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1. Introduction and notation

In [13, Chapter XV] Hérmander studies the behaviour of the Fourier-Laplace transform in the space B () =

ind _, [ByxNE'(K)] when §2 is an open convex set in R" and k is a temperate weight function on R", and then proves
ke

a theorem on the representation of solutions of the equation P(D)u = 0 by integrals of exponential solutions (P(D) is
a constant coefficient partial differential operator). For this he obtains an appropriate collection of seminorms defining

the inductive limit topology of B ,(£2), proves the isomorphism (BS ,(£2)); ~ Blz"cl/’.(([z) and shows that every continuous

seminorm in BS , (£2) is bounded by a seminorm of the form u — (f [1(2)[2e=22®) dx(£))1/2 where i is the Fourier-Laplace
transform of u and ¢ is plurisubharmonic (see [13, Section 15.2]). In this paper we extend the former isomorphism to
Beurling-Bjorck weights [1] and as a consequence (and using Vogt's representation theorems [33] and weighted Lp-spaces
of entire analytic functions [25,30]) a number of results on sequence space representations of Hérmander spaces in the
sense of Beurling and Bjorck [1] (= Hormander-Beurling spaces) are given. This research pursues the study on Hérmander—
Beurling spaces carried out in [1,6,12,13,29,33] and [24,25,27,28,32] (see also [14]).

The organization of the paper is as follows. Section 2 contains some basic facts about scalar and vector-valued Beurl-
ing ultradistributions and the definitions of the spaces which are considered in the paper. In Section 3 we show that

Bl;:)’cl/l}(Q’E,) is isomorphic to (B; «(82,E)), when w e M, ke Ky, 1<p <oo and E is a Banach space whose dual

E’ possesses the Radon-Nikodym property (see Theorem 3.2), and we propose the following question: Are the spaces

BVL?CUI.((Q, E’) and (B; (82, E));7 isomorphic (E is any Banach space) (Problem 3.4)? In Section 4, by using the previous
isombrphism, some representation theorems of Vogt [33, Theorems 5.2, 6.2] and the solution to Problem 4.11 in [24] given
by Cembranos and Mendoza in [3], we partially answer Problem 4.10 in [24] (see Theorem 4.4). We also show that, in

general, B!;Ck(.Q, E) is not isomorphic to either Bg’ock(.Q) ®¢ E or B!ﬂfk(ﬂ) ®x E. Next it is shown that B; (82, 1) (resp.
Bi;’_i(ﬂ,lq)) is isomorphic to EB]'OO:o G;j (resp. ]—Ij‘?io Hj) where Gg (resp. Hg) is isomorphic to I,(l;) and G; (resp. Hj) is
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isomorphic to a complemented subspace of I,(ly) for j=1,2,.... Then we describe the structure of the complemented
normed subspaces of Bll;’jc(ﬂ), Bll;)Ck(Q,lq) and HT:1 B';jckj(ﬂj, Ip). We also give a new proof (based on our representation

theorem Bﬁ(()) o~ IEI) of a well-known result on linear partial differential operators.

Notation. The linear spaces we use are defined over C. Let E and F be locally convex spaces. Then Ly(E, F) is the locally
convex space of all continuous linear operators equipped with the bounded convergence topology. The dual of E is denoted
by E’ and is given the strong topology so that E’ = L, (E, C). E & F (resp. E & F) is the completion of the injective (resp.
projective) tensor product of E and F. If E and F are (topologically) isomorphic we put E >~ F. If E is isomorphic to a
complemented subspace of F we write E < F. We put E < F if E is a linear subspace of F and the canonical injection is

d
continuous (we replace < by < if E is also dense in F). If (E;);2, is a sequence of locally convex spaces, [152, En (EN if
En =E for all n) is the topological product of the spaces En; @ineq En (E™ if E, = E for all n) is the locally convex direct

sum of the spaces Ej.

