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The discovery of the Janus kinase (JAK)-signal transducer and activator of transcripton (STAT) signaling
pathway, a landmark in cell biology, provided a simple mechanism for gene regulation that dramatically
advanced our understanding of the action of hormones, interferons, colony-stimulating factors, and interleu-
kins. As we learn more about the complexities of immune responses, new insights into the functions of
this pathway continue to be revealed, aided by technology that permits genome-wide views. As we celebrate
the 20th anniversary of the discovery of this paradigm in cell signaling, it is particularly edifying to see how this
knowledge has rapidly been translated to human immune disease. Not only have genome-wide association
studies demonstrated that this pathway is highly relevant to human autoimmunity, but targeting JAKs is now
a reality in immune-mediated disease.
The importance of interferons (IFNs) and hormones such as

erythropoietin, growth hormone, and prolactin has been recog-

nized for more than half a century. With the advent of the

molecular biology era came the discovery of a plethora of other

cytokines, which we now know regulate all aspects of cell devel-

opment and differentiation. Cytokines represent a collection of

structurally distinct ligands that bind to different classes of

receptors. A major subgroup of cytokines, comprising roughly

60 factors, bind to receptors termed type I and type II cytokine

receptors. Cytokines that bind these receptors include type I

IFNs, IFN-g, many interleukins, and colony-stimulating factors.

From an immunology perspective, these cytokines are important

for initiating innate immunity, orchestrating adaptive immune

mechanisms, and constraining immune and inflammatory

responses.

As discussed by Stark and Darnell (2012) in this issue, the

discovery of Janus kinases and of signal transducers and activa-

tors of transcription (JAKs and STATs) stemmed from attempts

to understand how IFNs exerted their effect. However, we now

know that all type I and II cytokine receptors selectively asso-

ciate with JAKs (JAK1, JAK2, JAK3, or TYK2). For these recep-

tors, activation of the receptor-bound JAKs is critical for initiating

phosphorylation of the cytokine receptor and subsequent

recruitment of one or more STATs. Over the past two decades,

multiple lines of evidence have clearly established the roles of

different JAKs and STATs in mediating the effect of cytokines

that use type I and type II cytokine receptors in immunoregula-

tion, host defense, and immunopathology (Darnell et al., 1994;

Leonard and O’Shea, 1998; O’Shea and Murray, 2008).

As our understanding of these processes have become more

sophisticated, additional roles for this signaling pathway have

been recognized. For instance, with the identification of ‘‘newer’’

T helper (Th) cell subsets comes the appreciation of important

roles of STATs in these subsets as well as unexpected roles

for STATs in recognized subsets. As our understanding of the
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mechanisms involved in innate immunity expands, previously

unrecognized roles of STATs in these processes become

evident. In addition, new technologies also allow comprehensive

views of STAT action whereas insights from genome-wide asso-

ciation studies clearly implicate JAKs and STATs in human auto-

immunity. Finally, the possibility of targeting the JAK-STAT

pathway in autoimmune disease has now become a reality.

Recent Insights into the Immunoregulatory Roles
of JAKs and STATs
When the STATs were first discovered, the palette of helper

T cells was simple: Th1 and Th2 cells. TYK2, JAK2, and STAT4

were found to be critical for interleukin-12 (IL-12) signals and

Th1 cell differentiation whereas JAK1, JAK3, and STAT6 were

key for IL-4 signaling (Darnell et al., 1994; Leonard and

O’Shea, 1998; O’Shea and Murray, 2008). In various models of

infectious disease and immune-mediated disease, deficiency

of STAT4 and STAT6 had the expected outcomes.

It is now appreciated, however, that Th2 cell responses can

occur in the absence of STAT6 (van Panhuys et al., 2008). In

fact, early Th2 cell differentiation can by driven by IL-2, which

upregulates the transcription factor GATA3 and enhances IL-4

receptor expression (Paul, 2010). Activated by IL-2, STAT5A

and STAT5B can directly bind the Il4ra gene and promote its

expression (Liao et al., 2008); however, STAT5A and STAT5B

can also enhance Th1 cell responses by regulating Tbx21 and

Il12rb2 (Liao et al., 2011b). Interestingly, STAT3 is also a contrib-

utor to Th2 cell differentiation and binds Th2 cell-associated

gene loci (Liao et al., 2008; Stritesky et al., 2011). Thus, in

contrast to the previous views equating STAT6 with Th2 cell

differentiation, it appears that this process involves more subtle

and complex interactions of STAT3, STAT5, and STAT6 with the

relevant genetic loci.

Along with the cytokine TGF-b, IL-2 is a key regulator of

differentiation of regulatory T (Treg) cells in the thymus and the
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periphery. As mediators of IL-2 signaling, STAT5A and STAT5B

are critical for the differentiation of Treg cells. Their effect is

very direct in that STAT5A and STAT5B directly bind the Foxp3

gene and drive expression of this key gene (Yao et al., 2006,

2007; Zorn et al., 2006). In addition, STAT5A and STAT5B regu-

late Il2ra, expression of which is also a critical for Treg cells.

Surprisingly, STAT3 also has an important role in Treg cell func-

tion (Chaudhry et al., 2009). Deletion of STAT3 in Treg cells

results in lethal gastrointestinal disease, but the effect is selec-

tive and does not globally impair Treg cell function. Treg cells

retain the ability to limit T cell proliferation but have impaired

ability to block Th17 cell-mediated pathology. Of interest,

STAT3 physically associates with Foxp3.

With the recognition of a multiplicity of fates for T cells, it has

become clear that STATs are also key elements for these

‘‘new’’ subsets. We now know that STAT3 is critical for Th17

cell differentiation both in mouse and humans, mediating signals

by IL-23 and IL-6 (Chen et al., 2006; Milner et al., 2008). STAT3

regulates Th17 cell differentiation by directly binding Il17a and

Il17f, Rorc, and Il23r, as well as other genes involved in Th17

cell differentiation (Durant et al., 2010).

