J. Matn. Anai. Appl. 348 (2008) 395-403

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

On sequence space representations of Hörmander-Beurling spaces

Joaquín Motos^{*,1}, María Jesús Planells

Departamento de Matemática Aplicada, Universidad Politécnica de Valencia, Valencia, Spain

ARTICLE INFO

ABSTRACT

Article history: Received 7 April 2008 Available online 18 July 2008 Submitted by J. Xiao

Keywords: Beurling ultradistributions Hörmander spaces Hörmander–Beurling spaces

.

It is shown that $B_{p',1/\tilde{k}}^{\text{loc}}(\Omega)$ is isomorphic to $(B_{p,k}^{c}(\Omega))'_{b}(\Omega \text{ open set in } \mathbb{R}^{n}, 1 \leq p < \infty, k$ Beurling–Björck weight) extending a Hörmander's result (the proof we give is valid in the vector-valued case, too). As a consequence, and using Vogt's representation theorems and weighted L_{p} -spaces of entire analytic functions, a number of results on sequence space representations of Hörmander–Beurling are given.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and notation

In [13, Chapter XV] Hörmander studies the behaviour of the Fourier-Laplace transform in the space $B_{2,k}^c(\Omega) = \inf_{\substack{\alpha \in \Omega \\ k \in \Omega}} [B_{2,k} \cap \mathcal{E}'(K)]$ when Ω is an open convex set in \mathbb{R}^n and k is a temperate weight function on \mathbb{R}^n , and then proves a theorem on the representation of solutions of the equation P(D)u = 0 by integrals of exponential solutions (P(D)) is a constant coefficient partial differential operator). For this he obtains an appropriate collection of seminorms defining the inductive limit topology of $B_{2,k}^c(\Omega)$, proves the isomorphism $(B_{2,k}^c(\Omega))'_b \simeq B_{2,1/\tilde{k}}^{\text{loc}}(\Omega)$ and shows that every continuous seminorm in $B_{2,k}^c(\Omega)$ is bounded by a seminorm of the form $u \to (\int |\hat{u}(\zeta)|^2 e^{-2\phi(\zeta)} d\lambda(\zeta))^{1/2}$ where \hat{u} is the Fourier-Laplace transform of u and ϕ is plurisubharmonic (see [13, Section 15.2]). In this paper we extend the former isomorphism to Beurling-Björck weights [1] and as a consequence (and using Vogt's representation theorems [33] and weighted L_p -spaces of entire analytic functions [25,30]) a number of results on sequence space representations of Hörmander spaces in the sense of Beurling and Björck [1] (= Hörmander-Beurling spaces) are given. This research pursues the study on Hörmander-Beurling spaces carried out in [1,6,12,13,29,33] and [24,25,27,28,32] (see also [14]).

The organization of the paper is as follows. Section 2 contains some basic facts about scalar and vector-valued Beurling ultradistributions and the definitions of the spaces which are considered in the paper. In Section 3 we show that $B_{p',1/\tilde{k}}^{loc}(\Omega, E')$ is isomorphic to $(B_{p,k}^{c}(\Omega, E))_{b}^{\prime}$ when $\omega \in \mathcal{M}$, $k \in \mathcal{K}_{\omega}$, $1 \leq p < \infty$ and E is a Banach space whose dual E' possesses the Radon–Nikodým property (see Theorem 3.2), and we propose the following question: Are the spaces $BV_{p',1/\tilde{k}}^{loc}(\Omega, E')$ and $(B_{p,k}^{c}(\Omega, E))_{b}^{\prime}$ isomorphic (E is any Banach space) (Problem 3.4)? In Section 4, by using the previous isomorphism, some representation theorems of Vogt [33, Theorems 5.2, 6.2] and the solution to Problem 4.11 in [24] given by Cembranos and Mendoza in [3], we partially answer Problem 4.10 in [24] (see Theorem 4.4). We also show that, in general, $B_{\infty,k}^{loc}(\Omega, E)$ is not isomorphic to either $B_{\infty,k}^{loc}(\Omega) \widehat{\otimes}_{\varepsilon} E$ or $B_{\infty,k}^{loc}(\Omega) \widehat{\otimes}_{\pi} E$. Next it is shown that $B_{p,k}^{c}(\Omega, l_q)$ (resp. $B_{p,k}^{loc}(\Omega, l_q)$) is isomorphic to $\bigoplus_{i=0}^{\infty} G_j$ (resp. $\prod_{i=0}^{\infty} H_j$) where G_0 (resp. H_0) is isomorphic to $l_p(l_q)$ and G_j (resp. H_j) is

^{*} Corresponding author. Fax: +34 963 877 664.

E-mail addresses: jmotos@mat.upv.es (J. Motos), mjplanells@mat.upv.es (M.J. Planells).

¹ The author is partially supported by DGES, Spain, Project MTM2005-08350-C03-03.

⁰⁰²²⁻²⁴⁷X/\$ – see front matter $\,\, @$ 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2008.07.031

isomorphic to a complemented subspace of $l_p(l_q)$ for j = 1, 2, ... Then we describe the structure of the complemented normed subspaces of $B_{p,k}^{\text{loc}}(\Omega)$, $B_{p,k}^{\text{loc}}(\Omega, l_q)$ and $\prod_{j=1}^{m} B_{p_j,k_j}^{\text{loc}}(\Omega_j, l_p)$. We also give a new proof (based on our representation theorem $B_{p,k}^{\text{loc}}(\Omega) \simeq l_p^{\mathbb{N}}$) of a well-known result on linear partial differential operators.

Notation. The linear spaces we use are defined over \mathbb{C} . Let *E* and *F* be locally convex spaces. Then $L_b(E, F)$ is the locally convex space of all continuous linear operators equipped with the bounded convergence topology. The dual of *E* is denoted by *E'* and is given the strong topology so that $E' = L_b(E, \mathbb{C})$. $E \otimes_{\varepsilon} F$ (resp. $E \otimes_{\pi} F$) is the completion of the injective (resp. projective) tensor product of *E* and *F*. If *E* and *F* are (topologically) isomorphic we put $E \simeq F$. If *E* is isomorphic to a complemented subspace of *F* we write E < F. We put $E \hookrightarrow F$ if *E* is a linear subspace of *F* and the canonical injection is continuous (we replace \hookrightarrow by $\stackrel{d}{\hookrightarrow}$ if *E* is also dense in *F*). If $(E_n)_{n=1}^{\infty}$ is a sequence of locally convex spaces, $\prod_{n=1}^{\infty} E_n (E^{\mathbb{N}} \text{ if } E_n = E \text{ for all } n)$ is the topological product of the spaces E_n ; $\bigoplus_{n=1}^{\infty} E_n (E^{\mathbb{N}} \text{ if } E_n = E \text{ for all } n)$ is the locally convex direct sum of the spaces E_n .

Let $1 \leq p \leq \infty$, $k : \mathbb{R}^n \to (0, \infty)$ a Lebesgue measurable function, and E a Fréchet space. Then $L_p(E)$ is the set of all (equivalence classes of) Bochner measurable functions $f : \mathbb{R}^n \to E$ for which $||f||_p = (\int_{\mathbb{R}^n} ||f(x)||^p dx)^{1/p}$ is finite (with the usual modification when $p = \infty$) for all $|| \cdot || \in cs(E)$ (see, e.g. [8]). $L_{p,k}(E)$ denotes the set of all Bochner measurable functions $f : \mathbb{R}^n \to E$ such that $kf \in L_p(E)$. Putting $||f||_{L_{p,k}(E)} = ||kf||_p$ for all $f \in L_{p,k}(E)$ and for all $|| \cdot || \in cs(E)$, $L_{p,k}(E)$ becomes a Fréchet space isomorphic to $L_p(E)$. When E is the field \mathbb{C} , we simply write L_p and $L_{p,k}$. If $f \in L_1(E)$ the Fourier transform of f, \hat{f} or $\mathcal{F}f$, is defined by $\hat{f}(\xi) = \int_{\mathbb{R}^n} f(x)e^{-i\xi x} dx$. If f is a function on \mathbb{R}^n then $\tilde{f}(x) = f(-x)$ for $x \in \mathbb{R}^n$. The letter C will always denote a positive constant, not necessarily the same at each occurrence.

