark-
ably reversed Aβ-induced synaptic loss. In the presence of Aβ, nonTg
neurons demonstrated a decrease of 34.2% in synaptic density in com-
parison to the vehicle control (Fig. 4C), while SOD/catalase and
probucol significantly increased synaptic density by 30–35% (Fig. 4C;
SOD/catalase + Aβ: 0.538 ± 0.027, probucol + Aβ: 0.559 ± 0.023).
Neither SOD/catalase nor probucol alone interferedwith synaptophysin
cluster density in neurons (Fig. 4C). The results of in vitro synaptic den-
sity experiments suggest that either CypD depletion or elimination of
ROS by antioxidants protects synapses against Aβ insults, which is in ac-
cordance with preserved PKA/CREB signaling transduction pathway in
an environment enriched for Aβ.

3.4. CypD deficiency suppresses oxidative stress in mAPP mice

As aforementioned, our results showed that Aβ-impaired PKA/
CREB signaling transduction cascade is closely correlated with
CypD-associated oxidative stress in vitro neuronal culture. Next,
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we extended our observation on the protective effect of CypD deficiency
in an in vitro cultured neurons to an in vivo AD mouse model
overexpressing Aβ (mAPP mice) that resembles Aβ pathology in
human AD brain. Brain cortexes derived from 12-month old mAPP
mice, age-matched nonTg, CypD deficient, and CypD-deficient mAPP
mice were subjected to the assay of oxidative stress marker 4-HNE
(4-Hydroxynonenal). mAPP mice demonstrated significantly higher
levels of 4-HNE than nonTg littermates (Fig. 5A; P = 0.0267). In con-
trast, the 4-HNE level was significantly reduced in CypD-deficient
mAPP mice (Fig. 5A; mAPP mice vs. mAPP/Ppif−/− mice, P = 0.0321).
CypD deficient mice did not show significant difference in 4-HNE level
as compared to nonTgmice (Fig. 5A; P > 0.05). These results are consis-
tent with our previous study showing that CypD-deficient mAPP mice
had less mitochondrial ROS level than mAPP mice at the age of
12 months [19]. In combination, our results suggest that CypDdeficiency
protects brains from oxidative stress in mAPP mice, which is correlated
to our in vitro results on the protective effect of CypD depletion on
Aβ-induced ROS production.
3.5. CypD deficiency protects PKA/CREB signaling transduction pathway
in mAPP mice

In view of the protective effects of CypD deficiency on Aβ-impaired
PKA/CREB signaling transduction pathway and the subsequent synaptic
change in an in vitro neuronal culturemodel, we examined the involve-
ment of CypD-related perturbation in PKA/CREB pathway in mAPP
mice.Wefirstmeasured PKA activity in brain extracts of Tgmice includ-
ing nonTg, APP/Aβ overexpression (mAPP), CypD deficient (Ppif−/−)
and CypD-deficient mAPP (mAPP/Ppif−/−) mice at 12-month-old. Con-
sistent with the effect of Aβ on in vitro cultured neurons, PKA activity
was significantly lowered in mAPP mice than in nonTg littermate con-
trols, while PKA activity in mAPP/Ppif−/− mice was effectively restored
(Fig. 5B). Accordingly, p-PKA C levels were significantly suppressed in
mAPP mice but not in mAPP/Ppif−/−, nonTg and Ppif−/− mice (Fig. 5C).

Next, we measured levels of phosphorylation of CREB ser133
(pCREB) in cortex extracts by ELISA. The levels of pCREB were signif-
icantly reduced in mAPP mice as compared with nonTg mice (30%
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decreased over nonTg mice), whereas mAPP/Ppif−/− mice had higher
levels of pCREB than mAPP mice (Fig. 5D). The levels of pCREB in
nonTg mice were comparable to Ppif−/− mice. Total CREB levels
were not changed among all the groups of mice. These observations
indicate that abrogation of CypD rescues PKA/CREB signaling trans-
duction pathway in mAPP mice.

3.6. Lack of CypD improves synaptic activity/transmission and alleviates
deficits in dendritic spine architecture in mAPP mice

To determine the involvement of CypD in synaptic activity, we ana-
lyzed changes in Spontaneous Miniature Excitatory Postsynaptic Cur-
rents (mEPSCs) in CA1 neurons in brain slices from 12-month-old
mAPP mice compared to those from nonTg, Ppif−/− and mAPP/Ppif−/−

mice. The amplitude of mEPSCs in mAPP neurons was significantly de-
creased by 24% as compared to those in nonTg neurons (Fig. 6A, mAPP:
10.08 ± 0.28 versus nonTg: 13.28 ± 0.79). Similarly, the mEPSC fre-
quency in mAPP neurons was substantially reduced by 38.5% (Fig. 6B,
mAPP: 0.24 ± 0.046 versus nonTg: 0.39 ± 0.44). Importantly, CypD
deficiency significantly restored mEPSC amplitude and frequency in
mAPP/Ppif−/− neurons (Fig. 6A–B, amplitude: 11.45 ± 0.47, frequency:
0.39 ± 0.044).