Interestingly, IL-2, acting via STAT5A and STAT5B, is an

important negative regulator of Th17 cell differentiation (Lau-

rence et al., 2007). In this case, the actions of STAT5A and

STAT5B are very direct as they compete with STAT3 binding

to the Il17a-f locus (Yang et al., 2011). Intriguingly, by seques-

tering IL-2, regulatory T cells promote Th17 cell differentiation

(Chen et al., 2011b; Pandiyan et al., 2011).

One of the newest ‘‘lineages’’ of CD4+ T cells is the follicular

helper T cell, which provides help to B cells in germinal centers.

Cytokines like IL-6 and IL-21 signal via STAT3 and promote

expression of Bcl6 and other molecules that contribute to the

phenotype and function of this subset. However, IL-12 and

STAT4 also turn out to be drivers of Tfh cells (Nakayamada

et al., 2011; Schmitt et al., 2009). STAT4 directly binds many

genes involved in Tfh cell differentiation, including Bcl6 and

Il21. Conversely, IL-2 inhibits Tfh cell differentiation and once

again, the action of STAT5 appears to be very direct. It competes

with STAT3 binding to the Bcl6 locus and also promotes expres-

sion of Prdm1, which encodes Blimp1 (Johnston et al., 2012;

Oestreich et al., 2012).

Perhaps less surprising given its role in transmitting IL-4

signals, STAT6 is also an important regulator of the recently

defined Th9 cells (Goswami et al., 2012).

IL-7 and IL-15 are important for CD8+ T cell memory formation

and accordingly STAT5A and STAT5B are also important (Hand

et al., 2010; Tripathi et al., 2010). STAT5A and STAT5B are

essential for the survival of viral-specific CD8+ T cells and

expression of Bcl-2. In contrast, in the setting of viral infection,

the numbers of CD4+ effector T cells are unaffected by the

absence of STAT5A and STAT5B. However, STAT5A and

STAT5B are not the only family members important for CD8

cell function; STAT3 is also important, mediating signals by

IL-10 and IL-21 (Cui et al., 2011). Expression of such key mole-

cules as Eomes, Bcl-6, Blimp-1, and Socs-3 are all reduced in

STAT3-deficient CD8 T cells. Defects in CD8+ T cell memory

also occur in patients with hyperimmunoglobulin E syndrome

and dominant-negative STAT3 mutations, which are associated

with viral infection (Siegel et al., 2011).
IL-7, acting via STAT5A and STAT5B, is important in B lym-

phopoiesis, controlling survival and development (Malin et al.,

2010). Conversely, the B cell adaptor BLNK antagonizes IL-7

signaling via inhibition of JAK3, and absence of BLNK leads

to constitutive JAK-STAT activation and leukomogenesis (Na-

kayama et al., 2009).

In summary, as we learn more about T and B cells, critical

roles for STATs continue to be revealed. Essential functions

have been identified in recently recognized subsets of CD4+

T cells. In addition, other roles for STATs in classic subsets are

also now recognized.

STATs and Innate Immunity
STATs also have numerous functions in innate immunity—too

many to review in detail here, but summarized in detail elsewhere

(Murray, 2007; O’Shea and Murray, 2008). The importance of

STAT1 in mediating IFN effects has long been recognized, as

has the role of STAT3 in IL-6 signaling and the acute phase

response. Colony-stimulating factors and cytokines like granulo-

cye macrophage-CSF, granulocyte-CSF, and IL-5, which regu-

late myeloid development, also signal via STATs. Consequently,

STATs have key functions for neutrophils and macrophages

(Nguyen-Jackson et al., 2010; Panopoulos et al., 2006; Zhang

et al., 2010a). GM-CSF inhibits Flt3L-mediated plasmacytoid

DC production and conventional DC growth and STAT5 is impor-

tant in this process (Esashi et al., 2008). In contrast, STAT3 is

important for the expansion of DC progenitors.

The importance of IL-22, acting via STAT3, in regulating the

barrier function of epithelial cells and wound repair is a topic

of considerable interest (Sonnenberg et al., 2011). Like IL-10,

IL-22 is produced by and acts on innate immune cells and has

critical anti-inflammatory properties. Precisely how STAT3

promotes inflammation in some circumstances and inhibits in

others is an important but challenging question (El Kasmi et al.,

2006). STAT3 can negatively regulate IFN responses and has

been proposed to inhibit TLR signaling either by inducing anti-

inflammatory molecules or by a direct suppression of NF-kB

(Wang et al., 2011). Nonetheless, a clear understanding of the

pro- and anti-inflammatory actions of STAT3 remains elusive.

Recently, the role of innate immune cells in promoting Th2 cell

responses has become increasingly apparent. Thymic stromal

lymphopoetin (TSLP) in particular is an important type I cytokine

that promotes allergic responses. It acts on multiple cells, espe-

cially basophils, which are major producers of IL-4 (Siracusa

et al., 2011; van Panhuys et al., 2011). The identity of the JAKs

responsible for signaling had been enigmatic, but we now

know that TSLP signals via JAK1 and JAK2 to activate STAT5

(Rochman et al., 2010).