Finally we recall the definition of A_p^* functions. A positive, locally integrable function ω on \mathbb{R}^n is in A_p^* provided, for 1 ,

$$\sup_{R} \left(\frac{1}{|R|} \int_{R} \omega \, dx\right) \left(\frac{1}{|R|} \int_{R} \omega^{-p'/p} \, dx\right)^{p/p'} < \infty$$

where *R* runs over all bounded *n*-dimensional intervals. The basic properties of these functions can be found in [7, Chapter IV].

2. Spaces of vector-valued (Beurling) ultradistributions

In this section we collect some basic facts about vector-valued (Beurling) ultradistributions and we recall the definitions of the vector-valued Hörmander–Beurling spaces. Comprehensive treatments of the theory of (scalar or vector-valued) ultradistributions can be found in [1,10,15–17]. Our notations are based on [1] and [30, pp. 14–19].

Let \mathcal{M} (or \mathcal{M}_n) be the set of all functions ω on \mathbb{R}^n such that $\omega(x) = \sigma(|x|)$ where $\sigma(t)$ is an increasing continuous concave function on $[0, \infty[$ with the following properties:

- (i) $\sigma(0) = 0$,
- (ii) $\int_0^\infty \frac{\sigma(t)}{1+t^2} dt < \infty$ (Beurling's condition),

(iii) there exist a real number a and a positive number b such that

$$\sigma(t) \ge a + b \log(1+t)$$
 for all $t \ge 0$

The assumption (ii) is essentially the Denjoy–Carleman non-quasianalyticity condition (see [1, Section 1.5]). The two most prominent examples of functions $\omega \in \mathcal{M}$ are given by $\omega(x) = \log(1 + |x|)^d$, d > 0, and $\omega(x) = |x|^{\beta}$, $0 < \beta < 1$.

If $\omega \in \mathcal{M}$ and *E* is a Fréchet space, we denote by $D_{\omega}(E)$ the set of all functions $f \in L_1(E)$ with compact support, such that $||f||_{\lambda} = \int_{\mathbb{R}^n} ||\hat{f}(\xi)|| e^{\lambda\omega(\xi)} d\xi < \infty$ for all $\lambda > 0$ and for all $||\cdot|| \in \operatorname{cs}(E)$. For each compact subset *K* of \mathbb{R}^n , $D_{\omega}(K, E) = \{f \in D_{\omega}(E): \operatorname{supp} f \subset K\}$, equipped with the topology induced by the family of seminorms $\{||\cdot||_{\lambda}: ||\cdot|| \in \operatorname{cs}(E), \lambda > 0\}$, is a Fréchet space and $D_{\omega}(E) = \operatorname{ind}_{K} D_{\omega}(K, E)$ becomes a strict (LF)-space. If Ω is any open set in \mathbb{R}^n , $D_{\omega}(\Omega, E)$ is the subspace of $D_{\omega}(E)$ consisting of all functions *f* with $\operatorname{supp} f \subset \Omega$. $D_{\omega}(\Omega, E)$ is endowed with the corresponding inductive limit topology: $D_{\omega}(\Omega, E) = \operatorname{ind}_{K \subset \Omega} D_{\omega}(K, E)$. Let $S_{\omega}(E)$ be the set of all functions $f \in L_1(E)$ such that both *f* and \hat{f} are infinitely differentiable functions on \mathbb{R}^n with $\operatorname{sup}_{x \in \mathbb{R}^n} e^{\lambda\omega(x)} ||\partial^{\alpha} f(x)|| < \infty$ and $\operatorname{sup}_{x \in \mathbb{R}^n} e^{\lambda\omega(x)} ||\partial^{\alpha} \hat{f}(x)|| < \infty$ for all multi-indices α , all positive numbers λ and all $||\cdot|| \in \operatorname{cs}(E)$. $S_{\omega}(E)$ with the topology induced by the above family of seminorms is a Fréchet space and the Fourier transformation \mathcal{F} is an automorphism of $S_{\omega}(E)$. If $E = \mathbb{C}$ then $D_{\omega}(E)$ and $S_{\omega}(E)$ coincide with the spaces D_{ω} and S_{ω} (see [1]). Let us recall that, by Beurling's condition, the space D_{ω} is non-trivial and the usual procedure of the resolution of unity can be established with D_{ω} -functions (see [1, Theorem 1.3.7]). Furthermore, $D_{\omega} \overset{d}{\to} S_{\omega} \overset{d}{\to} S$ (see [1, Proposition 1.8.6, Theorem 1.8.7]) and S_{ω} is nuclear also (see [10, p. 320]). If \mathcal{E}_{ω} is the set of multipliers on D_{ω} , i.e., the

set of all functions $f : \mathbb{R}^n \to \mathbb{C}$ such that $\varphi f \in D_{\omega}$ for all $\varphi \in D_{\omega}$, then \mathcal{E}_{ω} with the topology generated by the seminorms $\{f \to \|\varphi f\|_{\lambda} = \int_{\mathbb{R}^n} |\widehat{\varphi f}(\xi)| e^{\lambda \omega(\xi)} d\xi$: $\lambda > 0$, $\varphi \in D_{\omega}\}$ becomes a nuclear Fréchet space (see [33, Corollary 7.5]) and $D_{\omega} \stackrel{d}{\to} \mathcal{E}_{\omega}$. Using the above results and [17, Theorem 1.12] we can identify $S_{\omega}(E)$ with $S_{\omega} \otimes_{\mathcal{E}} E$. However, though $D_{\omega} \otimes E$ is dense in $D_{\omega}(E)$, in general $D_{\omega}(E)$ is not isomorphic to $D_{\omega} \otimes_{\mathcal{E}} E$ (cf., e.g. [9, Chapter II, p. 83]). A continuous linear operator from D_{ω} into *E* is said to be a (Beurling) ultradistribution with values in *E*. We write $D'_{\omega}(E)$ for the space of all *E*-valued (Beurling) ultradistributions on Ω with values in *E*. A continuous linear operator from S_{ω} into *E* is said to be an *E*-valued tempered ultradistribution. $S'_{\omega}(E)$ is the space of all *E*-valued tempered ultradistributions equipped with the bounded convergence topology, E. A continuous linear operator from S_{ω} into *E* is said to be an *E*-valued tempered ultradistribution. $S'_{\omega}(E)$ is the space of all *E*-valued tempered ultradistributions equipped with the bounded convergence topology. In *E*-valued tempered ultradistributions equipped with the bounded convergence topology. The Fourier transformation \mathcal{F} is an automorphism of $S'_{\omega}(E)$.