Let 1< p<oo, k:R"— (0,00) a Lebesgue measurable function, and E a Fréchet space. Then L1P(E) is the set of all
(equivalence classes of) Bochner measurable functions f:R" — E for which || fllp = (fga IIf (X)|IP dx) /P is finite (with the
usual modification when p = oo) for all || - || € cs(E) (see, e.g. [8]). L, x(E) denotes the set of all Bochner measurable
functions f : R" — E such that kf € Lp(E). Putting I fllL, ey = Ikfllp for all f e Ly (E) and for all || - || € cs(E), Lp k(E)
becomes a Fréchet space isomorphic to L,(E). When E is the field C, we simply write L, and Lp k. If f € L1(E) the Fourier
transform of f, f or Ff, is defined by f(é) = [gn f(e~®xdx If f is a function on R" then f(x) = f(—x) for x € R". The
letter C will always denote a positive constant, not necessarily the same at each occurrence.

Finally we recall the definition of A} functions. A positive, locally integrable function w on R" is in A} provided, for
1<p<oo

1 1 , p/p’
sup(—/wdx) (—/w"’ /pdx) < 00,
R \IR| [R|

R R

where R runs over all bounded n-dimensional intervals. The basic properties of these functions can be found in [7, Chap-
ter IV].

2. Spaces of vector-valued (Beurling) ultradistributions

In this section we collect some basic facts about vector-valued (Beurling) ultradistributions and we recall the defini-
tions of the vector-valued Hérmander-Beurling spaces. Comprehensive treatments of the theory of (scalar or vector-valued)
ultradistributions can be found in [1,10,15-17]. Our notations are based on [1] and [30, pp. 14-19].

Let M (or My) be the set of all functions w on R" such that w(x) = o (]x|) where o (t) is an increasing continuous
concave function on [0, oo[ with the following properties:

(i) 0(0) =0,
(i) f5° 1%)2 dt < oo (Beurling’s condition),
(iii) there exist a real number a and a positive number b such that

o(t)>a+blog(1+t) forallt>0.

The assumption (ii) is essentially the Denjoy-Carleman non-quasianalyticity condition (see [1, Section 1.5]). The two most
prominent examples of functions w € M are given by w(x) =log(1 + |x|)¢, d > 0, and w(x) = |x|#, 0 < B < 1.

If we M and E is a Fréchet space, we denote by D, (E) the set of all functions f € Ly(E) with compact support, such
that |||, = fgn I1f@&)le*®® d& < oo for all A > 0 and for all || - || € cs(E). For each compact subset K of R", D, (K, E) =
{f € D,(E): supp f C K}, equipped with the topology induced by the family of seminorms {|| - [|x: || - || € cS(E), A > 0},
is a Fréchet space and D, (E) = ind_K, Dy (K, E) becomes a strict (LF)-space. If £2 is any open set in R", D (§2, E) is the

subspace of D, (E) consisting of all functions f with supp f C £2. D, (£2, E) is endowed with the corresponding inductive
limit topology: D (£2,E) =ind _, D,(K,E). Let S, (E) be the set of all functions f € L{(E) such that both f and f are
Kc$

infinitely differentiable functions on R" with supycgn e*©® [[3% f(x)|| < 0o and supycgn e*2® 3% f (x)|| < oo for all multi-
indices «, all positive numbers A and all || - || € ¢s(E). S, (E) with the topology induced by the above family of seminorms
is a Fréchet space and the Fourier transformation F is an automorphism of S, (E). If E = C then D (E) and S, (E) coincide
with the spaces D, and S, (see [1]). Let us recall that, by Beurling’s condition, the space D, is non-trivial and the usual

d
procedure of the resolution of unity can be established with D, -functions (see [1, Theorem 1.3.7]). Furthermore, D, < D

d d
(see [1, Theorem 1.3.18]) and D, is nuclear [33, Corollary 7.5]. On the other hand, D,, =D NSy, Dy <> Su <— S (see [1,
Proposition 1.8.6, Theorem 1.8.7]) and S, is nuclear also (see [10, p. 320]). If &, is the set of multipliers on D,,, i.e., the
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set of all functions f : R" — C such that ¢ f € D,, for all ¢ € D, then &, with the topology generated by the seminorms

