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This paper describes a probabilistic method of modelling point nuclear systems with low numbers of
neutrons including the effects of delayed neutron precursors and its coupling with standard point
kinetics equations. This coupling allows the simulation of the non-deterministic progression of a system
transitioning from subcritical to supercritical and the resulting power peak. Through analysis of large
numbers of realisations various statistical parameters of such transients can be obtained. The method
of simulation presented here successfully replicates the survival and extinction probabilities predicted
by the Backwards Master Equation and experimental and analytic results from the literature regarding
the Godiva reactor and extends the examination of that reactor. In particular the effect of delayed
neutrons on the simulated response of Godiva is highlighted. With its implementation in a parallel
computer code, the model is able to simulate at a reasonable speed a range of systems where low neutron
populations are important.
� 2016 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

In many nuclear systems the instance where the neutron popu-
lation is small can be of specific interest from operational or safety
viewpoints. When the neutron population is very low there is more
time for the reactivity to change before the neutron population is
able to respond enough to produce a negative feedback as the neu-
tron population must first grow sufficiently large that it is unlikely
to become extinct and then it must grow several orders of magni-
tude to produce a significant feedback. This means the case of a low
neutron population is one scenario under which even a system
with strong negative reactivity feedbacks may find itself in a situ-
ation of a significant neutron population and supercritical reactiv-
ity with all the resulting safety implications. Such cases include the
start-up of power reactors, accident scenarios in which the reactiv-
ity changes over time, such as the Y12 accident (Patton et al., 1958;
Zamacinski et al., 2014) and pulse reactors such as Godiva (Hansen,
1960) and Caliban (Humbert and Méchitoua, 2004; Authier et al.,
2014; Williams, 2016).

When the neutron population is sufficiently low, the behaviour
of the neutron population is inherently non-deterministic as each
neutron has a probability of meeting a number of different fates
resulting in the removal of the neutron from the population and
the potential creation of new neutrons and/or delayed neutron pre-
cursors. The resultant behaviour of a system of neutrons will be
different on each occasion. An early formulation of the behaviour
of such systems may be found in Bell (1963, 1965) which examine
the probability of a certain number of neutrons and neutron pre-
cursors existing at a given time. However, such treatments quickly
become computationally demanding in all but the most simplified
cases so examination of derived parameters such as the survival
probability through the lumped Backward Master Equation is often
employed (Cooling et al., 2016). Such treatments tend to assume a
lumped reactor with point variables and delayed neutron precur-
sors are frequently neglected. Treatments which include the effects
of delayed neutrons are beginning to appear (Hayes and Allen,
2005; Ha and Kim, 2011; Williams and Pázsit, 2015) but this is still
not common.

At low neutron populations a probabilistic method with simi-
larities to the Monte Carlo method as discussed in Booth (2010)
and Gang (2011). However, it is the coupling with point kinetics
models which lends the present work its novelty. The point kinet-
ics method is a well-known approximation to the behaviour of a
reactor where the spatial variation of the neutron flux is not taken
into account when calculating the rate of change of the total neu-
tron population (Blue et al., 1964; Lapenta et al., 2001; Cooling
et al., 2013). A major assumption of the method is that the number
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of neutrons and precursors is high enough that the average beha-
viour calculated is representative of a real system. Even when
the neutron population is large, each neutron will still have a finite
probability of spawning new neutrons through fission when it is
removed from the system which is independent of the fates met
by other neutrons in the system. However, with enough neutrons,
the relative standard deviation of the ratio of the number of
neutrons in one generation to the next becomes small and so the
approximation is valid.

The goal of the work presented in this paper is to first develop a
model of the change in neutron population which describes the
probabilistic behaviour of independent neutrons at low neutron
populations and switches to using the point kinetics approxima-
tion at higher neutron populations. This allows a single determin-
istic run to be analogous to a single instance of a neutron
population within a given configuration of fissile material. Using
this model, a large number of realisations are created and the rel-
evant data from each saved to calculate the desired outputs of the
ensemble of realisations.

2. The modelling of a single realisation

2.1. Low population probabilistic modelling

When the neutron population is low the model treats each neu-
tron individually and at each timestep calculates the probability of
a number of reactions occurring to a neutron, precursor, and source
in a manner similar to that employed in Gang (2011). The informa-
tion supplied to the program is the pn (the probability of a fission
producing n prompt neutrons), bm (the probability of a given neu-
tron produced in fission being via a delayed neutron precursor in
delayed neutron precursor group m), km (the decay constants of
delayed neutron precursors in group m), K (the generation time
of neutron) and Rc;Rf and Resc (the cross-sections for capture, fis-
sion and escape). Note that, for most of the examples in this paper
these parameters are independent of time or the state of the reac-
tor but these could be arbitrary functions of such variables. For the
purposes of this paper we also make the simplifying assumption
that the system is close enough to critical that the prompt neutron
lifetime is effectively equivalent to the generation time.

The cross-sections represent the relative probabilities of a neu-
tron finally experiencing each fate (capture in non-fissile material,
causing a fission, and escaping the system). As such we may write:X
tot

¼
X
c

þ
X
f

þ
X
esc

; ð1Þ

pc ¼
P

cP
tot

; ð2Þ

pf ¼
P

fP
tot

; ð3Þ

pesc ¼
P

escP
tot

; ð4Þ

where pc;pf ;pesc represent the absolute probability of a neutron
finally meeting each fate (assuming the state of the system doesn’t
change in such a way that the

P
values are altered).

Thus, we may write the probabilities of a neutron being
absorbed, of undergoing a fission, and of escaping the system in
a small time interval dt as:

p0
c ¼

pc

K
dt; ð5Þ

p0
f ¼

pf

K
dt; ð6Þ

p0
esc ¼

pesc

K
dt; ð7Þ
and the probability of a neutron surviving the time interval dt with-
out undergoing any interaction as:

p0
surv ¼ 1� pc � pf � pesc

K
dt: ð8Þ

We proceed to evaluate the probabilities of a neutron causing
an individual fission which produces a given number of prompt
neutrons and delayed neutron precursors. If a neutron undergoes
fission we make the assumption that at most one delayed neutron
precursor is created. Data relating to correlations between the
number of neutrons produced in a fission and the probability of a
fission producing a delayed neutron precursor is not available. In
the absence of this data, we also make the assumption that the
probability a fission producing a delayed neutron precursor of pre-
cursor group m is independent of the number of prompt neutrons
produced in a fission. Finally, we assume that b ¼ P

mbm � 1.
Before proceeding we remind the reader that p0

f is the probabil-
ity of a neutron causing a fission in a small time period dt; pn is the
probability of a fission producing n prompt neutrons and bm is the
fraction of the total number of neutrons produced by fission which
will be via the production of delayed neutron precursor in groupm.
Thus, the probability of neutron causing a fission produces n
prompt neutrons in the short time period dt is p0

f pn. We may also
find the probability of a fission also producing a delayed neutron
precursor of group m as being �mbm where �m is the mean number
of neutrons produced per fission (whether prompt neutrons or
via a delayed neutron precursor) which is defined by:

�m ¼ �mbþ
X
n

pnn; ð9Þ

which, after rearranging, gives:

�m ¼
P

npnn
1� b

: ð10Þ

First we consider the case of the neutron causing a fission
including the production of a delayed neutron precursor, we may
write:

p0
f ;n;m ¼ p0

f pn�mbm for m > 0 and n � 0; ð11Þ
where p0

f ;n;m is the probability of a neutron causing a fission in a
short period of time of duration dt which releases n prompt neu-
trons and a delayed neutron precursor of group m.