We next studied whether the impairments in synaptic activity
were linked to the loss of dendritic spines and changes in spine mor-
phology. Since the basal dendrites of CA1 neurons receive input from
CA3 neurons through Schaffer collaterals and are thought to be an
infrastructure basis of the consolidation of long term potentiation
[42], we analyzed basal dendritic spine architecture in the hippocampal
CA1 neurons of Tg mice. We measured spine density and found that
mAPP CA1 neurons had 20% less spine density than nonTg CA1 neurons
(Fig. 7A1, 0.83 ± 0.088 versus 1.03 ± 0.032 per micron), whereas
mAPP/Ppif−/− CA1 neurons showed a smaller decrease (~4%) in den-
dritic spine density (Fig. 7A1, 0.97 ± 0.035 versus 1.03 ± 0.032 permi-
cron). Cumulative percentile curves of spine density displayed an
apparent left shift in mAPP neurons compared to those of nonTg,
Ppif−/− and mAPP/Ppif−/− neurons (Fig. 7A2). These results demon-
strate the protective effect of CypD depletion on the dendritic spine
loss in mAPP mice.

We then evaluated the effect of CypD on dendritic spinemorphology
by intra-neuronal injection of Lucifer yellow (Fig. 7E, S2-3) and catego-
rized dendritic spins into three groups (mushroom, stubby and thin)
[36,43]. Results of quantitative analysis of basal dendritic spines in
nonTg CA1 neurons showed 43.2%, 12.3%, and 44.6% for mushroom,
stubby, and thin spines, respectively. Interestingly, mAPP CA1 neurons
showed a significantly decreased percentage of mushroom spines
(Fig. 7B1–2, mAPP: 24.31 ± 1.02 versus nonTg: 43.18 ± 1.72), but an
increased percentage of stubby spines (Fig. 7C1–2, mAPP: 25.47 ±
1.36 versus nonTg: 12.25 ± 0.83). Besides there was a 10% increase in
thin spines in mAPP neurons (Fig. 7D1–2, mAPP: 50.22 ± 1.11 versus
nonTg: 45.20 ± 1.70), suggesting that dendritic spine maturation is al-
tered in mAPP mice. Remarkably, CypD-deficient mAPP neurons signif-
icantly preserved dendritic spinemorphology as shown by an increased
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percentage of mushroom spines (Fig. 7B1, 35.26 ± 1.1) and reduced
percentage of stubby spines (Fig. 7C1, 17.04 ± 1.19). Plots of cumula-
tive percentage curves for the different types of dendritic spines clearly
showed a substantial left shift of the curve for mushroom spines and a
right shift for stubby spines in mAPP CA1 neurons, while the indicated
curves of mushroom or stubby spines of mAPP/Ppif−/− neurons fell be-
tween those of mAPP and nonTg neurons (Fig. 7B2 and C2). Notably,
CypD deficient neurons demonstrated increased percentage of thin
spines comparing to nonTg neurons, while there is no significant differ-
ence in the percentage of mushroom and stubby spines between nonTg
and CypD deficient neurons suggesting the dendritic spine develop-
ment in Ppif−/− neurons ismore active. Taken together, these data indi-
cate that CypD depletion significantly preserves dendritic spine
maturation and morphology with improved synaptic activity, and ulti-
mately attenuated synaptic degeneration in mAPP mice.