If $\omega \in \mathcal{M}$, then \mathcal{K}_{ω} is the set of all positive functions k on \mathbb{R}^n for which there exists a positive constant N such that $k(x + y) \leq e^{N\omega(x)}k(y)$ for all x and y in \mathbb{R}^n [1, Definition 2.1.1] (when $\omega(x) = \log(1 + |x|)$ the functions k of the corresponding class \mathcal{K}_{ω} are called temperate weight functions, see [13, Definition 10.1.1]). If $k, k_1, k_2 \in \mathcal{K}_{\omega}$ and s is a real number then log k is uniformly continuous, $k^s \in \mathcal{K}_{\omega}$, $k_1k_2 \in \mathcal{K}_{\omega}$ and $M_k(x) = \sup_{y \in \mathbb{R}^n} \frac{k(x+y)}{k(y)} \in \mathcal{K}_{\omega}$ (see [1, Theorem 2.1.3]). If $u \in L_1^{\text{loc}}$ and $\int_{\mathbb{R}^n} \varphi(x)u(x) dx = 0$ for all $\varphi \in D_{\omega}$, then u = 0 a.e. (see [1]). This result, the Hahn–Banach theorem and [5, Chapter II, Corollary 7] prove that if $k \in \mathcal{K}_{\omega}$, $p \in [1, \infty]$ and E is a Fréchet space, we can identify $f \in L_{p,k}(E)$ with the *E*-valued tempered ultradistribution $\varphi \to \langle \varphi, f \rangle = \int_{\mathbb{R}^n} \varphi(x) f(x) dx$, $\varphi \in S_\omega$, and $L_{p,k}(E) \hookrightarrow S'_{\omega}(E)$. If $\omega \in \mathcal{M}$, $k \in \mathcal{K}_\omega$, $p \in [1, \infty]$ and *E* is a Fréchet space, we denote by $B_{p,k}(E)$ the set of all *E*-valued tempered ultradistributions T for which there exists a function $f \in L_{p,k}(E)$ such that $\langle \varphi, \hat{T} \rangle = \int_{\mathbb{R}^n} \varphi(x) f(x) dx$, $\varphi \in S_\omega$. $B_{p,k}(E)$ with the seminorms $\{\|T\|_{p,k} = ((2\pi)^{-n} \int_{\mathbb{R}^n} \|k(x)\hat{T}(x)\|^p dx)^{1/p}: \|\cdot\| \in cs(E)\}$ (usual modification if $p = \infty$), becomes a Fréchet space isomorphic to $L_{p,k}(E)$. Spaces $B_{p,k}(E)$ are called Hörmander–Beurling spaces with values in E (see [12,13,33] for the scalar case and [25,27,32] for the vector-valued case). We denote by $B_{p,k}^{\text{loc}}(\Omega, E)$ (see [12,13,24,25,27,33]) the space of all *E*-valued ultradistributions $T \in D'_{\omega}(\Omega, E)$ such that, for every $\varphi \in D_{\omega}(\Omega)$, the map $\varphi T : S_{\omega} \to E$ defined by $\langle u, \varphi T \rangle = \langle u\varphi, T \rangle$, $u \in S_{\omega}$, belongs to $B_{p,k}(E)$. The space $B_{p,k}^{\text{loc}}(\Omega, E)$ is a Fréchet space with the topology generated by the seminorms $\{\|\cdot\|_{p,k,\varphi}: \varphi \in D_{\omega}(\Omega), \|\cdot\| \in \mathsf{cs}(E)\}, \text{ where } \|T\|_{p,k,\varphi} = \|\varphi T\|_{p,k} \text{ for } T \in B^{\mathsf{loc}}_{p,k}(\Omega, E), \text{ and } B^{\mathsf{loc}}_{p,k}(\Omega, E) \hookrightarrow D'_{\omega}(\Omega, E). \text{ We shall } \|T\|_{p,k,\varphi} = \|\varphi T\|_{p,k,\varphi} = \|\varphi T\|_{p,k,\varphi}$ also use the spaces $B_{p,k}^c(\Omega, E)$ which generalize the scalar spaces $B_{p,k}^c(\Omega)$ considered by Hörmander in [13], by Vogt in [33] and by Björck in [1]. If ω , k, p, Ω and E are as above, then $B_{n,k}^{c}(\Omega, E) = \bigcup_{j=1}^{\infty} [B_{p,k}(E) \cap \mathcal{E}'_{\omega}(K_j, E)]$ (here (K_j) is any fundamental sequence of compact subsets of Ω and $\mathcal{E}'_{\omega}(K_j, E)$ denotes the set of all $T \in D'_{\omega}(E)$ such that $\operatorname{supp} T \subset K_j$. Since for every compact $K \subset \Omega$, $B_{p,k}(E) \cap \mathcal{E}'_{\omega}(K, E)$ is a Fréchet space with the topology induced by $B_{p,k}(E)$, it follows that $B_{p,k}^{c}(\Omega, E)$ becomes a strict (LF)-space (strict (LB)-space if E is a Banach space): $B_{p,k}^{c}(\Omega, E) = \operatorname{ind}_{\rightarrow}[B_{p,k}(E) \cap \mathcal{E}'_{\omega}(K_j, E)].$ These spaces are studied in [24,25,27].

3. The dual of $B_{p,k}^c(\Omega, E)$

In [13, Chapter XV] Hörmander studies the behaviour of the Fourier–Laplace transform in the space $B_{2,k}^c(\Omega) =$ ind $_{\overrightarrow{k}}[B_{2,k} \cap \mathcal{E}'(K)]$ when Ω is an open convex set in \mathbb{R}^n and k is a temperate weight function on \mathbb{R}^n . For this he discusses the inductive limit topology in $B_{2,k}^c(\Omega)$, proves the isomorphism $(B_{2,k}^c(\Omega))'_b \simeq B_{2,1/\tilde{k}}^{\text{loc}}(\Omega)$ [13, Section 15.2] and shows that every continuous seminorm in $B_{2,k}^c(\Omega)$ is bounded by a seminorm of the form

$$u \to \left(\int \left|\hat{u}(\zeta)\right|^2 e^{-2\phi(\zeta)} d\lambda(\zeta)\right)^{1/2},$$

where \hat{u} is the Fourier–Laplace transform of u and ϕ is plurisubharmonic. In this section we extend the former isomorphism to Hörmander spaces in the sense of Beurling and Björck [1] and prove that $(B_{p,k}^c(\Omega, E))'_b \simeq B_{p',1/\tilde{k}}^{\text{loc}}(\Omega, E')$ when $\omega \in \mathcal{M}$, $k \in \mathcal{K}_{\omega}$, $1 \leq p < \infty$ and E is a Banach space. A number of applications of this duality will be given in the next section.

Let us recall that a $D_{\omega}(\Omega)$ -partition of unity in Ω (= open set in \mathbb{R}^n) is a sequence (θ_j) in $D_{\omega}(\Omega)$ such that: (i) $\theta_j \ge 0$ for j = 1, 2, ..., (ii) $\sum_j \theta_j \equiv 1$ in Ω , (iii) for every compact set $K \subset \Omega$ there exist a positive integer m and a bounded open set W such that $K \subset W \subset \overline{W} \subset \Omega$ and $\sum_{i=1}^m \theta_j \equiv 1$ in W.

Lemma 3.1. Let Ω be an open set in \mathbb{R}^n , $\omega \in \mathcal{M}$, $k \in \mathcal{K}_{\omega}$, $1 \leq p \leq \infty$, and E a Banach space. Let (θ_j) be a $D_{\omega}(\Omega)$ -partition of unity in Ω . Then the inductive limit topology on $B^c_{p,k}(\Omega, E)$ is generated by the seminorms

$$\|T\|_{(C_j)} = \sum_{j=1}^{\infty} C_j \|\theta_j T\|_{p,k}, \quad T \in B^c_{p,k}(\Omega, E),$$

varying (C_i) in $\mathbb{R}^{\mathbb{N}}_+$.

Proof. See Proposition 3.10 of [27].

In the next result we will need the spaces $l_1(C_j, E)$ and $l_{\infty}(C_j, E)$: If (C_j) is a sequence in $\mathbb{R}^{\mathbb{N}}_+$ and E is a Banach space then $l_1(C_j, E)$ (resp. $l_{\infty}(C_j, E)$) denotes the set of all sequences $(x_j) \in E^{\mathbb{N}}$ such that $||(x_j)||_1 = \sum_{j=1}^{\infty} C_j ||x_j||_E < \infty$ (resp. $||(x_j)||_{\infty} = \sup_j C_j ||x_j||_E < \infty$). With the norm $|| \cdot ||_1$ (resp. $|| \cdot ||_{\infty}$) $l_1(C_j, E)$ (resp. $l_{\infty}(C_j, E)$) becomes a Banach space.

Theorem 3.2. Let Ω be an open set in \mathbb{R}^n , $\omega \in \mathcal{M}$, $k \in \mathcal{K}_{\omega}$, $1 \leq p < \infty$, and let E be a Banach space whose dual E' possesses the Radon–Nikodým property. Then $B_{p',1/\tilde{k}}^{\text{loc}}(\Omega, E')$ is isomorphic to $(B_{p,k}^c(\Omega, E))'_b$.