{(f > 1oflx= fgn o f()]e*®® d&: A >0, ¢ € Dy} becomes a nuclear Fréchet space (see [33, Corollary 7.5]) and Dy, 4
&,-. Using the above results and [17, Theorem 1.12] we can identify S,,(E) with S, ®. E. However, though D, ® E is dense in
D (E), in general D, (E) is not isomorphic to D, ®; E (cf., e.g. [9, Chapter II, p. 83]). A continuous linear operator from D,
into E is said to be a (Beurling) ultradistribution with values in E. We write D/ (E) for the space of all E-valued (Beurling)
ultradistributions endowed with the bounded convergence topology, thus D/ (E) = Ly(D, E). D}, (2, E) = Ly(D(£2), E) is
the space of all (Beurling) ultradistributions on 2 with values in E. A continuous linear operator from S, into E is said
to be an E-valued tempered ultradistribution. S (E) is the space of all E-valued tempered ultradistributions equipped with
the bounded convergence topology, i.e., S/, (E) = L(Sy, E). The Fourier transformation F is an automorphism of S/, (E).

If w e M, then K, is the set of all positive functions k on R" for which there exists a positive constant N such
that k(x + y) < eN®®k(y) for all x and y in R" [1, Definition 2.1.1] (when w(x) = log(1 + |x|) the functions k of the
corresponding class /C, are called temperate weight functions, see [13, Definition 10.1.1]). If k, kq, ky € K, and s is

a real number then logk is uniformly continuous, k¥ € Ky, k1ks € K, and M (x) = SUP eRn k(,f;)y) € Ky (see [1, Theo-

rem 2.13]). Ifu e Ll{’c and f]R" @Xx)u(x)dx =0 for all p € D, then u =0 a.e. (see [1]). This result, the Hahn-Banach theorem
and [5, Chapter II, Corollary 7] prove that if k € Ky, p € [1,00] and E is a Fréchet space, we can identify f e L, (E)
with the E-valued tempered ultradistribution ¢ — (@, f) = fRn(p(x)f(x) dx, ¢ € S, and Ly k(E) — S, (E). If o e M,
ke Ky, pell,00] and E is a Fréchet space, we denote by B x(E) the set of all E-valued tempered ultradistributions
T for which there exists a function f e L (E) such that (g, f) = fRn @) f(x)dx, ¢ € Sp. By k(E) with the seminorms
{ITlpx = (2m)™" fR,, ||k(x)f(x)||p dx)V/P; || - || € cs(E)} (usual modification if p = oo), becomes a Fréchet space isomor-
phic to L, x(E). Spaces B, (E) are called Hérmander-Beurling spaces with values in E (see [12,13,33] for the scalar case
and [25,27,32] for the vector-valued case). We denote by Bllic,{((z, E) (see [12,13,24,25,27,33]) the space of all E-valued
ultradistributions T € D/, (£2, E) such that, for every ¢ € D, (£2), the map ¢T : S, — E defined by (u, ¢T) = (ug, T),

u € Sy, belongs to B, (E). The space B';j{(s?,E) is a Fréchet space with the topology generated by the seminorms
{II-lpkgp: @ € Do(82), Il -1l € cs(E)}, where Ty ke =l@Tllpx for T € Bg’i(ﬂ, E), and Bg’j{(Q, E) < D/, (£2, E). We shall
also use the spaces B;Yk(ﬂ, E) which generalize the scalar spaces B;,k(ﬂ) considered by Hérmander in [13], by Vogt in
[33] and by Bjoérck in [1]. If w, k, p, 2 and E are as above, then B;,((SZ, E)= U?;[Bp,k(E) N&,(K;, E)] (here (Kj) is any
fundamental sequence of compact subsets of £2 and £/ (K;, E) denotes the set of all T € D/, (E) such that suppT C Kj).
Since for every compact K C £2, B, (E) N &, (K, E) is a Fréchet space with the topology induced by B, \(E), it follows that
B;!k(.@, E) becomes a strict (LF)-space (strict (LB)-space if E is a Banach space): quk(s’z, E) = ind_;[Bp,k(E) né&,(Kj, )]

These spaces are studied in [24,25,27].