4. Discussion

The synchronization of mitochondrial pathology and synaptic al-
terations in AD has been previously acknowledged, but the mechanism
underlying the interplay of neuronal mitochondrial dysfunction and
synaptic change in AD remains largely unknown. This study was the
first report that CypD mediates PKA signaling perturbation contributes
to Aβ-induced synaptic damages including alterations in synaptic struc-
ture and synaptic function. First, we showed that CypD-deficiency at-
tenuated Aβ-mediated reduction in PKA activity and phosphorylation
of PKA C and CREB. Second, antioxidant probucol or SOD/catalase,
pharmacological scavengers of ROS blunted Aβ-induced inactivation
of PKA/CREB signaling. Third, neurons lacking CypD were resistant to
Aβ-induced loss of synapses. Finally, these protective effects of CypD
deficiency on disruption of signal transduction and deficits in synaptic
structure and function were observed in CypD-deficient mAPP mice in
contrast with mAPP mice. Our results indicate that CypD-mediated in-
crease in mitochondrial and intracellular oxidative stress inhibits PKA
catalytic subunit phosphorylation and subsequently disrupts the PKA/
CREB signaling transduction pathway, eventually leading to structural
and functional synaptic deterioration. Notably, abrogation of CypD re-
stores PKA/CREB signaling and attenuates further synaptic aberrations.
In conclusion, CypD-mediated PKA/CREB signal transduction disruption
appears to be an important player in the scenario leading to synaptic in-
jury in Aβ milieu (Fig. 8).

Oxidative stress is culprit for many intracellular perturbations like
protein misfolding and inactivation, nucleic and mitochondrial DNA in-
juries [44–46]. Increasing evidence has shown that oxidative stress al-
ters PKA activity and phosphorylation of CREB, which is detrimental
to cell survival [47,48]. Indeed, we demonstrated that the phosphoryla-
tion of PKA C subunit at Thr197 is susceptible to the insult of
pro-oxidant (t-butyl hydroperoxide, TBH) (S4). Aβ is a strong instigator
of both extracellular and intracellular ROS production leading to intra-
cellular oxidative stress and protein oxidation in AD brains. In this
study, we employed SOD/catalase to scavenge extracellular and intra-
cellular oxidative stress aroused by Aβ, respectively. Given that
probucol is an antioxidant preventing protein or lipid peroxidation
and that the addition of probucol attenuates oxidative stress [38,39],
we also chose probucol as an antioxidant for this study. Consistent
with the results from SOD/catalase, ROS scavengers, probucol treatment
significantly blocked inhibitory effects of Aβ on phosphorylation of PKA
C, PKA activity, pCREB (Fig. 1), and density of synapses (Fig. 4).

The application of antioxidants significantly protects neurons
from Aβ-induced inactivation of PKA, suggesting that Aβ-associated
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oxidative stress underlies perturbed PKA/CREB signaling transduction
in AD. In fact, the treatment of Aβ also has effect on inducing mito-
chondrial ROS overproduction. We propose that Aβ induces the for-
mation of mPTP, which is a severe mitochondrial pathology in AD,
resulting in mitochondrial ROS overproduction and release to cytosol
to break cytosolic Redox balance [19]. In correlation with previous re-
ports that the depletion of CypD significantly diminishes mitochon-
drial ROS generation and suppresses the subsequent cytosolic ROS
elevation, our results demonstrate that CypD deficiency is closely as-
sociated with preserved PKA activity and the downstream CREB sig-
naling cascade from Aβ toxicity. Aβ-induced mitochondrial ROS
perturbation through CypD-mediated mPTP contributes to PKA/
CREB disturbances in AD. It is noted that increased intracellular ROS
is an inductive factor of CypD-mediated mPTP formation, which in
turn results in mitochondrial ROS overproduction and release, and
eventually exaggerated intracellular oxidative stress. The feed-back
loop of intracellular oxidative stress and mPTP-associated ROS has
been well documented. Several previous studies have demonstrated
that the application of antioxidants including exogenous SOD/catalase
to prevent oxidizing reagent-induced extra- and intra-cellular oxidative
stress is effective in blunting mPTP formation and thusly reducing
ROS-associated oxidative stress in cells [49,50]. It therefore serves
as indicative evidence that the antioxidants we adopted in this
study attenuated Aβ-suppressed PKA/CREB activity at least partially
through the inhibition of CypD-mediated mPTP formation. Indeed,
CypD-associated cytosolic ROS elevation is closely related to the forma-
tion of mPTP, which is amechanism ofmitochondria-generated ROS re-
lease. The application of mitochondria-targeted antioxidants might be
another option to extinguish the mPTP-associated mitochondrial ROS
production and further protect PKA signaling cascades from Aβ tox-
icity. In fact, several studies have suggested that the application of
mitochondria-targeted antioxidants significantly attenuated CypD-
associated cell perturbations [51,52]. However, recent studies
showed that the application of mitochondria-targeted antioxidants
such as MitoQ and Resveratrol substantially decreased the expression
level of CypD in primary cultured hippocampal neurons, suggesting
the modulating effect of mitochondria-targeted antioxidants on CypD
transcription and expression [51]. In view of the purpose of the current
study to reveal the mechanisms underlying CypD-mediated mPTP and
cytosolic PKA activity disturbances, we chose antioxidants only targeted
to intracellular and extracellular ROS without interfering the baseline
expression levels of CypD under our experimental conditions (data
not shown). The dual effects of mitochondria-targeted antioxidants
that diminish mitochondrial ROS and down-regulate CypD expression
levels suggest that mitochondria-targeted antioxidant is a promising
strategy against CypD-associated neuronal stresses. We will perform a