p0
f ;n is the probability that the neutron causes the release of n

neutrons with no delayed neutron precursors in a short period of
time of duration dt. p0

f pn is the probability that a neutron causes
a fission which causes the release of n prompt neutrons (regardless
of whether any delayed neutron precursors are produced) in this
time period. Thus we may sum the probabilities of the neutron
causing a fission which results in the creation of all different com-
binations of prompt neutrons and delayed neutron precursors
which involve the creation of n neutrons in total and set it equal
to p0

f pn. This allows us to write that:

p0
f ;n þ

X
m¼1

p0
f ;n;m ¼ p0

f pn: ð12Þ

We may combine Eqs. (11) and (12) to write:

p0
f ;n ¼ p0

f pn 1� �mbð Þ: ð13Þ
Note that �mb < 1 as a consequence of the earlier assumption

that b � 1.
We may also write the probability of a delayed neutron precur-

sor of group m decaying in a short period of time of duration dt as:

p0
decay;m ¼ kmdt: ð14Þ
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We allow for several independent sources. The ith source
releases Si;n neutrons in each decay and has a decay rate Si;s decays
per second. The probability of a source producing Si;n neutrons in a
short period of time of duration dt is thus:

p0
s;i ¼ Si;sdt: ð15Þ
To construct the state of the system at time t þ dt from the state

at time t the state at t þ dt begins by containing no neutrons or
delayed neutron precursors. Then, for each prompt neutron in
the state at time t a random number is generated and what hap-
pens to it in that timestep is decided according to the probabilities
p0
surv ; p

0
f ;n;m and p0

f ;n. If the survival case is obtained the state at t þ dt
gains a single neutron. If the case corresponding to a fission which
produces n prompt neutrons and a delayed neutron precursor in
group m is obtained then n prompt neutrons are added along with
a single delayed neutron precursor in groupm and if the case of fis-
sion without the production of a delayed neutron precursor is
selected then n prompt neutrons are added and. For each source
a random number between zero and one is generated and if it is
below p0

s;i; Si;n prompt neutrons are added. For each delayed neu-
tron precursor in groupm at time t a random number between zero
and one is generated. If it is less than p0

decay;m a prompt neutron is
added to the state at time t þ dt and, if not, a delayed neutron pre-
cursor is added to group m to the state at time t þ dt. Through this
process the state of the system at time t þ dt is constructed from
the state of the system at time t.

dt should be chosen such that the probabilities of multiple
events occurring to a single neutron/precursor in a timestep are
small so that the code will not commonly overlook cases where,
for instance, a delayed neutron precursor decays and then the
resultant neutron initiates a fission all within a timestep dt. We
define a tolerable probability of such a chain of events occurring
with a single timestep as p0

multi. There are three criteria which
may determine p0

multi. First, if there are prompt neutrons in the
system at time t:

p0
multi P ð1� p0

survÞ2; ð16Þ
where p0

surv is defined in terms of dt in Eq. (8). If delayed neutron
precursors are present then, for each m:

p0
multi P ðp0

decay;mÞ2; ð17Þ
where p0

decay;m is defined in terms of dt in Eq. (14). If a source is pre-
sent then, for each i:

p0
multi P ðp0

s;iÞ2; ð18Þ
where p0

s;i is defined in terms of dt in Eq. (15). dt is picked such that
it is the largest it can be whilst fulfilling all of whichever of Eqs.
(16)–(18) are appropriate given the number of prompt neutrons,
delayed neutron precursors and source at time t. Throughout this
paper p0

multi will be taken to be 10�4 which leads to timesteps falling

roughly in the region between 10�7 s and 10�4 s In this manner the
timestep of the model of the reactor used in the case of a low neu-
tron population is adaptive in terms of the timestep which greatly
aids the efficiency of the simulation.

2.2. High population deterministic model

The model described in Section 2.1 is not efficient once a neu-
tron population gets too high as each neutron and delayed neutron
precursor must be treated separately. Instead the neutron and pre-
cursor populations are modified according to a simple set of point
kinetics equations:
dN
dt

¼ 1
K

keffðtÞ � 1
keffðtÞ � b

� �
NðtÞ þ

X
i

Si;sðtÞSi;n þ
X
m

CmðtÞkm; ð19Þ

dCm

dt
¼ bm

K
NðtÞ � CmðtÞkm; ð20Þ

where NðtÞ is the number of prompt neutrons at time t; keffðtÞ is the
effective multiplication factor at time t and CmðtÞ is the number of
delayed neutron precursors in group m at time t. The following
equations are used to calculate keffðtÞ:

keffðtÞ ¼ pf �m; ð21Þ

where �m is the average number of neutrons released per fission
(including any neutrons released via delayed neutron precursors)
and is defined in Eq. (10). Note that Eqs. (21) and (10) are also rel-
evant when the probabilistic model is being used. The equations are
solved by a subroutine based upon an algorithm detailed by
Shampine and Gordon (1975). The algorithm is designed to solve
Ordinary Differential Equations (ODEs) and uses adaptive timestep-
ping. It will not be discussed in detail here as it is not the focus of
this paper but it has proved accurate and robust.
2.3. Simulating a realisation

Sections 2.1 and 2.2 describe the two methods used to progress
a simulation in time. In the simulations performed here, a
realisation will begin with the construction of the initial conditions
of the system and using this as the state of the system at t = 0. At
each time the state of the reactor is examined and either the pro-
cess described in Section 2.1 or that described in Section 2.2 is used
to advance the simulation. The criteria used to chose which of the
processes is used is the combined number of prompt neutrons and
delayed neutron precursors in the system NtotðtÞ ¼ NðtÞ þP

mCmðtÞ.
If this is larger than the threshold value Nthresh then the determin-
istic point kinetics method is used but, if it is lower, the probabilis-
tic method is used. In this fashion a simulation of a realisation can
switch method multiple times as t increases in order to use the
most appropriate method at any given moment. The choice of a
suitable value for Nthresh is discussed in Section 5.2.
3. Multiple realisations

Section 2 describes how a single realisation may be simulated.
However, the results of this code will be non-deterministic due to
the probabilistic method used to model the neutron and delayed
neutron precursor populations when the combined population is
low within each realisation. As a result, a large number of
realisations are run so that statistics may be recorded. Effectively,
this is a Monte Carlo sampling of probabilistic neutron histories
which shares fundamental similarities to Monte Carlo codes
such as MCNP (X-5 Monte Carlo Team, 2003), even though the
manner in which neutron histories are simulated is significantly
different.

As each realisation is entirely independent of any other this pro-
cess is easy to run in a parallel mode on several cores at once. This
is achieved using the MPI parallel coding interface. At the end of
each run the values relevant to a particular statistic are recorded
on tallies local to each rank. This means it is not necessary to store
all the results of each realisation which significantly reduces the
memory required. After all realisations have been run the relevant
statistics are collected from each rank, collated and the output
plotted.
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4. The example system

In this paper we will examine an abstract system which is not
designed to reflect any specific real system, only to demonstrate
this method of simulating neutron populations. The values ofP

s;
P

f and
P

c will vary from case to case to vary the criticality
of the system as required. The parameters K; bi and ki are taken
from the Aqueous Homogeneous Reactor (AHR) described in
Cooling et al. (2013) and the values of pn are taken from Zucker
and Holden (1986). These parameters are summarised in Table 1
and are common to all simulations in this paper. Again, it is
stressed that this example system is only being used to provide
parameters which are broadly representative of reality to demon-
strate this method of simulation and there is no claim that this sys-
tem is any way special or even representative of a real or potential
system.
5. Results

5.1. Probabilistic neutronics sample results

We begin by showing two typical results of the probabilistic
method. The first set of results is shown in Fig. 2 and was obtained
from a simulation of a subcritical system with a single source with
a strength of 1000 incidents/s with each incident releasing a single
prompt neutron (such that S1;n ¼ 1 and S1;s ¼ 1000). Both

P
c andP

esc are equal to 0.3 whilst
P

f ¼ 0:4. Through Eq. (21) we find this
equates to a keff of 0.970. The results are shown in Fig. 1 and are
typical of a subcritical system. The prompt neutron population
Table 1
Neutronics parameters of the example system.