Proof. Choose a fixed $D_{\omega}(\Omega)$ -partition of unity (θ_j) in Ω and let L be an element in $(B_{p,k}^c(\Omega, E))'$. By Lemma 3.1 we can find a sequence (C_j) in $\mathbb{R}_{+}^{\mathbb{N}}$ such that

$$\left|L(T)\right| \leq \sum_{j=1}^{\infty} C_j \|\theta_j T\|_{p,k}, \quad T \in B^c_{p,k}(\Omega, E).$$

Then the linear mapping

$$Z: B_{p,k}^{c}(\Omega, E) \to l_1(C_j, B_{p,k}(E))$$
$$T \to (\theta_j T)$$

is continuous. Furthermore, since each *T* can be written in the form $T = \sum_{j=1}^{m} \theta_j T$ (*m* varying with *T*), we conclude that *Z* is injective. Now we consider the linear form $L \circ Z^{-1}$. Since $|L \circ Z^{-1}((\theta_j T))| \leq ||(\theta_j T)||_1$, the Hahn–Banach theorem shows that there exists a linear form $(L \circ Z^{-1})^- \in (l_1(C_j, B_{p,k}(E)))'$ of norm at most 1 which extends $L \circ Z^{-1}$. Then, by the isometric isomorphism

$$A: l_{\infty}\left(\frac{1}{C_j}, B_{p',1/k}(E')\right) \to \left(l_1(C_j, B_{p,k}(E))\right)'$$

defined by $\langle (T_j), A((S_j)) \rangle = (2\pi)^{-n} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} \langle \hat{T}_j(x), \hat{S}_j(x) \rangle dx$, we can find $(S_j) \in l_{\infty}(\frac{1}{C_j}, B_{p', 1/k}(E'))$ such that $A((S_j)) = (L \circ Z^{-1})^{-1}$, and so

$$L \circ Z^{-1}((\theta_j T)) = L(T) = (2\pi)^{-n} \sum_{j=1}^{\infty} \iint_{\mathbb{R}^n} \left\langle \widehat{\theta_j T}(x), \hat{S}_j(x) \right\rangle dx$$

for each $T \in B_{n,k}^{c}(\Omega, E)$. Next we shall prove that the linear mapping

$$\begin{split} \Phi : \left(B^c_{p,k}(\Omega, E) \right)'_b &\to B^{\text{loc}}_{p',1/\tilde{k}}(\Omega, E') \\ L &\to \sum_{j=1}^{\infty} \theta_j \tilde{S}_j \end{split}$$

(the series $\sum_{j=1}^{\infty} \theta_j \tilde{S}_j$ converges in $B_{p',1/\tilde{k}}^{\text{loc}}(\Omega, E')$ since this space is a Fréchet space and $\sum_{j=1}^{\infty} \|\theta_j \tilde{S}_j\|_{p',1/\tilde{k},\varphi} = \sum_{j=1}^{\infty} \|(\theta_j \varphi) \tilde{S}_j\|_{p',1/\tilde{k}} < \infty$ for each $\varphi \in D_{\omega}(\Omega)$ in virtue of the properties of the sequence (θ_j)) is an isomorphism. Let us see that Φ is well defined. Let $(L \circ Z^{-1})^=$ another extension of $L \circ Z^{-1}$ to $l_1(C_j, B_{p,k}(E))$ and let $(S_j^1) \in l_{\infty}(\frac{1}{C_j}, B_{p',1/k}(E'))$ the sequence which represents this extension. Let us check that $\sum_{j=1}^{\infty} \theta_j \tilde{S}_j = \sum_{j=1}^{\infty} \theta_j \tilde{S}_j^1$. By Fourier's inversion formula, the properties of the Bochner integral and the embedding $B_{p',1/\tilde{k}}^{\text{loc}}(\Omega, E') \hookrightarrow D'_{\omega}(\Omega, E')$ (see Section 2) we have for all $\varphi \in D_{\omega}(\Omega)$ and all $e \in E$,

$$\left\langle \varphi, \sum_{j=1}^{\infty} \theta_j \tilde{S}_j \right\rangle = \sum_{j=1}^{\infty} \langle \varphi, \theta_j \tilde{S}_j \rangle = \sum_{j=1}^{\infty} \langle \varphi \theta_j, \tilde{S}_j \rangle = (2\pi)^{-n} \sum_{j=1}^{\infty} \langle \widehat{\varphi \theta_j}, \hat{S}_j \rangle$$

and

$$(2\pi)^{-n} \left\langle e, \sum_{j=1}^{\infty} \langle \widehat{\varphi \theta_j}, \widehat{S}_j \rangle \right\rangle = (2\pi)^{-n} \sum_{j=1}^{\infty} \left\langle e, \langle \widehat{\varphi \theta_j}, \widehat{S}_j \rangle \right\rangle = (2\pi)^{-n} \sum_{j=1}^{\infty} \left\langle e, \int_{\mathbb{R}^n} \widehat{\theta_j \varphi}(x) \widehat{S}_j(x) \, dx \right\rangle$$
$$= (2\pi)^{-n} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} \left\langle \left(\theta_j(\varphi \otimes e) \right)^{\wedge}(x), \, \widehat{S}_j(x) \right\rangle \, dx = L(\varphi \otimes e).$$

Repeating the argument with $\sum_{j=1}^{\infty} \theta_j \tilde{S}_j^1$ we conclude that $\sum_{j=1}^{\infty} \theta_j \tilde{S}_j = \sum_{j=1}^{\infty} \theta_j \tilde{S}_j^1$. Now let $(C'_j) \in \mathbb{R}_+^{\mathbb{N}}$ another sequence such that $|L(T)| \leq \sum_{j=1}^{\infty} C'_j ||\theta_j T||_{p,k}$ for $T \in B^c_{p,k}(\Omega, E)$. Let Z' be the corresponding operator, let $(L \circ Z'^{-1})^-$ be an extension

of $L \circ Z'^{-1}$ to $l_1(C'_j, B_{p,k}(E))$ and let $(S'_j) \in l_{\infty}(\frac{1}{C'_j}, B_{p',1/k}(E'))$ the sequence which represents this extension, then $L(T) = (2\pi)^{-n} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} \langle \widehat{\theta_j T}(x), \widehat{S}'_j(x) \rangle dx$, $T \in B^c_{p,k}(\Omega, E)$, and also $\langle e, \langle \varphi, \sum_{j=1}^{\infty} \theta_j \widetilde{S}'_j \rangle \rangle = L(\varphi \otimes e)$ for $\varphi \in D_{\omega}(\Omega)$ and $e \in E$. Then Φ is well defined. If $\Phi(L) = 0$ then $\langle e, \langle \varphi, \Phi(L) \rangle \rangle = 0 = L(\varphi \otimes e)$ for all $\varphi \in D_{\omega}(\Omega)$ and all $e \in E$, thus L = 0 on $D_{\omega}(\Omega) \otimes E$. Since this space is dense in $D_{\omega}(\Omega, E)$ (see Section 2) and $D_{\omega}(\Omega, E) \stackrel{d}{\hookrightarrow} B^c_{p,k}(\Omega, E)$ (see Proposition 3.6 of [27]), it follows that L = 0. Consequently, Φ is one-to-one. Furthermore, Φ is surjective: Let (χ_j) a sequence in $D_{\omega}(\Omega)$ such that $\chi_j = 1$ in a compact neighborhood of supp θ_j . Let S be an element of $B^{\text{loc}}_{p',1/\tilde{k}}(\Omega, E')$. Then we have (convergence in $B^{\text{loc}}_{p',1/\tilde{k}}(\Omega, E')$) $S = \sum_{j=1}^{\infty} \theta_j \chi_j S = \sum_{j=1}^{\infty} \theta_j (\chi_j S) = \sum_{j=1}^{\infty} \theta_j \tilde{\chi}_j$ where $X_j = \widetilde{\chi_j} S$. Now we define the functional

$$L(T) = (2\pi)^{-n} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} \left\langle \widehat{\theta_j T}(x), \hat{X}_j(x) \right\rangle dx, \quad T \in B^c_{p,k}(\Omega, E).$$

Since

$$\left| L(T) \right| \leq (2\pi)^{-n} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} \left\| \widehat{\theta_j T}(x) \right\|_E k(x) \left\| \hat{X}_j(x) \right\|_{E'} \frac{1}{k(x)} \, dx \leq \sum_{j=1}^{\infty} \|\theta_j T\|_{p,k} \|X_j\|_{p',1/k}$$

for all $T \in B_{p,k}^{c}(\Omega, E)$, it follows that $L \in (B_{p,k}^{c}(\Omega, E))'$. Then $\Phi(L) = S$ and Φ is surjective.