3. The dual of B;,,‘(SZ, E)

In [13, Chapter XV] Hérmander studies the behaviour of the Fourier-Laplace transform in the space B () =
ind_, [B2 x N E'(K)] when £2 is an open convex set in R" and k is a temperate weight function on R". For this he discusses
K
the inductive limit topology in BS ,(£2), proves the isomorphism (B ,(£2)); ~ Blzoi/ﬁ(g) [13, Section 15.2] and shows that

every continuous seminorm in B (§2) is bounded by a seminorm of the form

1/2
u— (/lﬁ(;)lze”“’(“ dw)) ,

where i is the Fourier-Laplace transform of u and ¢ is plurisubharmonic. In this section we extend the former isomorphism
to Hormander spaces in the sense of Beurling and Bjorck [1] and prove that (B; (82, E))y = BL‘{CI/’E(Q, E’) when w € M,
keKy 1< p<ooand E is a Banach space. A number of applications of this duality will be given in the next section.

Let us recall that a D, (§2)-partition of unity in £2 (= open set in R") is a sequence (6;) in D (§2) such that: (i) 6; >0
for j=1,2,..., (ii) Zj 0; =1 in £, (iii) for every compact set K C §2 there exist a positive integer m and a bounded open

set W such that KCW CW C 2 and )7L, 6;=11in W.

Lemma 3.1. Let 2 be an open set in R", w € M, k € K, 1 < p < 0o, and E a Banach space. Let (0;) be a D, (§2)-partition of unity
in $2. Then the inductive limit topology on B; (82, E) is generated by the seminorms

o0
1Ty = CillojTllph, T €BS (2, ),
j=1

varying (C;) in RY.

Proof. See Proposition 3.10 of [27]. O
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In the next result we will need the spaces I1(Cj, E) and I (Cj, E): If (C;) is a sequence in Rl}l and E is a Banach space
then [1(Cj, E) (resp. I (Cj, E)) denotes the set of all sequences (x;) € EN such that Ixp)lh = ijﬂ Cillxjlle < oo (resp.
(%) lloo = sup; Cjllxj[ g < o0). With the norm || - [|1 (resp. || - lo) [1(Cj, E) (resp. loo(Cj, E)) becomes a Banach space.

Theorem 3.2. Let 2 be an open set in R", w € M, k € Ky, 1 < p < 00, and let E be a Banach space whose dual E' possesses the
Radon-Nikodym property. Then BI;/CME(.Q, E") is isomorphic to (B;.k(.Q, E)),.

Proof. Choose a fixed D, (§2)-partition of unity (9;) in £ and let L be an element in (B;’k(Q, E)). By Lemma 3.1 we can
find a sequence (C;) in ]1@ such that

IL(D)| < Zc,ue,rnpk, T € BS (2, E).
j=1

Then the linear mapping
Z:BS (2,E) — L(Cj, Bp(E))
T — 0;T)
is continuous. Furthermore, since each T can be written in the form T = ZT:1 0;T (m varying with T), we conclude that
Z is injective. Now we consider the linear form L o Z~!. Since |L o Zfl((OjT))| < 16;T) |11, the Hahn-Banach theorem

shows that there exists a linear form (Lo Z=1)~ e (|4 (Cj, Bpk(E))) of norm at most 1 which extends L o Z~1. Then, by the
isometric isomorphism

1 /
A: loo(Fv Bp’.]/k(E/)) — (h(Cj, Bpk(E)))
j

defined by ((Tj), A((Sj))) = 2n)™" Z]?’oﬂ fRn(Tj(x),§j(x))dx, we can find (Sj) € IOO(CLJ,BP’J/]((E/)) such that A((Sj)) =
(LoZ~1~, and so

oo

LoZ ' ((6;T)) = L(T) = m)™" Z/(e’ﬁ(x), $i () dx
j:1Rn
foreach T € B; «(§2, E). Next we shall prove that the linear mapping
- (B¢ loc ’
@ (B (2. D), > By, (2. E)
L - Z]:l 0]'5]'
(the series 2?0:1 Gj§j converges in Blo’cl/k(g E’) since this space is a Fréchet space and Zj 1”0]5]” g =