In addition to the classical mode of activating macrophages

via IFN-g, the appreciation of the importance of Th2 cytokines

in generating alternatively activated macrophages (AAMs) is

now recognized. AAMs appear to be important in a range of

processes including host defense, fibrosis, metabolic regulation,

obesity, and cancer. As IL-4 and IL-13 are major drivers of the

AAM, STAT6 is a key player for these cells. STAT6 is important

in regulating insulin action, lipid metabolism, and expression of

proliferation-activated receptor isoforms (Ricardo-Gonzalez

et al., 2010; Szanto et al., 2010). Very recently, AAMs and

STAT6 have been implicated in the mammalian thermogenic
Immunity 36, April 20, 2012 ª2012 Elsevier Inc. 543
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response (Nguyen et al., 2011). Intriguingly, AAMs secrete

catacholamines in a STAT6-dependent manner and induce

thermogenic gene expression in brown adipose tissue and

lipolysis inwhite adipose tissue.Beyond their role as transcription

factors, a direct role of STATs in mitochondrial function makes

the argument for key roles in metabolism even more compelling

(Gough et al., 2009; Potla et al., 2006; Wegrzyn et al., 2009).

Although it has long been recognized that viruses can disrupt

IFN signaling by disrupting STAT signaling (Ramachandran and

Horvath, 2009), recent work shows that T. gondii alters host

response by injecting the kinase ROP16 and activating both

STAT3 and STAT6 (Butcher et al., 2011; Saeij et al., 2007). In

macrophages, the effect is downregulation of proinflammatory

cytokine signaling and deviation to an alternatively activated

phenotype. Viruses can also activate STAT6 and can do so

apparently in a JAK-independent manner (Chen et al., 2011a).

In this case though, Stat6 activation is protective in terms of

host response.

Toward a Genomic View of STAT Action: Transcriptional
and Epigenetic Roles
The advent of chromatin precipitation and massive parallel

sequencing (ChIP-Seq) has permitted the understanding of

STAT action on a global scale. Analysis of the genome-wide

targets of STATs via ChIP-Seq analysis for all the STATs has

now been obtained, albeit in a limited number of tissues with

relatively few stimuli and time points. Gene expression is

dramatically influenced by chromatin organization and until

recently, the importance of STATs in regulating epigenetics

has been implicated only by analysis of selected regions of

certain genes. However, recent technologies in measuring cell-

specific transcriptomes and epigenomes, coupled with the

use of gene-targeted mice, allows assessments of the global

impact of STAT-dependent signaling. What emerges is that

STATs have thousands of genomic targets and have major

effects on transcription and epigenetic modifications (Durant

et al., 2010; Elo et al., 2010; Good et al., 2009; Liao et al.,

2011a; Wei et al., 2010). In the case of STAT6, about half of

its target genes are affected in terms gene expression, epige-

netic modifications, or both when STAT6 is lacking in polarized

Th2 cells (Wei et al., 2010). The impact of STAT4 in Th1 cells is

less, but this is expected because both STAT4 and STAT1

contribute to Th1 cell differentiation (Schulz et al., 2009).

In addition to their roles in driving transcription, it is also clear

from genomic studies that a major role of STATs is to act as

functional repressors (Mandal et al., 2011a; Wei et al., 2010;

Yang et al., 2011). In B cells, IL-7-mediated activation of

STAT5 maintains proliferation and represses Igk germline tran-

scription. Recently it has been shown that STAT5 binds the Igk

intronic enhancer as a tetramer. This results in the recruitment

of the histone methyltransferase Ezh2, which in turn induces

histone H3 lysine 27 trimethylation, a repressive mark (Mandal

et al., 2011a). Genome-wide analyses showed a STAT5 tetra-

meric binding motif is frequently associated with transcriptional

repression. As indicated above, in T cells STAT5 displaces

STAT3 and inhibits IL-17 expression (Yang et al., 2011). In Th1

and Th2 cells, STAT4 and STAT6 binding is frequently associ-

ated with repression. However, the mechanism of inhibition is

not necessarily mediated by competition; in a large number of
544 Immunity 36, April 20, 2012 ª2012 Elsevier Inc.
cases they bind distinct sites (Wei et al., 2010). Thus, it is clear

that STATs can both enhance and repress gene expression

depending upon the complexes they recruit.

Equally intriguing is evidence that aside from phosphorylating

STATs, JAK can have a direct role in regulating chromatin (Daw-

son et al., 2009). JAK2 has been found in the nuclei of hemato-

poietic cells, where it phosphorylates histone H3 tyrosine 41.

Phosphorylation of this residue prevents heterochromatin

protein 1alpha binding, and thereby counteracts gene silencing

(Li, 2008; Shi et al., 2006).

Evidence for Genetic Links between Cytokines and
Cytokine Signaling and Human Autoimmune Disease
Although data from numerous animal studies have implicated

type I and II cytokine receptors and the JAK-STAT pathway in

autoimmune disease, these are models that may or may not

reflect actual human disease. However, the study of human

genetics provides the ability to directly link genes to human

disease. The field has moved rapidly from candidate gene to

genome-wide investigation of single-nucleotide polymorphisms

(SNPs), and systematic interrogation of the entire genome

through next-generation sequencing is also now feasible (Mar-

dis, 2011). Genome-wide association studies (GWAS) have led

to an explosion of loci associated with risk of immune-mediated

diseases. Importantly, these data show that inherited variation in

genes encoding cytokines, type I and type II cytokine receptors,

JAKs, and STATs are associated with these disorders (Figure 1).

Among the strongest evidence is work showing that multiple

genes in the IL-23 signaling pathway are involved in human

autoimmunity. One of the first variants to be identified was a non-

synonymous variant of the IL-23R (Arg381Gln) (Duerr et al.,

2006), which is associated with reduced risk of inflammatory

bowel disease (IBD), psoriasis (Cargill et al., 2007; Nair et al.,

2009), and ankylosing spondylitis (Burton et al., 2007). More

recently, additional coding variants have been found to influence

disease susceptibility to Crohn’s and Behcet’s disease (Momo-

zawa et al., 2011; Remmers et al., 2010). Subsequently, poly-

morphisms of the genes encoding both subunits of IL-23

(IL23A and IL12B), JAK2, TYK2, and STAT3 have all been linked

to autoimmunity (Bowes et al., 2011; Chu et al., 2011; Franke

et al., 2010; Jakkula et al., 2010).