Fig. 8. Schematic figure of CypD deficiency protects synaptic plasticity and matura-
tion against Aβ toxicity. In the presence of CypD, Aβ augments mitochondrial ROS
production/accumulation, subsequently decreases phosphorylation of PKA catalytic
subunit and the resultant depression in PKA/CREB signaling transduction, eventually
leading to synaptic degeneration. In contrast, the deficiency of CypD attenuates Aβ-
instigated mitochondrial ROS production and thereby ameliorates PKA/CREB perturbation
and improves synaptic plasticity and maturation in Aβ rich scenario.
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detailed study to evaluate the effect of mitochondria-targeted antioxi-
dants as a treatment strategy for AD in our future work.

Intracellular oxidative stress and calcium elevation are two major
consequences of CypD-mediated mPTP formation. We have shown
that increased intracellular ROS significantly inhibits PKA activity. We
then tested the effects of elevated intracellular calcium on PKA by
using A23187 (calcium ionophore). Administration of A23187 to
nonTg neurons did not change PKA C phosphorylation (data not
shown), suggesting PKACphosphorylation is not sensitive to intracellu-
lar calcium elevation. In view of our data showing the protective effects
of antioxidants (SOD/catalase, and probucol) and CypD blockade on
Aβ-impaired PKA/CREB signal, CypD-associated oxidative stress is likely
to be a major player for Aβ-induced suppression of PKA activity.

The PKA/CREB signaling cascade plays a crucial role in regulation
of neuronal/synaptic function, such as synaptic maturation and
long-term memory consolidation. PKA untethers synaptic vesicles,
regulates the functions of NMDA (N-methyl-D-aspirate receptor)
and AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionate
receptor) receptors and phosphorylates several synapse-related pro-
teins (i.e., PSD95, snapin and synapsin), suggesting that PKA is critical
for synaptic transmission, dendritic spine architecture and synaptic
maturation [26,31,53–55]. Notably, PKA function depends on the acti-
vation of PKA C and activation of PKA C relies on phosphorylation at
the proper sites, Thr197. Phosphorylation at Thr197 site stabilizes PKA
C structure, exposes its activation site, and facilitates its binding to
PKA regulatory subunit [56,57]. Our study provides evidence of the neg-
ative effect of CypD-associated oxidative stress on PKA C Thr197 phos-
phorylation, PKA activity and CREB phosphorylation, leading to a
compromised PKA/CREB signaling cascade; and as a contrast, genetic
depletion of CypD significantly blocked Aβ-induced PKA deactivation.
Furthermore, application of CypD inhibitor has a protection against
Aβ-induced PKA perturbations. It is possible that CypD/Aβ-dependent
synaptic dysfunction may also involve other mechanisms such as
decreased synaptic mitochondrial energy production and disturbed
Ca2+-regulated signaling pathways including calmodulin-dependent
protein kinase II (CaMKII), calcineurin and/or Protein Kinase C (PKC)
in addition to PKA/CREB pathway [34,40,58–60]. These CypD-related
changes are potential mechanisms in addition to deactivation of PKA/
CREB pathway, contributing to synaptic degeneration in AD; hereby,
further investigations are also required for elucidating these alternative
mechanisms.

In view of the involvement of CypD in Aβ-mediated oxidative stress
and PKA/CREB signaling transduction pathway perturbation, we propose
that sustained CypD-induced neuronal/synapticmitochondrial stress is a
potential mechanism responsible for synaptic failure in the pathogenesis
of AD. Our postulation is based on our finding that mAPP mice revealed
abnormalities in dendritic spine architecture, dendritic spinematuration,
and spontaneous synaptic activity. These synaptic alterations were sub-
stantially reversed in CypD-depletedmAPPmice. Together with the pro-
tection of CypD ablation on Aβ-induced impairments in hippocampal
long-term potentiation (LTP) and learning/memory ability [19,25], our
studies gain new insights into the role of CypD-dependentmitochondrial
ROS in disturbing synaptic plasticity andmaturation in AD. Hence, block-
ade of CypD may be potential therapeutic strategy for preventing and
halting synaptic and mitochondrial pathology in Alzheimer disease.
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