Now we prove that Φ^{-1} is continuous: Let A be a bounded set in $B_{p,k}^c(\Omega, E)$. Since this space is a strict (LB)-space, there is a compact set M in Ω such that A is contained and bounded in the step $B_{p,k}(E) \cap \mathcal{E}'_{\omega}(M, E)$ (see [18, (4), p. 223]). Take a sequence (χ_j) in $D_{\omega}(\Omega)$ such that $\chi_j = 1$ in a compact neighborhood of $\operatorname{supp} \theta_j$, $j = 1, 2, \ldots$, and let m be such that $\theta_j = 0$ in M for all j > m. Then, taking into account Proposition 3.4 of [27] and that every $S \in B_{p',1/\tilde{k}}^{\operatorname{loc}}(\Omega, E')$ can be written in the form $S = \sum_{j=1}^{\infty} \theta_j \tilde{X}_j$ with $X_j = \widetilde{\chi_j}S$, we get

$$\sup_{T \in A} \left| \Phi^{-1}(S)(T) \right| = \sup_{T \in A} \left| (2\pi)^{-n} \sum_{j=1}^{\infty} \int_{\mathbb{R}^n} \langle \widehat{\theta_j T}(x), \hat{X}_j(x) \rangle dx \right| \leq \sup_{T \in A} \sum_{j=1}^m \|\theta_j T\|_{p,k} \|X_j\|_{p',1/k}$$
$$\leq \sup_{T \in A} \sum_{j=1}^m \|\theta_j\|_{1,M_k} \|T\|_{p,k} \|S\|_{p',1/\tilde{k},\chi_j} \leq C \sum_{j=1}^m \|\theta_j\|_{1,M_k} \|S\|_{p',1/\tilde{k},\chi_j}$$

for all $S \in B_{p',1/\tilde{k}}^{\text{loc}}(\Omega, E')$ (*C* is a constant > 0). Hence it follows the continuity of Φ^{-1} . Then Φ becomes an isomorphism since $B_{p',1/\tilde{k}}^{\text{loc}}(\Omega, E')$ and $(B_{p,k}^c(\Omega, E))_b'$ are Fréchet spaces $(B_{p,k}^c(\Omega, E)$ is a (DF)-space by [18, (4), p. 402] and so its strong dual is a Fréchet space (see [18, (1), p. 397])). The proof is complete. \Box

Remark 3.3. When k(x) is a temperate weight function, p = 2 and $E = \mathbb{C}$, our theorem yields the isomorphism which appears in [13, p. 279].

In [32] the spaces $BV_{p,k}(E)$ are introduced (by using the natural embedding of the space $V_p(k^p dx, E)$ of the finitely additive *E*-valued measures of bounded *p*-variation into the space $S'_{\omega}(E)$) and the isometric isomorphism $BV_{p',1/k}(E') \simeq (B_{p,k}(E))'$ is shown (*E* is any Banach space and $1 \le p < \infty$). In view of this result and our Theorem 3.2 we can define the space

$$BV_{p,k}^{\text{loc}}(\Omega, E) = \left\{ T \in D'_{\omega}(\Omega, E) \colon \varphi T \in BV_{p,k}(E) \text{ for all } \varphi \in D_{\omega}(\Omega) \right\}$$

(equipped with the topology generated by the family of seminorms $\{T \to \|(2\pi)^{-n/p}\widehat{\varphi T}\|_{V_p(k^p dx, E)}: \varphi \in D_{\omega}(\Omega)\}$ when $p < \infty$ (resp. $\{T \to \|\widehat{\varphi T}\|_{V_{\infty}(\frac{1}{k} dx, E)}: \varphi \in D_{\omega}(\Omega)\}$ if $p = \infty$)) and propose the following question.

Problem 3.4. Let Ω be an open set in \mathbb{R}^n , $\omega \in \mathcal{M}$, $k \in \mathcal{K}_{\omega}$, $1 \leq p < \infty$ and let *E* be a Banach space. Are the spaces $BV_{p' \perp l\tilde{k}}^{\text{loc}}(\Omega, E')$ and $(B_{p,k}^c(\Omega, E))_b'$ isomorphic?

4. On sequence space representations of spaces of ultradistributions

In this section we give a number of results on sequence space representations of spaces of distributions and ultradistributions. Based on these and using the solution to Problem 4.11 in [24] given by Cembranos and Mendoza in [3], we partially answer Problem 4.10 in [24]. We also give a new proof of a well-known result: The short sequence

$$0 \to N(P(D)) \to B_{p,k}^{\mathrm{loc}}(\Omega) \xrightarrow{P(D)} B_{p,k/P'}^{\mathrm{loc}}(\Omega) \to 0$$

does not split (P(D) is an elliptic operator with constant coefficients and $P'(\xi) = (\sum_{\alpha} |\partial^{\alpha} P(\xi)|^2)^{1/2}$). (The proof we give is based on the isomorphism $B_{p,k}^{\text{loc}}(\Omega) \simeq l_p^{\mathbb{N}}$.) We shall omit the proof of the following simple result.

Lemma 4.1. Let Ω be an open set in \mathbb{R}^n , $\omega \in \mathcal{M}$, $k \in \mathcal{K}_{\omega}$, $1 \leq p \leq \infty$, and let $(E_j)_{j=1}^{\infty}$ be a sequence of Banach spaces. Then the space $B_{p,k}^{\text{loc}}(\Omega, \prod_{j=1}^{\infty} E_j)$ is isomorphic to $\prod_{j=1}^{\infty} B_{p,k}^{\text{loc}}(\Omega, E_j)$.

Theorem 4.2. Let Ω be an open set in \mathbb{R}^n , $\omega \in \mathcal{M}$, $k \in \mathcal{K}_{\omega}$, and let E be a Banach space. Then

- (1) $B_{1k}^{c}(\Omega, E)$ is isomorphic to $(l_1(E))^{(\mathbb{N})}$,
- (2) $B_{1,k}^{\text{loc}}(\Omega, E)$ is isomorphic to $(l_1(E))^{\mathbb{N}}$,
- (3) if *E* is a dual space and has the Radon–Nikodým property then $B_{\infty k}^{\text{loc}}(\Omega, E)$ is isomorphic to $(I_{\infty}(E))^{\mathbb{N}}$.

Proof. (1) and (2). The proof given in [33] is also valid in the vector-valued case and for weights $k \in \mathcal{K}_{\omega}$. (3) Suppose $E \simeq F'$ and recall that if $(E_j)_{j=1}^{\infty}$ is a sequence of Banach spaces then the space $(\bigoplus_{j=1}^{\infty} E_j)'_b$ is isomorphic to $\prod_{j=1}^{\infty} E'_j$ (see [18, p. 287]). Then, taking into account Theorem 3.2 and (1), we get

$$B^{\text{loc}}_{\infty,k}(\Omega, E) \simeq \left(B^{c}_{1,1/\bar{k}}(\Omega, F)\right)'_{b} \simeq \left(\left(l_{1}(F)\right)^{(\mathbb{N})}\right)'_{b} \simeq \left(l_{\infty}(E)\right)^{\mathbb{N}}. \quad \Box$$

Theorem 4.3. $l_{\infty}(l_1)$ and $l_1(l_{\infty})$ are not isomorphic.

Proof. See [3, Theorem 1].

Next we answer Problem 4.10 in [24] when $q = \infty$.

Theorem 4.4. If Ω_1 is an open set in \mathbb{R}^{n_1} , $\omega_1 \in \mathcal{M}_{n_1}$ and $k_1 \in \mathcal{K}_{\omega_1}$ (resp. Ω_2 open set in \mathbb{R}^{n_2} , $\omega_2 \in \mathcal{M}_{n_2}$, $k_2 \in \mathcal{K}_{\omega_2}$), then the spaces $B_{1,k_1}^{\text{loc}}(\Omega_1, B_{\infty,k_2}^{\text{loc}}(\Omega_2))$ and $B_{\infty,k_2}^{\text{loc}}(\Omega_2, B_{1,k_1}^{\text{loc}}(\Omega_1))$ are not isomorphic.