Parameter Symbol Value

Prompt neutron lifetime K 1.8202 �10�4 s
Group 1 delayed neutron precursor fraction b1 21.0 �10�5

Group 2 delayed neutron precursor fraction b2 113.4 �10�5

Group 3 delayed neutron precursor fraction b3 110.7 �10�5

Group 4 delayed neutron precursor fraction b4 315.4 �10�5

Group 5 delayed neutron precursor fraction b5 90.1 �10�5

Group 6 delayed neutron precursor fraction b6 30.7 �10�5

Overall delayed neutron precursor fraction b 681 �10�5

Group 1 delayed neutron precursor decay
constant

k1 0.01249 s�1

Group 2 delayed neutron precursor decay
constant

k2 0.03182 s�1

Group 3 delayed neutron precursor decay
constant

k3 0.10938 s�1

Group 4 delayed neutron precursor decay
constant

k4 0.31699 s�1

Group 5 delayed neutron precursor decay
constant

k5 0.1.3598 s�1

Group 6 delayed neutron precursor decay
constant

k6 8.63638 s�1

Probability of 0 neutrons being released by
fission

p0 0.0319004

Probability of 1 neutron being released by fission p1 0.1725213
Probability of 2 neutrons being released by

fission
p2 0.3361397

Probability of 3 neutrons being released by
fission

p3 0.3038798

Probability of 4 neutrons being released by
fission

p4 0.1266155

Probability of 5 neutrons being released by
fission

p5 0.0261843

Probability of 6 neutrons being released by
fission

p6 0.0026170

Probability of 7 neutrons being released by
fission

p7 0.0001421

Average number of neutrons released per fission �m 2.4105
varies on a timescale similar to that of the neutron lifetime and
the reciprocal of the source strength. Incidents where the neutron
population grows and shrinks can be seen but, given the system is
subcritical, it never diverges. The number of delayed neutron pre-
cursors varies significantly more slowly as the rate of production is
much lower and they are more long lived. In the realisation pre-
sented it happens that only two delayed neutron precursors are
created: one in group 1 and one in group 3.

The next case we observe is that of a supercritical system which
uses the same conditions as those used to produce Fig. 1 but withP

c and
P

esc are equal to 0.27 whilst
P

f ¼ 0:46 (resulting in a
value of keff of 1.116). Early in the simulation the behaviour of
the system is very similar to that found in Fig. 1. Whilst the neu-
tron population could have remained low for this finite time per-
iod, the population grows in this case and, after a period of time,
tends towards an exponential rate of growth with a fairly steady
time constant. The numbers of delayed neutrons also begin to
increase at a similar pace although few or no decays are seen as
the lifetime of the precursors is longer than the simulated period.
The ratio of delayed neutron precursor populations to each other
varies over time but is roughly proportional to the size of the cor-
responding bi found in Table 1.

5.2. The choice of Nthresh

When choosing a value of nthresh (which was introduced in Sec-
tion 2.3) the key question is how many neutrons need to be in the
system so that the non-deterministic physical system resembles
the deterministic point kinetics questions introduced in Section 2.2
with acceptable accuracy. We now examine at what size of neutron
population this occurs.

We examine this by creating a number of cases where the num-
ber of neutrons varies across a large range and recording the
observed reciprocal period of the neutron population as simulated
by the probabilistic method. By repeating the simulation a large
number of times the mean and the standard deviation of the recip-
rocal period can be obtained as a function of the total number of
neutrons and delayed neutron precursors. The relevant equations
are as follows:

NtotðtÞ ¼ NðtÞ þ
X
i

CiðtÞ ð22Þ

1
T

� �
ðt ! t þ DtÞ ¼ Ntotðt þ DtÞ � NtotðtÞ �

P
iSi;sSi;nDt

NtotðtÞDt
ð23Þ

where NtotðtÞ is the total number of prompt neutrons and delayed
neutron precursors at time t and 1

T

� �ðt ! t þ DtÞ is the measured
reciprocal period as measured in the time interval t to t þ Dt .

To examine this three simulations were run. The supercritical
case from Section 5.1 will be used. Although in each case the time
step used for advancing the model dt was held constant at 105 s,
the value of Dt used calculating the observed inverse period was
10�5 s for the first simulation, 10�4 s for the second and 10�3 s
for the third. In each simulation, 100,000 realisations were con-
ducted each lasting 1 s. As the simulation in Section 5.1 shows,
NtotðtÞ is very likely to diverge in that time and so each realisation
will sample a number of points over the range of values of NtotðtÞ.
The results are shown in Fig. 3.

In all cases the mean value stays approximately constant, show-
ing that the proportional rate of increase of the number of neutrons
and precursors was independent of both the number of neutrons in
the system and the period over which a measurement occurs. In all
cases both the number of times the ensemble of realisations
observed the reactor having a certain number of prompt neutrons
and precursors decreased as the number of prompt neutrons and
precursors increased. This is because, as the expected rate of
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change is proportional to the number of prompt neutrons and pre-
cursors and so a given realisation of a system is more likely to skip
a specific number of prompt neutrons and precursors as the num-
ber of prompt neutrons and precursors increases.

The standard deviation of the measured reciprocal period also
drops significantly as the number of prompt neutrons and precur-
sors increases. This is because the denominator of Eq. (23) grows
larger with Ntot faster than the numerator. The standard deviation
also drops more quickly and to a lower level as the value of Dt

increases. This is due to the fact that the size of Dt relative to K

(1:8202� 10�4 s in this case) determines the number of interac-
tions which happen per prompt neutron over the measurement
period Dt . The larger the number of interactions which occur the
more predictable the value of 1

T

� �ðt ! t þ DtÞ.
These results allow us to estimate the number of prompt neu-

trons and delayed neutron precursors required for the determinis-
tic modelling described in Section 2.2 to be appropriate. The
condition is that the standard deviation in the reciprocal period
over the temporal resolution of the measurement being taken be
significantly lower than the mean. For the remainder of the simu-
lations in this paper the finest temporal resolution used when the
deterministic model may be used due to a high number of prompt
neutrons and precursor will be around 10�3 s. As a result we select
a value of Nthresh of 2000.

5.3. Survival probability

One basic simulation which may be performed is the observa-
tion of a single initial neutron and the observation of the probabil-
ity of the resulting neutron chain existing as a function of time in
the absence of any sources. For critical and subcritical cases this
will always tend to zero as t ! 1 and will tend to a finite non-
zero value for supercritical cases as all chains will eventually die
out or attain a high enough population that the probability of it
decreasing to zero tends to zero. The two cases studied here will
be the subcritical and supercritical cases described in Section 5.1
but with one initial prompt neutron and no sources present. As
the reactivity is constant in this case, these results may be com-
pared with results simulated using the Backward Master Equation
which is utilised for a similar problem in Cooling et al. (2016). That
version of that method is limited to considering prompt neutrons
only and matches very well with the corresponding results
obtained by using the method described in this paper.