STAT3 is also activated by IL-6 and its receptors, IL-6R and

gp130 (encoded by IL6R and IL6ST, respectively), which have

also been implicated in immune-mediated disease (Alloza

et al., 2011; Ferreira et al., 2011; Stahl et al., 2010). IL6R is also

associated with cardiovascular disease (Elliott et al., 2009;

Sarwar et al., 2012; Hingorani et al., 2012) and a disease-associ-

ated missense allele correlates with serum CRP concentrations

(Dehghan et al., 2011; Melzer et al., 2008).

Multiple genes in the IL-12 pathway have also been implicated

byGWAS. IL12A and IL12RB2, which are unique to IL-12 and not

shared by IL-23, and STAT4 are associated with multiple

autoimmune diseases (Hirschfield et al., 2009; Mells et al.,

2011; Radstake et al., 2010; Remmers et al., 2007, 2010; Trynka

et al., 2011; Zhernakova et al., 2011). It needs to be borne inmind

that STAT4 not only is activated by IL-12, but also can be acti-

vated by IL-23 and type I IFNs.

Polymorphisms of genes encoding cytokines, cytokine

receptor, JAKs, and STATs are relevant not just to autoimmune



Figure 1. Genetic Links of Cytokine Signaling with Human Autoimmune Disease
Although various animal models have implicated cytokines, their receptors, JAKs, and STATs with autoimmune disease, genome-wide association studies
(GWAS) now show that these factors are truly relevant to human disease. This work shows that pathways that lead to STAT3 and STAT4 activation lie at the heart
of many common autoimmune diseases. Adapted from Cho and Gregersen (2011). AS, ankylosing spondylitis; IBD, inflammatory bowel disease; PBC, primary
biliary cirrhosis; SLE, systemic lupus erythematosus.
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disease; they are also pertinent to allergic disease. Specifically,

polymorphisms of STAT6 and IL13 are associated with elevation

of IgE titers and increased risk of atopic dermatitis (Granada

et al., 2012; Paternoster et al., 2012). Polymorphisms of IL6R

are associated with asthma (Ferreira et al., 2011).

Despite these exciting leads, there are challenges of interpret-

ing the biological function of genetic association data. Most

disease-associated SNPs fall outside of protein-coding regions,

and several genes may be in the region of linkage disequilibrium

(LD) surrounding the SNP. The best biological candidate gene

in the region is assumed to be the causal gene, but this may

not be the correct assumption. For instance, although there is

an association of RA and multiple sclerosis with a SNP near

the IL6ST gene (Alloza et al., 2011; Stahl et al., 2010), there is

no direct evidence that the disease-associated variant disrupts

IL6ST function. Similarly, IL12RB2 and IL23R are adjacent to

each other in the genome, and it is not clear whether the associ-

ated Behcet’s risk allele influences one gene or the other.

Another challenge is inferring function when a gene product

can be involved in multiple pathways. STAT4 is one example,

but Tyk2 is another—both are involved in signaling by IL-12,

IL-23, and type I IFNs. Exactly which signaling pathway is

involved in disease pathogenesis? Bioinformatic methods have

been developed to search for relationships across genetic risk
loci in order to find patterns that might otherwise be difficult to

decipher. Future studies aimed at functional integration of

genetic risk loci are a major effort to follow up GWAS findings.

Regardless, the data clearly implicate the JAK-STAT pathway

and cognate cytokines in human immune-mediated disease.

Targeting Cytokine Signaling
The role of cytokine and cytokine signaling in mediating immune-

mediated disease, now supported by GWAS data, has made

these attractive pharmacological targets (Plenge, 2010). In fact,

monoclonal antibodies directed against specific cytokines and

cytokine receptors (e.g., ustekinumab, tocilizumab,mepolizumab,

lebrikinumab, and daclizumab) have already shown efficacy in

a variety of clinical settings. Additionally, the prospect of targeting

intracellular signaling by these cytokines is also now a reality.

As discussed by Casanova et al. (2012) in this issue, the

unequivocal in vivo importance of the JAK-STAT pathway was

established by the identification of patients with severe com-

bined immunodeficiency with JAK3 mutations. The profound

but selective phenotype associated with JAK3 deficiency led

to the proposition that targeting JAKs would represent a new

class of immunomodulatory drugs (Ghoreschi et al., 2009).

Tofacitinib, formerly designated CP-690,550, has been the

most widely studied JAK inhibitor (JAKinib) to be studied in
Immunity 36, April 20, 2012 ª2012 Elsevier Inc. 545



Figure 2. Consequence of Jak Inhibition on Signaling by Key Immunoregulatory Cytokines
A variety of JAKinibs have been developedwith varying degrees of specificity for the different JAKs. At present, most inhibitors in clinical use inhibit more than one
JAK and examples of the cytokines blocked (as indicated by the plus sign) are shown. Consequently, the first generation of JAKinhibs block multiple cytokines.
Selective JAKinibs are in development, but the relative efficacy of drugs that block a single JAK and therefore potentially fewer cytokines versus drugs that inhibit
multiple JAKs and many cytokines is not known. A selective TYK2 inhibitor has yet to be reported.
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humans. It inhibits JAK3 and JAK1 and to a lesser extent JAK2.

Consequently, tofacitinib potently inhibits common g chain cyto-

kines but also blocks IFN-g, IL-6, and to a lesser extent IL-12 and

IL-23 (Figure 2; Ghoreschi et al., 2011). Functionally, tofacitinib

affects both innate and adaptive immune responses (Ghoreschi

et al., 2011). Remarkably, tofacitinib has little activity on kinases

other than JAKs (Karaman et al., 2008).