Proof. By using the previous results we have the isomorphisms

$$B_{1,k_1}^{\mathrm{loc}}(\Omega_1, B_{\infty,k_2}^{\mathrm{loc}}(\Omega_2)) \simeq B_{1,k_1}^{\mathrm{loc}}(\Omega_1, I_{\infty}^{\mathbb{N}}) \simeq \left(B_{1,k_1}^{\mathrm{loc}}(\Omega_1, I_{\infty})\right)^{\mathbb{N}} \simeq \left(\left(l_1(l_{\infty})\right)^{\mathbb{N}}\right)^{\mathbb{N}} \simeq \left(l_1(l_{\infty})\right)^{\mathbb{N}}$$

and

$$B_{\infty,k_2}^{\mathsf{loc}}(\Omega_2, B_{1,k_1}^{\mathsf{loc}}(\Omega_1)) \simeq B_{\infty,k_2}^{\mathsf{loc}}(\Omega_2, l_1^{\mathbb{N}}) \simeq \left(B_{\infty,k_2}^{\mathsf{loc}}(\Omega_2, l_1)\right)^{\mathbb{N}} \simeq \left(\left(l_{\infty}(l_1)\right)^{\mathbb{N}}\right)^{\mathbb{N}} \simeq \left(l_{\infty}(l_1)\right)^{\mathbb{N}}.$$

Suppose now that our iterated spaces are isomorphic. Then $(l_1(l_\infty))^{\mathbb{N}}$ and $(l_\infty(l_1))^{\mathbb{N}}$ are also isomorphic. Hence it follows (by [4]) that there exist positive integers α , β such that $l_1(l_\infty) < (l_\infty(l_1))^{\alpha} \simeq l_\infty(l_1)$ and $l_\infty(l_1) < (l_1(l_\infty))^{\beta} \simeq l_1(l_\infty)$. Then, using Pelczynski's decomposition method, we conclude that $l_1(l_\infty) \simeq l_\infty(l_1)$. This contradicts Theorem 4.3. In consequence, $B_{1,k_1}^{\text{loc}}(\Omega_1, B_{\infty,k_2}^{\text{loc}}(\Omega_2))$ and $B_{\infty,k_2}^{\text{loc}}(\Omega_2, B_{1,k_1}^{\text{loc}}(\Omega_1))$ are not isomorphic. \Box

Remark 4.5. 1. We must point out that the space $B_{\infty,k_2}^{\text{loc}}(\Omega_2, B_{1,k_1}^{\text{loc}}(\Omega_1))$ even contains no complemented subspace isomorphic to $B_{1,k_1}^{\text{loc}}(\Omega_1, B_{\infty,k_2}^{\text{loc}}(\Omega_2))$ (see the proof of Theorem 4.4 and use the final remarks of [3]).

2. Note also that, in general, $B_{\infty,k}^{\text{loc}}(\Omega, E)$ is not isomorphic to either $B_{\infty,k}^{\text{loc}}(\Omega)\widehat{\otimes}_{\varepsilon} E$ or $B_{\infty,k}^{\text{loc}}\widehat{\otimes}_{\pi} E$: In fact, let $1 \leq p < \infty$ and assume that $B_{\infty,k}^{\text{loc}}(\Omega, l_p)$ is isomorphic to $B_{\infty,k}^{\text{loc}}(\Omega)\widehat{\otimes}_{\varepsilon} l_p$. Then, by virtue of [19, (5), p. 282], [19, (2), p. 287], Theorem 4.2 and a result of Cembranos and Freniche [2, Theorem 3.2.1], we get

$$(l_{\infty}(l_{p}))^{\mathbb{N}} \simeq l_{\infty}^{\mathbb{N}} \widehat{\otimes}_{\varepsilon} l_{p} \simeq (l_{\infty} \widehat{\otimes}_{\varepsilon} l_{p})^{\mathbb{N}} \simeq (C(\beta \mathbb{N}) \widehat{\otimes}_{\varepsilon} l_{p})^{\mathbb{N}} \simeq (C(\beta \mathbb{N}, l_{p}))^{\mathbb{N}} > c_{0}^{\mathbb{N}}.$$

Hence it follows, arguing as in Theorem 4.4, that $l_{\infty}(l_p)$ contains a complemented copy of c_0 . Then, by a result of Leung and Räbiger [2, Theorem 5.1.1], l_p also contains a complemented copy of c_0 . This contradiction shows that $B_{\infty,k}^{\text{loc}}(\Omega, l_p)$ and $B_{\infty,k}^{\rm loc} \hat{\otimes}_{\varepsilon} l_p$ are not isomorphic. On the other hand, since by Theorem 4.2 and [19, (5), p. 194] we have

$$B_{\infty,k}^{\mathrm{loc}}(\Omega, l_1) \simeq (l_\infty(l_1))^{\mathbb{N}}, \qquad B_{\infty,k}^{\mathrm{loc}}(\Omega) \widehat{\otimes}_{\pi} \ l_1 \simeq l_\infty^{\mathbb{N}} \widehat{\otimes}_{\pi} \ l_1 \simeq (l_\infty \widehat{\otimes}_{\pi} \ l_1)^{\mathbb{N}} \simeq (l_1(l_\infty))^{\mathbb{N}},$$

it follows that the spaces $B_{\infty,k}^{\text{loc}}(\Omega, l_1)$ and $B_{\infty,k}^{\text{loc}}(\Omega) \widehat{\otimes}_{\pi} l_1$ are not isomorphic.

In the next theorem the following elementary fact will be used: "Let $F = \operatorname{ind}_{j} F_{j}$ be the strict inductive limit of a properly increasing sequence $F_{1} \subset F_{2} \subset \cdots$ of Banach spaces. Assume that every F_{j} is a complemented subspace of F_{j+1} and that G_{j} is a topological complement of F_{j} in F_{j+1} . Then, the mapping $F_{1} \oplus G_{1} \oplus G_{2} \oplus \cdots \to F : (f_{1}, g_{1}, g_{2}, \ldots) \to f_{1} + g_{1} + g_{2} + \cdots$ is an isomorphism". We will also need the weighted L_{p} -spaces of vector-valued entire analytic functions $L_{p,k}^{K}(E)$ and the operators $S_{K}(f) = \mathcal{F}^{-1}(\chi_{K}\hat{f})$ (see [25]).

Theorem 4.6. Let Ω be an open set in \mathbb{R}^n . Assume $1 < p, q < \infty$ and let k be a temperate weight function on \mathbb{R}^n with $k^p \in A_p^*$. Then the space $B_{p,k}^c(\Omega, l_q)$ (resp. $B_{p,k}^{\text{loc}}(\Omega, l_q)$) is isomorphic to $\bigoplus_{j=0}^{\infty} G_j$ (resp. $\prod_{j=0}^{\infty} H_j$) where G_0 (resp. H_0) is isomorphic to $l_p(l_q)$ and G_j (resp. H_j) is isomorphic to a complemented subspace of $l_p(l_q)$ for j = 1, 2, ...