Fig. 4 shows the results for the subcritical case both with and
without the presence of delayed neutrons. The survival probability
tends to zero as t ! 1 as all neutrons chains will eventually die
out in a subcritical or critical system. The majority of this decrease
occurs over the same timescale as the neutron lifetime
(1:8202� 10�4 s) but the survival probability begins decreasing
much more slowly when it reaches about 0.1 s. This is because
there is a finite chance the neutron chain has produced one or
more delayed neutron precursors which decay over the timescale
of 1

ki
(typically 0.1–100 s). It is over these timescales that the final

descent of the survival probability to zero occurs. The results share
the major features of results of simulations of similar systems pre-
sented in Williams and Pázsit (2015). In the case where no delayed
neutrons are included (achieved by temporarily setting bi ¼ 0) this
secondary descent is absent and, instead, all neutron chains decay
on the timescale of the neutron lifetime.

Fig. 5 shows the decay of the survival probability in the super-
critical case described in Section 5.1 both with and without
delayed neutron precursors. In the case without delayed neutron



Fig. 2. A single, typical realisation of the supercritical system described in Section 5.1.
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precursors, the keff value as calculated by Eq. (21) is actually
slightly lower (1.108) than the case with delayed neutrons
(1.116) the survival probability as t ! 1 is also slightly lower
(0.1094 compared to 0.1127). Like the subcritical case, the survival
probability initially drops with a timescale equal to the prompt
lifetime. In the case without delayed neutrons the survival proba-
bility, again, tends to its final value immediately whilst, in the case
with delayed neutrons, this progression is slowed to the timescale
of the lifetime of the delayed neutron precursors as a number of
precursors will be produced.

5.4. Extinction probability with the presence of a source

Another basic result which may be examined is the probability
that no neutrons are present at a particular time in the presence of
a source. Two types of ‘‘extinction probability” will be considered.
In the first the neutron chain will be considered extinct if no
prompt neutrons or delayed neutron precursors are present. In
the second the chain will be considered extinct when no prompt
neutrons are present (regardless of whether delayed neutron pre-
cursors are present or not). At t ¼ 0 no neutrons or precursors
are present. Again, the subcritical and supercritical cases from
Section 5.1 will be used with the same source with a strength of
1000 incidents/s with each incident releasing 1 neutron. We will
also examine the case where no delayed precursors can be created
(by setting bi to zero in the same fashion as Section 5.3). In this
final case no delayed neutron precursors are produced and so the
two definitions of extinction probability are identical.

Fig. 6a shows the two different definitions of extinction
probability and the case without any delayed neutrons for the
subcritical case. In both cases the extinction probability begins to
decrease on a timescale similar to 1

S1;s
as the first neutron chains

are initiated.
In the subcritical case the definition of extinction which

requires there to be no delayed neutrons present for the chain to
be extinct tends to zero as delayed neutron precursors decay rela-
tively slowly and are produced in a large enough fraction of fissions
that there are soon significant numbers of delayed neutron precur-
sors in each realisation (see Fig. 7a). For the case where only the
lack of prompt neutrons is required for the system to be considered
extinct or the case where no delayed neutrons are modelled the
behaviour is similar and the extinction probability tends to a value
around 0.48. This is consistent with prompt neutrons being created
by fission and the source and being removed from the system
through capture at a similar rate.

In the supercritical case the differing definitions of ‘‘extinct” or
the inclusion or exclusion of delayed neutron precursors makes lit-
tle difference and the extinction probability tends to zero. This is
because, in every realisation the population of prompt neutrons
eventually rises high enough such that it will never return to zero.
This can be seen in Fig. 7b where the number of delayed neutron
precursors continues to grow at a significant rate.

Both the survival probability and extinction probability are
special cases of the more general ability of the model to asses
the probability of the system having different numbers of prompt
neutrons and/or delayed neutron precursors. It is easy to extract
from the model the probability of the system having at least, no
more than or an exact number of prompt neutrons and/or delayed
neutron precursors in a specific group or groups at a given time or
as a function of time through examination of each realisation and



Fig. 3. The reciprocal period as measured in 100,000 realisations as a function of the total number of neutrons and precursors.

Fig. 4. The survival probability of the chain resulting from a single neutron in the subcritical system described in Section 5.1 and the probability density function of the time
of death of the chain. Note that in Fig. 4a the ‘‘Master Equation” line overlies the ‘‘Without Delayed Neutrons” line.
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keeping a tally. This would allow the construction of the type of
probability distribution described in Bell (1963) which forms the
basis of the Forward equation.

5.5. Power peaks

This model is also capable of modelling a power peak. To do this
the relevant cross-sections are re-defined as follows:
X
c

¼
0:3� 0:1 t

tramp
for 0 < t < tramp

0:2 otherwise

(
; ð24Þ

X
f

¼ 0:4; ð25Þ

X
esc

¼ 0:3þ cE;escEðtÞ; ð26Þ



Fig. 5. The survival probability of the chain resulting from a single neutron in the supercritical system described in Section 5.1 and the probability density function of the time
of death of the chain.

Fig. 6. The extinction probability for the two cases described in Section 5.1. ‘‘Prompt and Delayed” refers to the definition of a chain being extinct when there are no prompt
neutrons or delayed neutron precursors whilst ‘‘Prompt Only” refers to the definition of a chain being extinct when no prompt neutrons are present, regardless of the number
of delayed neutron precursors. The case ‘‘No Delayed Precursors Simulated” refers to the case where no delayed neutron precursors are simulated, which renders the two
definitions of extinction identical.

Fig. 7. Mean numbers of delayed neutron precursors in each group.
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where tramp is the duration of the reactivity ramp which causes the
peak and is equal to 1s in this case. cE;esc is the rate at which the
escape probability increases with the total energy released and is
equal to 10�9 J�1. This is designed to qualitatively approximate neg-
ative reactivity feedbacks which are found in many nuclear systems
where, over short timescales, the reactivity may be approximated to
decrease linearly with the energy deposited. It is noted that these
feedbacks themselves may also contain some stochastic effects
(such as those associated with the transitions between different
boiling regimes in a water-cooled reactor), as these stochastic
effects are not the focus of this paper we make the simplifying
assumption that the feedbacks of the systems studied are determin-
istic. EðtÞ is the energy released by fissions in the system. It is
defined as:
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EðtÞ ¼
Z t

0
vf Fðt0Þdt0; ð27Þ

where vf ¼ 3:204� 10�11 J is the energy released per fission and
FðtÞ is the fission rate. Note that this fission rate can either be a ser-
ies of delta-functions in the instance where the probabilistic model
is being used or a continuous function of time where the determin-
istic model is being used. In this case it defined as:

FðtÞ ¼ NðtÞpf

K
: ð28Þ

A singleton source with a strength of 1000n/s is included and
there are no neutrons or delayed neutron precursors present at
t ¼ 0. All 6 delayed neutron groups described in Table 1 are
included. The result of these definitions is that the system will be
initially subcritical before the falling capture cross-section causes
the system to become supercritical, allowing a neutron chain to
grow large. As fissions release energy the escape cross-section will
increase and the system will become subcritical and the number of
neutrons and the power will decrease; thus, a power peak is cre-
ated. As the system is a conceptual system used as a proof of con-
cept for this model, the details of what the cross-sections and their
variations might physically represent are not of any importance:
the overall qualitative behaviour of the keff in response to the pro-
gression of time and the energy released is what is important.

5.5.1. Individual realisations
We first examine a number of individual realisations in Fig. 8. In

each case the prompt neutron population is initially fluctuating at
a low value in a similar fashion to Fig. 1 as the system is subcritical.
The value of keff first goes above one at 0.30 s and the system
Fig. 8. A sample of individual stochastic realisations of the system d
becomes prompt supercritical at t = 0.36 s. At this point any neu-
tron chain has the potential of increasing significantly in number
but, as shown in Fig. 7b, this is not guaranteed to happen immedi-
ately. In the realisations shown in Fig. 8, Realisation 1 increases
and reaches its peak first and Realisation 3 increases last. It can
be observed that the later a chain starts increasing significantly
in number, the higher its peak power and the later it is attained.
At the peak power the total energy released increases significantly
and the keff drops sharply, causing the prompt population to
decrease. However the definition of

P
c in Eq. (24) means that

the keff subsequently rises again until t ¼ 1 s. The higher keff and
the decay of delayed neutrons created in the power peak cause a
gentle rise in power in this region which is more pronounced the
earlier the power peak occurred. The non-zero power causes the
keff to reduce over time and so the prompt neutron population
decreases at a rate largely determined by the rate of decay of
delayed neutrons.