Tofacitinib was effective in preclinical models (Changelian

et al., 2003) and has shown efficacy in a variety of phase II and

III trials in rheumatoid arthritis, as monotherapy and in combina-

tion with other drugs (Fleischmann et al., 2012; Kremer et al.,

2009, 2012; Tanaka et al., 2011). Importantly, tofacitinib is effec-

tive in patients who have failed one or more biologic monoclonal

antibody therapies and also prevents destruction of arthritic

joints. Tofacitinib is under investigation for the treatment of

psoriasis, inflammatory bowel disease, and Sicca syndrome

and in the prevention of transplant rejection.

Other JAK inhibitors are also rapidly moving ahead in preclin-

ical assessment and clinical trials (Table 1; Fridman et al., 2010;

Lin et al., 2010; Lu et al., 2011; Stump et al., 2011). The JAK1 and

JAK2 inhibitor ruxolitinib is efficacious in the treatment of polycy-

themia and myelofibrosis, disorders as a result of gain-of-func-

tion JAK2 mutations. As might be expected, based on its ability

to block cytokines that use JAK1 and JAK2, this drug is also

efficacious in arthritis (Fridman et al., 2010). Conversely, drugs

that have relative selectivity for individual JAKs (JAK1, JAK2,

and JAK3) also appear to have utility in preclinical and early

clinical trials (Table 1).

Adverse effects associated with JAKinibs appear to be largely

related to theirmodeof action. Infections are among the common

adverse effects, but opportunistic infections are uncommon.

Anemia and neutropenia, presumably related to JAK2 inhibition,

and interference with signaling by erythropoietin and other

colony-stimulating factors can also occur. Increases in serum

LDL also occur, as has been seen with the IL-6 blocker tocilizu-

mab. Little reduction inCD4+ T cells has been noted in nonhuman
546 Immunity 36, April 20, 2012 ª2012 Elsevier Inc.
primates treated with tofacitinib, but more substantial reduction

in NK cells and CD8+ T cells can occur. Whether this will be perti-

nent and clinically relevant in humans remains to be determined.

A decline in functional Treg cells has not been noted in human

subjects in a renal transplant study (Sewgobind et al., 2010).

Given the profound role of cytokines in disorders ranging from

malignancy to autoimmunity, JAKinibs have enormous potential

utility. The extent to which JAK inhibitors will be used as steroid-

sparing agents or even supplant the use of steroids in diseases

like the vasculitides or systemic lupus erythematosus remains

to be seen. A surprise in the field is that targetingmultiple kinases

is not necessarily detrimental, especially in circumstances in

which multiple cytokines drive pathogenesis. Conversely

though, it is conceivable that more selective JAK inhibitors

(e.g., selective JAK1 and JAK3 inhibitors) might have efficacy

with reduced adverse effects related to JAK2 inhibition. It is likely

that we will soon see whether this is the case given the intense

interest in JAKinibs.

Given their importance and circumscribed functions, it would

also seem logical to target STATs—especially if different STATs

could be selectively targeted. A number of STAT inhibitors have

been described (Nelson et al., 2011; Yue and Turkson, 2009);

however, to date, there is no STAT inhibitor that is near clinical

development. Conceptually, one might target STATs by (1)

blocking STAT phosphorylation, (2) disrupting STAT binding to

phosphorylated receptors or dimerization (both of which are

mediated by the STAT Src homology (SH)2 domain), or (3) inter-

fering with DNA binding. Phosphopepitidomimetics continue to

be designed that interrupt phosphotyrosine-SH2 binding (Man-

dal et al., 2011b; Zhang et al., 2010b; Zhao et al., 2010); however,

the challenge will be to generate compounds with in vivo efficacy

and selectivity. Targeting of the N-terminal domain has also been

proposed as a strategy (Timofeeva et al., 2007). Screening of

libraries has revealed that small molecules like pimozide, nifrur-

oxaide, and pyrimethamine may also be useful STAT inhibitors

(Nelson et al., 2011). Whether any of these strategies ultimately



Table 1. Selected JAKinibs

Agent Targets

Clinical Indications and

Extent of Clinical Trials

tofacitinib JAK3, JAK1, and JAK2 RA, phase III

psoriasis, phase II

IBD, phase II

VX-509 JAK3 RA, phase II

R-348 JAK3 RA, phase I

ruxolitinib JAK1, JAK2 FDA approved for MF and PV

INCB-28050 JAK1, JAK2 RA, phase II

GLPG-0634 JAK1 RA, phase II

AC-430 JAK2 RA, phase I

lymphoma, phase I

lestaurtinib FLT3, TrkA, JAK2 AML, phase III

psoriasis, phase II

pancreatic cancer, phase II

CEP-33779 JAK2 preclinical
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generate orally available drugs that have efficacy with accept-

able safety remains to be determined. However, given the prom-

inent role of STATs in cancer, it is likely that work will continue in

this area.

Concluding Remarks
The elegance of the JAK-STAT pathway is that it provides a

simple membrane-to-nucleus mechanism for rapidly inducing

gene expression. As complexities of immune cell function con-

tinue to be unraveled, JAKs and STATs remain central players

in all of the key immune cells, ranging from the ‘‘newest’’ CD4+

helper cell subset to alternatively activated macrophages. Curi-

ously, there is still a paucity of information on conditional gene

targeting of JAKs and STATs. Although some mouse models

were quickly generated and extensively studied, we are still

surprisingly ignorant about tissue-specific functions of other

JAKs and STATs (e.g., JAK1, JAK2, JAK3, TYK2, STAT1,

STAT4, and STAT6).