Proof. Let (K_j) be a covering of Ω consisting of compact sets such that $K_j \subset \mathring{K}_{j+1}$, $K_j = \overline{\mathring{K}_j}$ and \mathring{K}_j has the segment property (we may also assume, without loss of generality, that each K_j is a finite union of *n*-dimensional compact intervals). Then $B_{p,k}^c(\Omega, l_q) = \operatorname{ind}_{j}[B_{p,k}(l_q) \cap \mathcal{E}'(K_j, l_q)]$. In this inductive limit, the step $B_{p,k}(l_q) \cap \mathcal{E}'(K_j, l_q)$ is isomorphic (via the Fourier transform) to $L_{p,k}^{-K_j}(l_q)$ and this space is isomorphic, by Corollaries 4.2 and 5.1 of [25], to $l_p(l_q)$. Furthermore, $L_{p,k}^{-K_j}(l_q)$ is a complemented subspace of $L_{p,k}^{-K_{j+1}}(l_q)$: $L_{p,k}^{-K_j}(l_q) \oplus [\ker S_{-K_j} \cap L_{p,k}^{-K_{j+1}}(l_q)] = L_{p,k}^{-K_{j+1}}(l_q)$. Thus, the space $G_j = \ker S_{-K_j} \cap L_{p,k}^{-K_{j+1}}(l_q)$ is isomorphic to an infinite-dimensional complemented subspace of $l_p(l_q)$. Then, by using the former result, we obtain

$$B_{p,k}^{c}(\Omega, l_q) \simeq L_{p,k}^{-K_1}(l_q) \oplus G_1 \oplus G_2 \oplus \cdots \simeq l_p(l_q) \oplus G_1 \oplus G_2 \oplus \cdots$$

Next, since $1/\tilde{k}$ is a temperate weight function on \mathbb{R}^n such that $1/\tilde{k}^{p'} \in A_{p'}^*$, we see that $B_{p',1/\tilde{k}}^c(\Omega, l_{q'}) \simeq \bigoplus_{j=0}^{\infty} B_j$ where $B_0 \simeq l_{p'}(l_{q'})$ and $B_j < l_{p'}(l_{q'})$ for j = 1, 2, ... Therefore, by Theorem 3.2, we get

$$B_{p,k}^{\text{loc}}(\Omega, l_q) \simeq \left(B_{p',1/\tilde{k}}^c(\Omega, l_q)\right)_b' \simeq \left(\bigoplus_{j=0}^\infty B_j\right)_b' \simeq \prod_{j=0}^\infty B_j' = \prod_{j=0}^\infty H_j$$

(here $H_j = B'_i$) where $H_0 \simeq l_p(l_q)$ and $H_j < l_p(l_q)$ for j = 1, 2, ..., and the proof is complete. \Box

Remark 4.7. (1) Let Ω , p and k as in Theorem 4.6. In [25, Corollary 5.3] the space $B_{p,k}^c(\Omega, E)$ is showed to be isomorphic to $l_p^{(\mathbb{N})}$ if dim $E < \infty$ or $E = l_p$, and to $(l_p(l_2))^{(\mathbb{N})}$ if $E = l_2$. By duality (Theorem 3.2) it follows that $B_{p,k}^{\text{loc}}(\Omega) \simeq l_p^{\mathbb{N}}$, $B_{p,k}^{\text{loc}}(\Omega, l_p) \simeq l_p^{\mathbb{N}}$ and $B_{p,k}^{\text{loc}}(\Omega, l_2) \simeq (l_p(l_2))^{\mathbb{N}}$.

(2) Note that, in general, $B_{p,k}^{\text{loc}}(\Omega, E)$ is not isomorphic to either $B_{p,k}^{\text{loc}}(\Omega) \widehat{\otimes}_{\varepsilon} E$ or $B_{p,k}^{\text{loc}}(\Omega) \widehat{\otimes}_{\pi} E$: In fact, let Ω , p, q and k as in Theorem 4.6 and assume that $B_{p,k}^{\text{loc}}(\Omega, l_q)$ is isomorphic to $B_{p,k}^{\text{loc}}(\Omega) \widehat{\otimes}_{\varepsilon} l_q$ (resp. $B_{p,k}^{\text{loc}}(\Omega) \widehat{\otimes}_{\pi} l_q$). Then, by Theorem 4.6, the previous note, [19, (5), p. 282] and [19, (5), p. 194], we get

$$\prod_{j=0}^{\infty} H_j \simeq l_p^{\mathbb{N}} \widehat{\otimes}_{\varepsilon} l_q \simeq (l_p \widehat{\otimes}_{\varepsilon} l_q)^{\mathbb{N}} \quad \left(\text{resp. } \prod_{j=0}^{\infty} H_j \simeq (l_p \widehat{\otimes}_{\pi} l_q)^{\mathbb{N}} \right),$$

where $H_0 \simeq l_p(l_q)$ and $H_j < l_p(l_q)$ for j = 1, 2, ... Hence it follows, reasoning as in Theorem 4.4, that $l_p(l_q) \simeq l_p \widehat{\otimes}_{\varepsilon} l_q$ (resp. $l_p \widehat{\otimes}_{\pi} l_q$) but this is false when $p' \leq q$ (resp. $p \leq q'$) by a result of Holub [11, Proposition 3.7] (resp. [11, Proposition 3.6]). In consequence, the spaces $B_{p,k}^{\text{loc}}(\Omega, l_q)$ and $B_{p,k}^{\text{loc}}(\Omega) \widehat{\otimes}_{\varepsilon} l_q$ (resp. $B_{p,k}^{\text{loc}}(\Omega) \widehat{\otimes}_{\pi} l_q$) are not isomorphic when $p' \leq q$ (resp. $p \leq q'$).

(3) By using the previous results we can describe the structure of the complemented (normed) subspaces of $B_{p,k}^{\text{loc}}(\Omega)$, $B_{p,k}^{\text{loc}}(\Omega, l_q)$ and $\prod_{i=1}^m B_{p_i,k_i}^{\text{loc}}(\Omega_i, l_{p_i})$: (i) Let X be an infinite-dimensional complemented (normed) subspace of $B_{p,k}^{\text{loc}}(\Omega)$ (Ω open set in \mathbb{R}^n , $\omega \in \mathcal{M}$, $k \in \mathcal{K}_{\omega}$ and $p \in \{1, \infty\}$ or k temperate weight function on \mathbb{R}^n such that $k^p \in A_p^*$ and $p \in (1, \infty)$). Then $B_{p,k}^{\text{loc}}(\Omega) \simeq l_p^{\mathbb{N}}$ and thus X becomes a complemented subspace of l_p . This implies, since l_p is prime [20, Theorems 2.a.3, 2.a.7], that $X \simeq l_p$. (ii) Let X be an infinite-dimensional complemented (normed) subspace of $B_{p,k}^{\text{loc}}(\Omega, l_q)$ (Ω open set in \mathbb{R}^n , $p, q \in (1, \infty)$ and k temperate weight function on \mathbb{R}^n with $k^p \in A_p^*$). Then, since $B_{p,k}^{\text{loc}}(\Omega, l_q) < (l_p(l_q))^{\mathbb{N}}$ in virtue of Theorem 4.6, X becomes a complemented subspace of $l_p(l_q)$. This implies, in the case q = 2, that X is isomorphic to either l_2 , l_p , $l_2 \oplus l_p$ or $l_p(l_2)$ by a result of Odell [26]. (iii) Let X be an infinite-dimensional complemented (normed) subspace (normed) subspace of $\prod_{p,k}^{\text{loc}}(\Omega, l_q) < (l_p(l_q))^{\mathbb{N}}$ in virtue of Theorem 4.6, X becomes a complemented subspace of $l_p(l_q)$. This implies, in the case q = 2, that X is isomorphic to either l_2 , l_p , $l_2 \oplus l_p$ or $l_p(l_2)$ by a result of Odell [26]. (iii) Let X be an infinite-dimensional complemented (normed) subspace of $\prod_{i=1}^m B_{p,i,k_i}^{\text{loc}}(\Omega, l_{p_i})$ (Ω_i open set in \mathbb{R}^n , $1 < p_1 < \cdots < p_m < \infty$, k_i temperate weight function on \mathbb{R}^n with $k_i^{p_i} \in A_{p_i}^*$, $i = 1, \dots, m$). Then, since

$$\prod_{i=1}^{m} B_{p_i,k_i}^{\text{loc}}(\Omega_i, l_{p_i}) \simeq \prod_{i=1}^{m} l_{p_i}^{\mathbb{N}} \simeq (l_{p_1} \oplus \cdots \oplus l_{p_m})^{\mathbb{N}},$$

we have that $X < l_{p_1} \oplus \cdots \oplus l_{p_m}$ and so there exist $1 \leq i_1 < \cdots < i_k \leq m$ such that $X \simeq l_{p_{i_1}} \oplus \cdots \oplus l_{p_{i_k}}$ in virtue of [20, Theorem 2.c.14].