Also displayed in Fig. 8 are the results obtained when only the
deterministic model is employed (in practise this is achieved by
setting Nthresh ¼ �1). This result displays a much smoother beha-
viour whilst the system is subcritical and the population is small.
Once the population begins to rise the behaviour is very similar
to the coupled realisations. The deterministic case happens to rise
slightly earlier than all three realisations but there is no guarantee
this will be the case for any coupled realisation.

5.5.2. Ensemble of realisations
More information on the behaviour of such a system can be

obtained through the examination of a large number of realisa-
tions. Details of the time-progression of several statistical quanti-
ties are displayed in Fig. 9. Before the system becomes critical at
escribed in Section 5.5 alongside the deterministic simulation.



Fig. 9. Statistical outputs from an ensemble of 10,000 realisations of a power peak. Deterministic results are included for comparison in all cases except the delayed neutron
population case where it is not included for clarity.
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0.30 s the neutron and delayed neutron precursor populations are
low and vary significantly from realisation to realisation due to the
non-deterministic behaviour in this physical regime. This causes
the standard deviation in the prompt neutron population and the
total amount of energy released to be comparable in size to the rel-
evant means. The keff rises but does not see a significant standard
deviation as little enough energy has been released in any realisa-
tion that its value remains largely unaffected by the feedback term
in Eq. (26).

When the system becomes supercritical the mean prompt neu-
tron and delayed neutron precursor populations increase signifi-
cantly as the neutron population in some realisations begin to
diverge. This also causes the standard deviation of the keff to rise
as, in some realisations, significant amounts of energy have now
been released whilst, in others, almost none has been released.
The standard deviation of the prompt neutron population also
increases sharply and remains the same order of magnitude as
the mean. This is because, as shown by Fig. 8a, in each realisation
the prompt neutron population rises to a very high level for a short
period of time. This means that, across the ensembles of realisa-
tions at this time, a few have very high prompt neutron popula-
tions whilst all the others have significantly lower populations
either as they are yet to have their power peak or because they
already have and have proceeded to the lower plateau after the
peak.

Eventually, by around 0.9s almost all chains have experienced
their power peak and, although the keff still rises until t = 1 s
due to Eq. (24), it remains subcritical for the remainder of the
simulation. The prompt neutron and delayed neutron precursor
populations begin to decrease relatively slowly as delayed neutron
precursors formed in the power peak decay, releasing prompt neu-
trons. At this time the standard deviation of the prompt neutron
population, the total energy released and the keff drops so it is sig-
nificantly lower than the mean. This is because, regardless of when
the power peak occurs a similar total amount of energy has been
released at approximately the same time, meaning there are
approximately the same number of delayed neutron precursors
to decay in an environment with a similar keff .

The deterministic results appear qualitatively similar to the
mean results. The peak power of the deterministic case is actually
a little larger and is obtained a little earlier than the peak of the
mean power. This is because the peak value of the average neutron
population is an average of several sharp peaks and appears when
these peaks are most tightly grouped but is less sharply peaked
than any of the individual peaks.

We may gain more information by looking at the ensemble of
results of the distribution of peak powers and total energy released
over the course of the 100s of the simulation, which are displayed
in Fig. 10. The peak power shows a distribution with a mean of
3.62 �109 W and a standard deviation of 4.89 �108 W. A small
minority of the realisation showed a peak power of over
5 �109 W and the largest power observed was 7.51 �109 W.
However, this is not a hard upper limit to the actual distribution
as the distribution shows that there are relatively few realisations
which attain this power (hence the jagged appearance of the
distribution). This means the scenario which theoretically attains



Fig. 10. Distributions of the peak power and total energy released. The values obtained by the deterministic case are also included and are delta functions. Produced from
10,000 realisations for each case.

C.M. Cooling et al. / Annals of Nuclear Energy 94 (2016) 655–671 665
the highest possible peak power was simply not simulated in the
10,000 realisations performed. Nonetheless, the distribution here
clearly shows the distribution which will be displayed in the vast
majority of instances.

The total power released is much more tightly grouped. The
long tail of low probability events with higher values is still pre-
sent, but it does not extend as far compared to the mean as the
peak power. The mean energy released is 9.96 �107 J whilst the
standard deviation is only 1.90 �106 J. This means that the amount
of energy produced by the system in this transient is fairly
consistent.

The values of the deterministic results are also included in
Fig. 10. As can be seen, the deterministic peak power and total
energy released are 3.27 �109 W and 9.84 �107 J respectively
and are slightly lower than the mean values produced by the cou-
pled model by 9.7% and 0.1% respectively.

5.5.3. Comparing power peaks
We may simulate variations of the system introduced at the

start of Section 5.5 and compare the distributions of peak power
and total energy produced. The two parameters we will chose to
vary here are the length of time over which the reactivity ramp
occurs tramp (see Eq. (24)) and the strength S1;s of the single neutron
emission source. The results are shown in Fig. 11.

For the same value of tramp, the source intensity does not affect
the lowest peak power or lowest total energy released in a realisa-
tion. This is because both of these events occur when a neutron
Fig. 11. Distributions of the peak po
chain is initiated just as the reactor becomes prompt supercritical
(meaning the transient occurs when the reactivity is as low as pos-
sible) and this is possible for any non-zero source strength. How-
ever, for higher source strengths the distributions of the peak
power and total energy released are more tightly grouped to these
lowest values, resulting in lower means and standard deviations
for these values. This is because the higher the source strength
the more neutrons are likely to be released when the reactivity is
only just prompt supercritical and the more neutron chains have
a chance of growing and forming the power peak when the reactiv-
ity is low. This results in a lower peak power and total energy
released as the amount of energy needed to be released to cause
the system to be subcritical again. Additionally, the lower the reac-
tivity when the neutron chain diverges the slower the increase in
power as a function of time will be and so the lower the peak
power will be.

For the same source intensity, the higher the value of tramp the
lower the peak power. This is for two reasons. Firstly, in a fashion
similar to the higher source strength, the higher the value of tramp

the slower the reactivity increases, meaning there are more neu-
tron chains initiated when the reactivity is relatively low, increas-
ing the probability that a neutron chain will diverge and form the
power peak when the reactivity is low. The second effect occurs
because the rise in power occurs over an appreciable amount of
time. For instance, for realisation 3 in Fig. 8 the power begins to
increase at t ¼ 0:60 s and the peak power occurs at t ¼ 0:80 s. For
a smaller value of tramp the reactivity will increase more while
wer and total energy released.



Table 2
Delayed neutron precursor group data for the refined model of Godiva. The total value
of b is 650 �10�5. These are the values for pure 235U given in Lamarsh and Baratta
(2001).

m bm km (s�1)

1 21.5 �10�5 0.0124

2 142.4 �10�5 0.0305

3 127.4 �10�5 0.111

4 256.8 �10�5 0.301

5 74.8 �10�5 1.14

6 27.3 �10�5 3.01

Table 3
Fission source totalling 90n/s (i.e.