In addition, although the simplicity of the pathway is appealing,

some subtleties have become apparent. For instance, in con-

trast to a simplistic linear view, most cytokines activate more

than one STAT. Precisely what this means in terms of the molec-

ular basis of cytokine action is still being unraveled. However,

technologic advances have certainly facilitated a broader under-

standing of the function of STAT proteins. It is now clear that

STATs activate and repress gene expression and serve to orga-

nize the epigenetic landscape of immune cells. Nonetheless, our

understanding of how this occurs is still in its infancy. Despite the

gaps in our knowledge, it is clear that this pathway is directly

relevant to human disease and that the pathway can be success-

fully targeted. For all these reasons, the next twenty years are

likely to be just as exciting as the first.
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Danoy, P., Baltic, S., Nyholt, D.R., Jenkins, M., et al; Australian Asthma
Genetics Consortium. (2011). Identification of IL6R and chromosome
11q13.5 as risk loci for asthma. Lancet 378, 1006–1014.

Fleischmann, R., Cutolo, M., Genovese, M.C., Lee, E.B., Kanik, K.S., Sadis, S.,
Connell, C.A., Gruben, D., Krishnaswami, S., Wallenstein, G., et al. (2012).
Phase IIb dose-ranging study of the oral JAK inhibitor tofacitinib
(CP-690,550) or adalimumab monotherapy versus placebo in patients with
active rheumatoid arthritis with an inadequate response to disease-modifying
antirheumatic drugs. Arthritis Rheum. 64, 617–629.

Franke, A., McGovern, D.P., Barrett, J.C., Wang, K., Radford-Smith, G.L.,
Ahmad, T., Lees, C.W., Balschun, T., Lee, J., Roberts, R., et al. (2010).
Genome-widemeta-analysis increases to 71 the number of confirmedCrohn’s
disease susceptibility loci. Nat. Genet. 42, 1118–1125.

Fridman, J.S., Scherle, P.A., Collins, R., Burn, T.C., Li, Y., Li, J., Covington,
M.B., Thomas, B., Collier, P., Favata, M.F., et al. (2010). Selective inhibition
of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical
characterization of INCB028050. J. Immunol. 184, 5298–5307.

Ghoreschi, K., Laurence, A., and O’Shea, J.J. (2009). Selectivity and thera-
peutic inhibition of kinases: to be or not to be? Nat. Immunol. 10, 356–360.

Ghoreschi, K., Jesson, M.I., Li, X., Lee, J.L., Ghosh, S., Alsup, J.W., Warner,
J.D., Tanaka, M., Steward-Tharp, S.M., Gadina, M., et al. (2011). Modulation
of innate and adaptive immune responses by tofacitinib (CP-690,550).
J. Immunol. 186, 4234–4243.

Good, S.R., Thieu, V.T., Mathur, A.N., Yu, Q., Stritesky, G.L., Yeh, N., O’Malley,
J.T., Perumal, N.B., and Kaplan, M.H. (2009). Temporal induction pattern of
STAT4 target genes defines potential for Th1 lineage-specific programming.
J. Immunol. 183, 3839–3847.

Goswami, R., Jabeen, R., Yagi, R., Pham, D., Zhu, J., Goenka, S., and Kaplan,
M.H. (2012). STAT6-dependent regulation of Th9 development. J. Immunol.
188, 968–975.

Gough, D.J., Corlett, A., Schlessinger, K., Wegrzyn, J., Larner, A.C., and Levy,
D.E. (2009). Mitochondrial STAT3 supports Ras-dependent oncogenic
transformation. Science 324, 1713–1716.

Granada, M., Wilk, J.B., Tuzova, M., Strachan, D.P., Weidinger, S., Albrecht,
E., Gieger, C., Heinrich, J., Himes, B.E., Hunninghake, G.M., et al. (2012).
A genome-wide association study of plasma total IgE concentrations in the
Framingham Heart Study. J. Allergy Clin. Immunol. 129, 840–845, e21.

Hand, T.W., Cui, W., Jung, Y.W., Sefik, E., Joshi, N.S., Chandele, A., Liu, Y.,
and Kaech, S.M. (2010). Differential effects of STAT5 and PI3K/AKT signaling
on effector and memory CD8 T-cell survival. Proc. Natl. Acad. Sci. USA 107,
16601–16606.

Hingorani, A.D., Casas, J.P., Kuchenbaecker, K.B., Engmann, J.E., Shah, T.,
Sofat, R., Guo, Y., Chung, C., Peasey, A., Pfister, R., et al; Interleukin-6
548 Immunity 36, April 20, 2012 ª2012 Elsevier Inc.
Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium. (2012).
The interleukin-6 receptor as a target for prevention of coronary heart disease:
a mendelian randomisation analysis. Lancet 379, 1214–1224.

Hirschfield, G.M., Liu, X., Xu, C., Lu, Y., Xie, G., Lu, Y., Gu, X., Walker, E.J.,
Jing, K., Juran, B.D., et al. (2009). Primary biliary cirrhosis associated with
HLA, IL12A, and IL12RB2 variants. N. Engl. J. Med. 360, 2544–2555.

Jakkula, E., Leppä, V., Sulonen, A.M., Varilo, T., Kallio, S., Kemppinen, A.,
Purcell, S., Koivisto, K., Tienari, P., Sumelahti, M.L., et al. (2010). Genome-
wide association study in a high-risk isolate for multiple sclerosis reveals asso-
ciated variants in STAT3 gene. Am. J. Hum. Genet. 86, 285–291.

Johnston, R.J., Choi, Y.S., Diamond, J.A., Yang, J.A., and Crotty, S. (2012).
STAT5 is a potent negative regulator of TFH cell differentiation. J. Exp. Med.
209, 243–250.

Karaman, M.W., Herrgard, S., Treiber, D.K., Gallant, P., Atteridge, C.E.,
Campbell, B.T., Chan, K.W., Ciceri, P., Davis, M.I., Edeen, P.T., et al. (2008).
A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 26,
127–132.