(4) We omit the proof of the following result:

 $B_{p_1,k_1}^{\text{loc}}(\Omega_1, l_{q_1}) \simeq B_{p_2,k_2}^{\text{loc}}(\Omega_2, l_{q_2}) \quad \Longleftrightarrow \quad p_1 = p_2 \text{ and } q_1 = q_2$

(Ω_i open set in \mathbb{R}^n , $p_i, q_i \in (1, \infty)$, k_i temperate weight function on \mathbb{R}^n with $k_i^{p_i} \in A_{p_i}^*$, i = 1, 2).

We conclude this section by showing a result on linear partial differential operators (the result is well known, see e.g. [21,22,31,34]). The proof we give is based on our representation theorem $B_{n,k}^{\text{loc}}(\Omega) \simeq l_p^{\mathbb{D}}$.

Theorem 4.8. Let Ω be an open set in \mathbb{R}^n $(n \ge 2)$, 1 , <math>k a temperate weight function on \mathbb{R}^n such that $k^p \in A_p^*$ and P(D) an elliptic operator with constant coefficients. Then the short sequence

$$0 \to N(P(D)) \to B_{p,k}^{\text{loc}}(\Omega) \xrightarrow{P(D)} B_{p,k/P'}^{\text{loc}}(\Omega) \to 0$$

is exact and does not split, i.e., the operator P(D) has no continuous linear right inverse (here N(P(D)) is the kernel of P(D)).

Proof. P(D) is well defined by [13, Theorem 10.1.11] and the short sequence is exact in virtue of [13, Corollary 10.8.2] and [13, Theorem 10.6.7]. The closed subspace N(P(D)) of $B_{p,k}^{loc}(\Omega)$ coincides, algebraic and topologically, with the subspace $N(\Omega) = \{f \in \mathcal{E}(\Omega): P(D)f = 0\}$ of $\mathcal{E}(\Omega)$ (by [12, Theorem 1.11.0], [12, Theorem 1.11.11] and the closed graph theorem) and thus it is a nuclear Fréchet space. Note also that, for every connected component O of Ω , the space N(O) equipped with the topology induced by $\mathcal{E}(O)$, is a nuclear Fréchet space with continuous norms (since all $f \in N(O)$ is real analytic in O, see e.g. [1, Corollary 4.1.4]) isomorphic to a complemented subspace of N(P(D)). Now assume that the short sequence splits. Then N(P(D)) is a complemented subspace of $B_{p,k}^{loc}(\Omega)$. Since this space is isomorphic to $l_p^{\mathbb{N}}$ by Remark 4.7(1), it follows that, for any connected component O of Ω , the space N(O) becomes isomorphic to an infinite-dimensional ($n \ge 2$) complemented subspace of $l_p^{\mathbb{N}}$. This implies, taking into account a result of Metafune and Moscatelli [23, Theorem 1.2], that N(O) is isomorphic to either l_p , $l_p \times \omega$, ω or $l_p^{\mathbb{N}}$. This contradiction completes the proof. \Box

Acknowledgment

The authors thank the referee for his or her comments which allowed them to improve the paper.

References

- [1] G. Björck, Linear partial differential operators and generalized distributions, Ark. Mat. 6 (1966) 351-407.
- [2] P. Cembranos, J. Mendoza, Banach Spaces of Vector-Valued Functions, Lecture Notes in Math., vol. 1676, Springer-Verlag, 1997.
- [3] P. Cembranos, J. Mendoza, $l_{\infty}(l_1)$ and $l_1(l_{\infty})$ are not isomorphic, J. Math. Anal. Appl. 341 (2008) 295–297.
- [4] J.C. Díaz, A note on isomorphisms between powers of Banach spaces, Collect. Math. 38 (1987) 137-140.
- [5] J. Diestel, J.J. Uhl, Vector Measures, Math. Surveys Monogr., vol. 15, Amer. Math. Soc., Providence, RI, 1977.
- [6] A. Favini, Su una estensione del metodo d'interpolazione complesso, Rend. Sem. Mat. Univ. Padova 50 (1972) 223-249.
- [7] J. García-Cuerva, J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud., vol. 116, North-Holland, Amsterdam, 1985.
- [8] H.G. Garnir, M. De Wilde, J. Schmets, Analyse Fonctionelle, vols. II, III, Birkhäuser, Basel, 1972/1973.
- [9] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc., vol. 16, Amer. Math. Soc., Providence, RI, 1955.
- [10] O. Grudzinski, Temperierte Beurling–Distributionen, Math. Nachr. 91 (1979) 297–320.
- [11] J.R. Holub, Hilbertian operators and reflexive tensor products, Pacific J. Math. 36 (1) (1971) 185-194.
- [12] L. Hörmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963.
- [13] L. Hörmander, The Analysis of Linear Partial Differential Operators II, Springer-Verlag, Berlin, 1983.
- [14] D. Jornet, A. Oliaro, Functional composition in B_{p,k} spaces and applications, Math. Scand. 99 (2) (2006) 175–203.
- [15] H. Komatsu, Ultradistributions I. Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 20 (1973) 25-105.
- [16] H. Komatsu, Ultradistributions II. The kernel theorem and ultradistributions with support in a submanifold, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 24 (1977) 607–628.
- [17] H. Komatsu, Ultradistributions III. Vector-valued ultradistributions and the theory of kernels, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982) 653–718.
- [18] G. Köthe, Topological Vector Spaces I, Springer-Verlag, Berlin, 1969.
- [19] G. Köthe, Topological Vector Spaces II, Springer-Verlag, Berlin, 1979.
- [20] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces I. Sequence Spaces, Springer-Verlag, Berlin, 1977.
- [21] R. Meise, B.A. Taylor, D. Vogt, Characterization of the linear partial differential operators with constant coefficients that admit a continuous linear right inverse, Ann. Inst. Fourier (Grenoble) 40 (1990) 619–655.
- [22] R. Meise, B.A. Taylor, D. Vogt, Continuous linear right inverses for partial differential operators on non-quasianalytic classes and on ultradistributions, Math. Nachr. 180 (1996) 213–242.
- [23] G. Metafune, V.B. Moscatelli, Complemented subspaces of sums and products of Banach spaces, Ann. Mat. Pura Appl. (4) 153 (1988) 175-190.
- [24] J. Motos, M.J. Planells, C.F. Talavera, On some iterated weighted spaces, J. Math. Anal. Appl. 338 (2008) 162-174.
- [25] J. Motos, M.J. Planells, C.F. Talavera, On weighted L_p-spaces of vector-valued entire analytic functions, Math. Z. (2008), doi:10.1007/s00209-007-0283-4, in press.
- [26] E. Odell, On complemented subspaces of $(\sum l_2)_{l_p}$, Israel J. Math. 23 (1976) 353–367.
- [27] M.J. Planells, J. Villegas, On Hörmander–Beurling spaces $B_{p,k}^c(\Omega, E)$, J. Appl. Anal. 13 (1) (2007) 97–116.

- [28] M.J. Planells, J. Villegas, A note on traces of Hörmander spaces, Bol. Soc. Mat. Mex., in press.
- [29] M. Schechter, Complex interpolation, Compos. Math. 18 (1967) 117-147.
- [30] H.J. Schmeisser, H. Triebel, Topics in Fourier Analysis and Function Spaces, Wiley, Chichester, 1987.
- [31] F. Trèves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.
- [32] J. Villegas, On vector-valued Hörmander-Beurling spaces, Extracta Math. 18 (2003) 91-106.
- [33] D. Vogt, Sequence space representations of spaces of test functions and distributions, in: G.I. Zapata (Ed.), Functional Analysis, Holomorphy and Approximation Theory, in: Lect. Notes Pure Appl. Math., vol. 83, 1983, pp. 405–443.
- [34] D. Vogt, Some results on continuous linear maps between Fréchet spaces, in: K.D. Bierstedt, B. Fuchssteiner (Eds.), Functional Analysis: Surveys and Recent Results III, in: North-Holland Math. Stud., vol. 90, 1984, pp. 349–381.