P
iSi;nSi;s ¼ 90 s�1) with probabilities of different

multiplicities of neutrons proportional to the values of pn as defined in Table 1.

i Si;n Si;s (s
�1)

1 1 6.441
2 2 12.550
3 3 11.345
4 4 4.727
5 5 0.978
6 6 0.0977
7 7 0.00530

666 C.M. Cooling et al. / Annals of Nuclear Energy 94 (2016) 655–671
the power is rising, meaning the power will need to rise higher and
more energy will need to be released to cause the reactor to
become subcritical.

6. Godiva

Godiva is an unreflected sphere of Highly Enriched Uranium
(HEU) which was dominated by fast fission and was operated in
a pulsed operation mode (Peterson, 1953). Hansen (1960) presents
a substantial amount of theoretical and practical work surrounding
the Godiva reactor which has become somewhat of a benchmark in
the analysis of systems with a low neutron population. In this work
we attempt to recreate some of the results present in Hansen’s
work both as an act of validation for this work and as an attempt
to present new evidence and explanations to a historic problem.
This section attempts to recreate two key experiments discussed
in Hansen (1960) which involve a ramp insertion and a delayed
supercritical step insertion.

6.1. Ramp insertion

Hansen (1960) describes a scenario underwhich the reactivity of
Godiva is steadily increased in the presence of a weak neutron
source, resulting in a power peak at some non-deterministic time
and power. We wish to model only the first peak and, as a result,
when the total energy released EðtÞ exceeds the value Ethresh (indicat-
ing the power peak has begun) the representation of Godiva will
change to allow the power peak to end naturally and prevent further
neutron chains being started.We adopt a value of 1 kJ for Ethresh. This
change is partially for performance as fewer neutrons will need to
bemodelled and partially to prevent other neutron chains releasing
significant amounts of energy after the initial power.

Hansen made several approximations to the physics in the
modelling of Godiva. As a result, two approximations to the Godiva
reactor will be presented here: one which attempts to replicate
Hansen’s model of Godiva and another which attempts to model
Godiva as closely as possible. The two main differences are the
treatment of delayed neutrons and the treatment of the source.

There are several parameters which are common to both repre-
sentations of Godiva. Hansen states the prompt neutron lifetime of
Godiva was 6� 10�9 s and this value will be adopted as K in this
work. Hansen doesn’t state the relevant values of pn for Godiva
but, as Godiva was comprised of HEU we approximate it as being
that of pure 235U which is given in Zucker and Holden (1986)
and are used in the example system examined in Section 4 and
are the same values of pn used in that section which are detailed
in Table 1. Hansen stated Godiva had a well-known quenching con-
stant of 5� 10�20 per neutron absorbed.

Hansen (1960) describes the case where the reactivity increased
at a rate between 10�2 s�1 and 10�1 s�1 so we choose to use a value
of 3�10�2 s�2 in order to be in the middle of this range. We may
combine this with the quenching coefficient of 5� 10�20 per
neutron absorbed to produce the following expressions for cross-
sections (recalling that it is only the relative size of

P
esc þ

P
c toP

f that is important:X
f

¼1; ð29Þ
X
esc

ðtÞ¼ cE;escJ
�1EðtÞ; ð30Þ

X
c

ðt¼ 0Þ¼ 1:4105 for simulations without delayed neutrons
1:4262 for simulations with delayed neutrons

�
ð31Þ

d
P

c

dt
¼ �3�10�2s�1 for EðtÞ< Ethresh

0 otherwise

(
; ð32Þ
where cE;esc ¼ � 5�10�20�m
vf

¼ 3:762� 10�9 J�1. This formulation allows

the reactivity to stop increasing after the initial power peak, mean-
ing the same neutron chain cannot reignite after the power peak as
the system remains subcritical. Note that there are two different
values for

P
c where which one is used depends on if the model

used contains delayed neutron precursors or not. The reason for this
is because, as shown in Eq. (10), the inclusion of delayed neutron
precursors increases the mean number of neutrons produced per
fission which, in turn through Eq. (21), results in a higher keff
because delayed neutrons are being produced in addition to prompt
neutrons. Thus, having two values for

P
c ensures that the system

has is exactly critical at t ¼ 0 in both cases.
To create the more refined representation of Godiva six delayed

neutron precursor groups are included with the values for each
presented in Table 2. Hansen (1960) states the source strength
within Godiva as 90 neutrons/s. When attempting to replicate
Hansen’s representation of Godiva this will be treated as a single
source with S1;s ¼ 90 s�1 and S1;n ¼ 1. However, when trying to rep-
resent Godiva more exactly we use the fact that we know the fis-
sion source in Godiva was largely spontaneous fissions to
represent the sources with different values of Si;n as a number of
different sources as in Table 3. For the time being, in both cases
the source will be switched off once EðtÞ > Ethresh which prevents
other neutron chains from starting after the main peak. From here
on we refer to the representation of Godiva with a fission source
and the presence of six delayed neutron groups as the ‘‘modified
representation”.

The results showing the distribution of the energy produced
under the different assumptions are shown in Fig. 12. A major fea-
ture of this figure is that the modified representation produces a
significantly larger amount of energy compared to the representa-
tion designed to replicate the representation in Hansen. This is pri-
marily due to the inclusion of delayed neutrons. Without delayed
neutrons it is possible that, almost immediately a neutron will be
produced and lead to a chain which causes a power peak. Such a
peak will be small because little reactivity has been added by the
ramp. In the case with delayed neutrons, the system must become
prompt supercritical in order to for the power to increase signifi-
cantly. Once the system drops back to being delayed subcritical
the prompt neutron population drops more slowly as a large



Fig. 12. Total energy released for two different representations of the Godiva
reactor by both the coupled and deterministic models. Each of the coupled runs is
based on an ensemble of 10,000 realisations.
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number of delayed neutron precursors are decaying. This causes
the power peak to be much wider and so, particularly for the less
energetic realisations, much more energy is released.

Another key observation is that deterministic value for a partic-
ular representation falls at the very lowest values of the total
amount of energy released as simulated by the coupled model
which indicates the deterministic model severely underestimates
the mean energy released in the transient. This is one of the key
results of Hansen’s work. Hansen derives an expression for the
ratio of the mean energy released in a non-deterministic model
to the mean released in a deterministic model:

E
Ek

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p�mv2

8SK ln 2as
bS

ffiffiffiffiffi
2pK
a

p
� �

vuuut ; ð33Þ

where E is the mean energy release predicted by the stochastic sys-
tem, Ek is the energy release predicted by the deterministic system,
v2 is the second factorial moment of the neutron multiplicity distri-
bution, S is the source strength, a is the reactivity ramp rate and b is
the quenching parameter. Hansen obtains a value for this ratio of
between 235 and 252. The corresponding value for this work comes
from a comparison of the two Hansen representations in Fig. 12
which provides a value for this ratio of 230 which is in good agree-
ment with Hansen’s work. However, we may then use the data in
Fig. 12 to perform the same analysis for the modified representation
of Godiva (which includes the fission source and delayed neutrons)
for which we obtain a value of 4.21. This indicates that the effect of
delayed neutrons significantly reduces the impact of the non-
deterministic behaviour early in the simulation, which deserves fur-
ther study.

The reason this ratio changes so much with the introduction of
delayed neutrons is as follows. In the case where there are no
delayed neutrons modelled, as soon as keff exceeds 1 the number
of prompt neutrons may begin to increase under the coupled
model and will increase under the deterministic model. The num-
ber of prompt neutrons will increase rapidly until the energy
released is sufficient to counter the positive reactivity insertion.
This may occur when the system has a reactivity of, for instance,
10 pcm above critical. This requires a small release of energy to
counter. This results in the deterministic case and the least ener-
getic of the coupled simulations to have a similar low energy pro-
duced over the course of the power peak. For the coupled case it is
also possible that the prompt neutron population may not start to
rise until the reactivity is at a few hundred pcm, which would
result in a much larger amount of energy released. This description
applies to the lines marked ‘‘Hansen Representation” in Fig. 12 and
explains why the ‘‘Hansen Presentation, Coupled” case produces a
large range of energies produced.