Kremer, J.M., Bloom, B.J., Breedveld, F.C., Coombs, J.H., Fletcher, M.P.,
Gruben, D., Krishnaswami, S., Burgos-Vargas, R., Wilkinson, B., Zerbini,
C.A., and Zwillich, S.H. (2009). The safety and efficacy of a JAK inhibitor in
patients with active rheumatoid arthritis: Results of a double-blind, placebo-
controlled phase IIa trial of three dosage levels of CP-690,550 versus placebo.
Arthritis Rheum. 60, 1895–1905.

Kremer, J.M., Cohen, S., Wilkinson, B.E., Connell, C.A., French, J.L.,
Gomez-Reino, J., Gruben, D., Kanik, K.S., Krishnaswami, S., Pascual-Ramos,
V., et al. (2012). A phase IIb dose-ranging study of the oral JAK inhibitor
tofacitinib (CP-690,550) versus placebo in combination with background
methotrexate in patients with active rheumatoid arthritis and an inadequate
response to methotrexate alone. Arthritis Rheum. 64, 970–981.

Laurence, A., Tato, C.M., Davidson, T.S., Kanno, Y., Chen, Z., Yao, Z., Blank,
R.B., Meylan, F., Siegel, R., Hennighausen, L., et al. (2007). Interleukin-2
signaling via STAT5 constrains T helper 17 cell generation. Immunity 26,
371–381.

Leonard, W.J., and O’Shea, J.J. (1998). Jaks and STATs: biological implica-
tions. Annu. Rev. Immunol. 16, 293–322.

Li, W.X. (2008). Canonical and non-canonical JAK-STAT signaling. Trends Cell
Biol. 18, 545–551.

Liao, W., Schones, D.E., Oh, J., Cui, Y., Cui, K., Roh, T.Y., Zhao, K., and
Leonard, W.J. (2008). Priming for T helper type 2 differentiation by interleukin
2-mediated induction of interleukin 4 receptor alpha-chain expression. Nat.
Immunol. 9, 1288–1296.

Liao, W., Lin, J.X., and Leonard, W.J. (2011a). IL-2 family cytokines: new
insights into the complex roles of IL-2 as a broad regulator of T helper cell
differentiation. Curr. Opin. Immunol. 23, 598–604.

Liao, W., Lin, J.X., Wang, L., Li, P., and Leonard, W.J. (2011b). Modulation of
cytokine receptors by IL-2 broadly regulates differentiation into helper T cell
lineages. Nat. Immunol. 12, 551–559.

Lin, T.H., Hegen, M., Quadros, E., Nickerson-Nutter, C.L., Appell, K.C., Cole,
A.G., Shao, Y., Tam, S., Ohlmeyer, M., Wang, B., et al. (2010). Selective func-
tional inhibition of JAK-3 is sufficient for efficacy in collagen-induced arthritis in
mice. Arthritis Rheum. 62, 2283–2293.

Lu, L.D., Stump, K.L., Wallace, N.H., Dobrzanski, P., Serdikoff, C., Gingrich,
D.E., Dugan, B.J., Angeles, T.S., Albom,M.S., Mason, J.L., et al. (2011). Deple-
tion of autoreactive plasma cells and treatment of lupus nephritis in mice using
CEP-33779, a novel, orally active, selective inhibitor of JAK2. J. Immunol. 187,
3840–3853.

Malin, S., McManus, S., Cobaleda, C., Novatchkova, M., Delogu, A., Bouillet,
P., Strasser, A., and Busslinger, M. (2010). Role of STAT5 in controlling cell
survival and immunoglobulin gene recombination during pro-B cell develop-
ment. Nat. Immunol. 11, 171–179.

Mandal, M., Powers, S.E., Maienschein-Cline, M., Bartom, E.T., Hamel, K.M.,
Kee, B.L., Dinner, A.R., and Clark, M.R. (2011a). Epigenetic repression of the
Igk locus by STAT5-mediated recruitment of the histone methyltransferase
Ezh2. Nat. Immunol. 12, 1212–1220.

Mandal, P.K., Gao, F., Lu, Z., Ren, Z., Ramesh, R., Birtwistle, J.S., Kaluarach-
chi, K.K., Chen, X., Bast, R.C., Jr., Liao, W.S., and McMurray, J.S. (2011b).



Immunity

Review
Potent and selective phosphopeptide mimetic prodrugs targeted to the Src
homology 2 (SH2) domain of signal transducer and activator of transcription
3. J. Med. Chem. 54, 3549–3563.

Mardis, E.R. (2011). A decade’s perspective on DNA sequencing technology.
Nature 470, 198–203.

Mells, G.F., Floyd, J.A., Morley, K.I., Cordell, H.J., Franklin, C.S., Shin, S.Y.,
Heneghan, M.A., Neuberger, J.M., Donaldson, P.T., Day, D.B., et al; UK
PBC Consortium; Wellcome Trust Case Control Consortium 3. (2011).
Genome-wide association study identifies 12 new susceptibility loci for
primary biliary cirrhosis. Nat. Genet. 43, 329–332.

Melzer, D., Perry, J.R., Hernandez, D., Corsi, A.M., Stevens, K., Rafferty, I.,
Lauretani, F., Murray, A., Gibbs, J.R., Paolisso, G., et al. (2008). A genome-
wide association study identifies protein quantitative trait loci (pQTLs). PLoS
Genet. 4, e1000072.

Milner, J.D., Brenchley, J.M., Laurence, A., Freeman, A.F., Hill, B.J., Elias,
K.M., Kanno, Y., Spalding, C., Elloumi, H.Z., Paulson, M.L., et al. (2008).
Impaired T(H)17 cell differentiation in subjects with autosomal dominant
hyper-IgE syndrome. Nature 452, 773–776.

Momozawa, Y., Mni, M., Nakamura, K., Coppieters, W., Almer, S., Amininejad,
L., Cleynen, I., Colombel, J.F., de Rijk, P., Dewit, O., et al. (2011). Resequenc-
ing of positional candidates identifies low frequency IL23R coding variants
protecting against inflammatory bowel disease. Nat. Genet. 43, 43–47.

Murray, P.J. (2007). The JAK-STAT signaling pathway: input and output inte-
gration. J. Immunol. 178, 2623–2629.

Nair, R.P., Duffin, K.C., Helms, C., Ding, J., Stuart, P.E., Goldgar, D., Gudjons-
son, J.E., Li, Y., Tejasvi, T., Feng, B.J., et al; Collaborative Association Study
of Psoriasis. (2009). Genome-wide scan reveals association of psoriasis with
IL-23 and NF-kappaB pathways. Nat. Genet. 41, 199–204.

Nakayama, J., Yamamoto, M., Hayashi, K., Satoh, H., Bundo, K., Kubo, M.,
Goitsuka, R., Farrar, M.A., and Kitamura, D. (2009). BLNK suppresses pre-
B-cell leukemogenesis through inhibition of JAK3. Blood 113, 1483–1492.

Nakayamada, S., Kanno, Y., Takahashi, H., Jankovic, D., Lu, K.T., Johnson,
T.A., Sun, H.W., Vahedi, G., Hakim, O., Handon, R., et al. (2011). Early Th1
cell differentiation ismarked by a Tfh cell-like transition. Immunity 35, 919–931.

Nelson, E.A., Sharma, S.V., Settleman, J., and Frank, D.A. (2011). A chemical
biology approach to developing STAT inhibitors: molecular strategies for
accelerating clinical translation. Oncotarget 2, 518–524.

Nguyen, K.D., Qiu, Y., Cui, X., Goh, Y.P., Mwangi, J., David, T., Mukundan, L.,
Brombacher, F., Locksley, R.M., and Chawla, A. (2011). Alternatively activated
macrophages produce catecholamines to sustain adaptive thermogenesis.
Nature 480, 104–108.

Nguyen-Jackson, H., Panopoulos, A.D., Zhang, H., Li, H.S., and Watowich,
S.S. (2010). STAT3 controls the neutrophil migratory response to CXCR2
ligands by direct activation of G-CSF-induced CXCR2 expression and via
modulation of CXCR2 signal transduction. Blood 115, 3354–3363.

O’Shea, J.J., andMurray, P.J. (2008). Cytokine signaling modules in inflamma-
tory responses. Immunity 28, 477–487.

Oestreich, K.J., Mohn, S.E., and Weinmann, A.S. (2012). Molecular mecha-
nisms that control the expression and activity of Bcl-6 in T(H)1 cells to regulate
flexibility with a T(FH)-like gene profile. Nat. Immunol. 13, 405–411.

Pandiyan, P., Conti, H.R., Zheng, L., Peterson, A.C., Mathern, D.R., Hernán-
dez-Santos, N., Edgerton, M., Gaffen, S.L., and Lenardo, M.J. (2011).
CD4(+)CD25(+)Foxp3(+) regulatory T cells promote Th17 cells in vitro and
enhance host resistance in mouseCandida albicans Th17 cell infection model.
Immunity 34, 422–434.

Panopoulos, A.D., Zhang, L., Snow, J.W., Jones, D.M., Smith, A.M., El Kasmi,
K.C., Liu, F., Goldsmith, M.A., Link, D.C., Murray, P.J., and Watowich, S.S.
(2006). STAT3 governs distinct pathways in emergency granulopoiesis and
mature neutrophils. Blood 108, 3682–3690.

Paternoster, L., Standl, M., Chen, C.M., Ramasamy, A., Bønnelykke, K., Duijts,
L., Ferreira, M.A., Alves, A.C., Thyssen, J.P., Albrecht, E., et al; Australian
Asthma Genetics Consortium (AAGC); Genetics of Overweight Young Adults
(GOYA) Consortium; EArly Genetics & Lifecourse Epidemiology (EAGLE)
Consortium. (2012). Meta-analysis of genome-wide association studies iden-
tifies three new risk loci for atopic dermatitis. Nat. Genet. 44, 187–192.
Paul, W.E. (2010). What determines Th2 differentiation, in vitro and in vivo?
Immunol. Cell Biol. 88, 236–239.

Plenge, R. (2010). GWASs and the age of human as the model organism for
autoimmune genetic research. Genome Biol. 11, 212.

Potla, R., Koeck, T., Wegrzyn, J., Cherukuri, S., Shimoda, K., Baker, D.P.,
Wolfman, J., Planchon, S.M., Esposito, C., Hoit, B., et al. (2006). Tyk2 tyrosine
kinase expression is required for the maintenance of mitochondrial respiration
in primary pro-B lymphocytes. Mol. Cell. Biol. 26, 8562–8571.

Radstake, T.R., Gorlova, O., Rueda, B., Martin, J.E., Alizadeh, B.Z., Palomino-
Morales, R., Coenen, M.J., Vonk, M.C., Voskuyl, A.E., Schuerwegh, A.J., et al;
Spanish Scleroderma Group. (2010). Genome-wide association study of
systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet.
42, 426–429.

Ramachandran, A., and Horvath, C.M. (2009). Paramyxovirus disruption of
interferon signal transduction: STATus report. J. Interferon Cytokine Res. 29,
531–537.

Remmers, E.F., Plenge, R.M., Lee, A.T., Graham, R.R., Hom, G., Behrens,
T.W., de Bakker, P.I., Le, J.M., Lee, H.S., Batliwalla, F., et al. (2007). STAT4
and the risk of rheumatoid arthritis and systemic lupus erythematosus. N.
Engl. J. Med. 357, 977–986.

Remmers, E.F., Cosan, F., Kirino, Y., Ombrello, M.J., Abaci, N., Satorius, C.,
Le, J.M., Yang, B., Korman, B.D., Cakiris, A., et al. (2010). Genome-wide
association study identifies variants in the MHC class I, IL10, and IL23R-
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