With delayed neutrons however, the system must reach the
state of being prompt supercritical (that is the system is 650 pcm
above critical in this case). At this point the number of prompt neu-
trons may begin to increase under the coupled model and will
increase under the deterministic model. The number of prompt
neutrons will this increase until the energy released causes the sys-
tem to drop back to being delayed supercritical. However, many
delayed neutron precursors were created in this prompt peak
and they will cause the power to remain at a non-negligible level
until the amount of energy released is enough to counter the
�650 pcm positive insertion from the ramp. This description
applies to the lines marked ‘‘Modified Representation” in Fig. 12.
As a result the smallest amount of energy released as predicted
by the coupled model and the amount of energy released predicted
by the deterministic model increase significantly compared to the
case where no delayed neutron precursors were present. For the
illustrative numbers used in this and the previous paragraphs this
increase is a factor of �70. In fact we see the value for the total
energy released produced by the deterministic codes increase from
79.5 kJ for the Hansen representation to 5.09 MJ (a factor of 64.1)
and the lowest energy observed to be released from in coupled
case produced by the coupled model increase from 70.4 kJ for the
Hansen representation to 5.08 MJ (a factor of 72.2). This effect
explains why the low energy tail of the distribution present for
the Hansen representation is not present for the Modified repre-
sentation in Fig. 12. However, it is only the low energy tail of the
distribution which increases by this factor: the mean changes from
18.3 MJ to 21.5 MJ (a factor of 1.17). This is the reason that the
ratios of the energy produced are so different in the cases when
delayed neutrons are neglected and included: the introduction of
delayed neutrons increases the energy released in the determinis-
tic case much more than it increases the mean energy released in
the coupled case.

Another variation in this scenario which may be examined is
where neither the source nor ramp insertion of reactivity termi-
nates when the first power peak occurs. When this is done the
results are as in Fig. 13. The difference in behaviour between the
different methods of simulations in marked. In the deterministic
version of the case which replicates Hansen’s model the power
oscillates very rapidly due to the low prompt neutron lifetime.
For this reason Fig. 13a) plots the average power over the past
1 ms rather than the instantaneous power – it is not practical to
plot outputs at a sufficiently large number of times to resolve the
oscillation fully. In this instance, as soon as the reactor is supercrit-
ical the power rises almost instantaneously and the reactivity and
power fall. As a result the cumulative energy released appears to
rise smoothly and the keff remains very close to one.

The coupled model simulation of Hansen’s representation of the
system sees a small number of larger distinct peaks. In this case the
keff can be seen to rise steadily until a neutron produced by a
source happens to instigate a neutron chain which grows to a sharp
power peak rather than dies out. This makes the system subcritical
and the keff rises steadily until another power peak occurs. As a
result the keff takes the appearance of an irregular sawtooth and
the cumulative energy released rises in sharp steps.

The modified representation follows a similar pattern whether
the deterministic or coupled method is used. Initially the keff rises
steadily until there is an initial power peak. In the deterministic
case this is when the system becomes prompt supercritical and
in the coupled case this is when a neutron released by a source
when the system is prompt supercritical happens to start a chain
which grows instead of dying out. Once this has happened how-
ever, both see a decrease in power. The power does not drop as



Fig. 13. Simulations of the Godiva reactor by both the coupled and deterministic models. Unlike the results in Fig. 12 the reactivity ramp and source is not switched off at the
first power peak. Fig. 13a–c represent a single realisation whilst in Fig. 13d the coupled simulations represents data from an ensemble of realisations. Note that in Fig. 13d the
lines produced by the ‘‘Modified” representations of Godiva overlay each other and may be difficult to distinguish.
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much as when Hansen’s representation is used as the delayed neu-
tron precursors created in the power peak continue to decay and
prevent the population falling far. In the coupled case the power
falls to a trough before rising again as more negative reactivity
was inserted in the initial power peak. However, both cases tend
towards the same value in terms of both current power and cumu-
lative power released. The power slowly drops in this region as the
excess delayed neutron precursors created in the initial power
peak slowly decay.

The distribution of the total energy released in Fig. 13d is much
tighter than those of Fig. 12. This is because the total reactivity
insertion over 10s is the same in all cases, unlike the previous case
where the ramp reactivity stopped when the energy released
reached a certain level or, as Hansen modelled the system, at the
first peak power. As a result the total amount of energy released
is very close to the amount of energy required to provide enough
negative feedback to counter the positive feedback inserted.

For the deterministic functions the amount of energy released
is, again, a delta function. The amounts of energy released in the
deterministic cases (for the Hansen and the modified representa-
tions) are very similar. The amount of energy released in the sim-
ulation performed with the coupled model of the modified system
is not a delta function but a very narrow distribution with a stan-
dard deviation of 10.5 kJ and a mean of 82.780 MJ that lies almost
exactly on the value produced by the modified deterministic model
(82.825 MJ). This is because the system in both cases, after an ini-
tial power peak, the delayed neutrons cause the system to tend
smoothly to a state where the total amount of energy released
exactly provides sufficient negative reactivity to exactly counter
the positive reactivity inserted into the system. It is only the case
where the coupled model is used with Hansen’s original model
of Godiva (which neglected delayed neutron precursors) that sees
a significant distribution in the total amount of energy released
and even this is fairly tightly grouped (it has a standard deviation
of 6.67 MJ compared to a mean of 79.572 MJ which is very close to
the deterministic value of 79.752 MJ). This distribution occurs
because, for a given realisation at t = 10 s he system may have just
undergone a power peak and so have produced more energy than
required to make the system subcritical or the system may cur-
rently be supercritical as not enough energy has been released to
make it subcritical (Fig. 13c illustrates this well).

We may again compute the key result from the work of Hansen
(1960): the ratio of the mean energy released in the stochastic case
to the energy released in the deterministic case. For both cases
(Hansen’s representation and the modified representation with
delayed neutrons) this value is almost exactly one.

A summary of the ratios of the average energy released pre-
dicted by a non-deterministic model to the energy released pre-
dicted by a deterministic model is displayed in Table 4. These
results imply that the reason Hansen obtained large values for this
ratio were the assumptions he made regarding the physics of the
system and the value he chose to simulate. Specifically, Hansen
neglected the effects of delayed neutrons, only the energy released
to the first peak was used the value of interest and both the ramp
reactivity insertion and source were considered to be switched off
when the peak power is obtained. If the effects of delayed neutrons



Table 4
Summary of the ratio of the average energy released predicted by a non-deterministic model to the energy released predicted by a deterministic model. The energy values in
question is different in different cases as defined by the row ‘‘Ratio”.

Case 1 Case 2 Case 3 Case 4 Case 5

Data source Hansen (1960) Fig. 12 (Hansen) Fig. 12 (Modified) Fig. 13d (Hansen) Fig. 13d (Modified)
Source multiplicity Single Single Fission Single Fission
Source cut-off Peak power EðtÞ ¼ 1 kJ EðtÞ ¼ 1 kJ t ¼ 10 s t ¼ 10 s
Ramp cut-off Peak power EðtÞ ¼ 1 kJ EðtÞ ¼ 1 kJ t ¼ 10 s t ¼ 10 s
Delayed neutrons None None 6 Groups None 6 groups
Ratio Energy at Peak Energy over 10 s Energy over 10 s Energy over 10 s Energy over 10 s
Ratio value 235–252 230 4.21 0.998 0.999
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are accounted for this value drops significantly and if the value of
interest is the energy released following a fixed period of time
(which contains the first peak) instead of to the first peak only
and if the source and reactivity ramp remain after the first power
peak then this ratio drops to one. Examination of Fig. 13 clearly
shows that different sets of assumption can still have a very
marked effect on the behaviour and the progression of the system
with time even if the specific ratio discussed here is close to one.

6.2. Step insertion

Hansen (1960) describes another set of experiments performed
with Godiva: those of a step insertion of reactivity such that, after
the step keff � 1 ¼ 0:0047. The result is a delayed supercritical
insertion with a slowly increasing power. The experiment was
repeated 30 times and, on each occasion, the amount of time taken
for the prompt neutron population to reach 4200 neutrons was
observed. Hansen presents a model containing one delayed neu-
tron precursor group which approximates the mean and standard
distribution of this time well. We now attempt to replicate this
experiment with this model.

Unfortunately Hansen does not state the decay constant of the
one delayed neutron precursor group he used in his model so it
is not possible to recreate his representation of Godiva in this case.
Instead, we rely on the modified model of Godiva used in Sec-
tion 6.1 with the following definitions of the cross-sections:X
f

¼ 1; ð34Þ
X
esc

ðtÞ ¼ cE;escJ
�1EðtÞ; ð35Þ

X
c

¼ 1:4149: ð36Þ

Again we use a generation time of 6� 10�9 s. For each realisation
the time t when nprompt is first at least 4200 neutrons is recorded.
Fig. 14. The probability distribution of the time at which the neutron population of
Godiva first exceeds 4200 neutrons based on 10,000 realisations of the system.
The distribution for this value is presented in Fig. 14. The mean
and standard deviation obtained are 29.8 s and 5.2 s respectively,
compared to the experimental values presented in Hansen of
31.8 s and 4.6 s and the results of Hansen’s model which were
32.5 s and 3.3 s. All of these values are fairly close to each other
indicating good agreement and helping to validate this model.
7. Model performance

The simulations presented in this paper were all run on a 20
core desktop. To run a simulation of 10,000 realisations such as
that in Fig. 5.5 typically took around one hour (although this could
vary significantly with the problem being modelled). The amount
of memory required is minimal as each rank only needs to store
the information regarding the realisation it is currently working
on and the relevant tallies and statistics for the desired observa-
tions before the information from all ranks is combined after all
realisations are complete. As there is almost no communication
between ranks it is anticipated that the parallel efficiency would
remain very high even when simulations are performed on com-
puters with a very large numbers of cores.

There are different regimes under which the model may operate
and the rate at which the model progresses through simulated
time will be different in each case. A rough sketch of these regimes
is shown in Fig. 15. This diagram is very approximate and is used to
demonstrate broad behaviour. It neglects changes in keff and source
strength over time and neglects the effects of delayed neutrons.

The first requirement for the code to run slowly is the frequent
need for small timesteps (see Section 2.1). This is due to the fre-
quent presence of prompt neutrons or the presence of a high inten-
sity source. The presence of delayed neutron precursors does not
Fig. 15. Different regimes of model operation.
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often cause very small timesteps because even the shortest-lived
precursors have a lifetime of �0.1 s, which is relatively long com-
pared to the lifetime of prompt neutrons or 1

Si;s
for a large Si;s. For

the system to be inefficient this must also be coupled with a high
combined number of prompt neutrons and delayed neutron pre-
cursors as these must be simulated at each time step (bearing in
mind that this combined population may not exceed Nthresh before
the more efficient deterministic model takes over).

In regime 1 of Fig. 15 the system is supercritical and the neutron
population will be high (note that the system will not exist in this
state for long before the population becomes very large and over-
flows in the code, so care must be taken if this regime is part of a
simulation). In this case the deterministic model described in Sec-
tion 2.2 will be employed which is very efficient. In regime 2 the
system is subcritical but the source strength is sufficiently high
that the equilibrium population is above Nthresh and the determin-
istic model is again employed.

In regime 3 the prompt neutron population is frequently zero
and, when it is non-zero, will not frequently be high. This means
that the probabilistic model described in Section 2.1 is employed
but the time step will be long much of the time and, when it is
not, there are not many neutrons to simulate and so the model is
efficient in this regime. In regime 4 the probabilistic model is again
employed but, this time, the neutron population is frequently non-
zero. However, the neutron population does not rise very high. This
means that, whilst the time step is short, there are not many neu-
trons to simulate and so the code runs at a reasonable speed. In
regime 5 the probabilistic model is still employed but there may
frequently be many hundreds or thousands of neutrons which
need to be simulated. This is the regime in which the code runs
slowest as the time step is short and there are many neutrons. This
is progressively worse the higher the source and the keff until the
point when the neutron population exceeds Nthresh. Thus, by lower-
ing Nthresh this regime can be minimised, although this comes at the
cost of losing the simulated non-deterministic behaviour. This is
why studies like that in Section 5.2 are useful for informing this
compromise. In regime 6 the source strength is high enough that
the time step is forced to be very short which will make the code
slow to progress through simulated time.

A low value of K may also degrade the efficiency of the code if
there are frequently neutrons present and the system is subcritical.
Although each neutron chain lasts a smaller amount of time as the
generation time is smaller, a sufficiently high source could mean
the time step is frequently very small indeed. This limits the prac-
tical application of the code for fast fission systems.

It is worth stressing that behaviour of this nature, although they
may reduce the efficiency of the code, do not mean the code will
not work: it will just take longer to run. A user should be aware
of this behaviour when using this model so they may understand
its practical limitations and chose parameters for the simulation
of a given scenario effectively.
8. Conclusions

This method has proved to be a very feasible way of modelling a
system with a low neutron population and its transition into a crit-
ical state with a much higher population. The method is simple to
implement and runs reasonably quickly in a large subset of rele-
vant scenarios due in large part to its straightforward implementa-
tion in a parallel fashion. The fact that each realisation is performed
individually makes extracting meta-data an easy process. This
paper has also demonstrated how the low neutron population
model may be integrated with traditional deterministic models.

The model shows the impact of delayed neutrons on standard
tests of populations with low neutron populations such as survival
probability and extinction probability. The largest impact is on the
rate at which the system tends towards its final value for a partic-
ular measure although the final value itself is generally unchanged.
However, due to the long lifetimes of delayed neutron precursors,
the final value of the extinction probability is changed significantly
if it is considered that no delayed neutron precursors are present
for a system to be extinct. The presence of delayed neutron precur-
sors was also shown to increase the minimum energy released in a
peak formed by a ramp insertion when the coupled model is
applied and also the energy released when the deterministic model
is applied.

The coupling of the two simulation methodologies has also
allowed the effect obtained when a supercritical system with a
low population takes a non-deterministic amount of time to
diverge in terms of neutron population and how this can alter
the peak power and total energy released if the reactivity is chang-
ing over time. The effects of different source strengths and differ-
ent rates of change of reactivity was also investigated with
higher source strengths and slower rates of changes or reactivity
being observed to produce more predictable power excursions
which release less energy and have a lower peak power.

The model has successfully replicated results predicted by other
methods such as the survival probability of a single neutron chain,
the extinction probability in a system with a neutron source and
experimental data and analytically by Hansen (1960) regarding
the Godiva reactor. By modifying the Hansen’s representation of
Godiva this work has demonstrated how some results are drasti-
cally altered by including delayed neutrons and how considering
slightly different values of interest can produce very different
results.

Future work in this area could include application of the model
to a wider range of systems to analyse the effect that the non-
deterministic early stages of transients has on the transient as a
whole, including the application to more complex physical models
including more realistic feedbacks. Attempts could be made to
simulate pulsed research reactors and comparisons to experiments
could be made. Another extension could be to include uncertainty
in some of the input parameters and to make observation on how
this affects the behaviour of a system.
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