= i0)Sill., 1,z < oo for eac eD, in virtue of the properties of the sequence is an isomorphism. Let us
731 ©jp)S; ok fi h ¢ € D, (£2) f th f th ©)) hi L

see that @ is well defined. Let (L o Z~')= another extension of Lo Z™! to [1(Cj, By k(E)) and let (S}) € loo(cij, By 1/k(E"))
the sequence which represents this extension. Let us check that 2;01 9]3] = 2?019131 By Fourier’s inversion formula,

the properties of the Bochner integral and the embedding B'°° .(£2,E’) — D/ (£2,E’) (see Section 2) we have for all

p’ 1/k

@eD,(£2) and all e € E,

<¢,Zej§j>=2 9.0;S) = (¢0;.5)) =Q2m) ™Y (¢0;.5))

j=1 j=1 j=1 j=1

and

(2n)—"<e,2<¢0,,s,)>=(2n)—" > fe. (90). 5j)) = @m)™" Z<e,/6717p(x)§j(x)dx>

j=1 j=1 J=1" gn
= (2n)*"Z/((ej(go@e))%x),§j(x))dx=L(¢®e).
jlell

Repeating the argument with } 0451 we conclude that Y%, 6;5; = 3. 6,51, Now let (C’) € RYY another sequence
j=1Yj j=171J J=1717j J +

such that |L(T)| < ZJ . C" 05 Tllpk for T € Bp (82, E). Let Z’' be the corresponding operator, let (Lo Z’~1)~ be an extension
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of LoZ~1 to l1(C’, B, k(E)) and let (S;.) € loo(%, By 1/k(E")) the sequence which represents this extension, then L(T) =
J

Qm)™ Z;’il Jrn (0T (), S’j(x))dx, Te B;,k(Q, E), and also (e, (¢, Z?i] GjS/j)) =L(p®e) for p € Dy,(£2) and e € E. Then

@ is well defined. If @ (L) =0 then (e, (¢, ®(L))) =0=L(p ®e) for all <p €Dy (£2) and all e € E, thus L=0 on D, (£2) ® E.

Since this space is dense in D, ($2, E) (see Section 2) and D, (2, E) <—> B¢ k(.Q E) (see Proposition 3.6 of [27]), it follows
that L = 0. Consequently, @ is one-to-one. Furthermore, @ is surjective: Let (xj) a sequence in D, (§2) such that x; =1
in a compact neighborhood of supp#é;. Let S be an element of B‘;f]ﬂ;((z, E’). Then we have (convergence in Bg’f]ﬂ;(ﬂ, E")

S=37,08=Y7210ix)S = X721 0;(x;S) = Y72, 0;X; where X; = x;S. Now we define the functional

L(T) = (2n)—"2/(0’ﬁ(x), Xj()dx. T eBS (2. E).
jlen
Since
IL(T)| < <2n>‘"Z/IIﬁ(x)llEl«x)Hfg(x) R )dx<2|\0ﬂ||pk||x]||p/ 1k
j=1Rn

forall T € BC 182, E), it follows that L € (B 182, E)). Then & (L) =S and & is surjective.

Now we prove that @~ is continuous: Let A be a bounded set in B;!k(.@, E). Since this space is a strict (LB)-space,
there is a compact set M in £2 such that A is contained and bounded in the step B, x(E) N &/, (M, E) (see [18, (4), p. 223]).
Take a sequence (x;) in D (£2) such that x; =1 in a compact neighborhood of supp6;, j=1,2,..., and let m be such that

0j=0in M for all j > m. Then, taking into account Proposition 3.4 of [27] and that every S € Bl"f]ﬂ (£2, E’) can be written

in the form S = 2]21 0;X; with X; = X]S, we get
o0
(Zn)_”Z/(GjT(x),Xj(x))d

sup|®~1(S)(T)| = sup
TeA TeA P
J=1gn

supZneﬂn,,kMX,np 1k
TeA =

;uane,m AT IplS T 1 5, < CZnej||1,Mk||S||p,,1/k,Xj
j=1 j=1
for all S e Bloc ~(SZ‘ E’) (C is a constant > 0). Hence it follows the continuity of ®~!. Then & becomes an isomorphism
since B'°¢ (Q E) and (BC k(82 E)), are Fréchet spaces (B;,k(.Q, E) is a (DF)-space by [18, (4), p. 402] and so its strong

p'1/k
dual is a Frechet space (see [18, (1), p. 397])). The proof is complete. O

Remark 3.3. When k(x) is a temperate weight function, p =2 and E = C, our theorem yields the isomorphism which
appears in [13, p. 279].

In [32] the spaces BV, x(E) are introduced (by using the natural embedding of the space V,(kPdx, E) of the finitely
additive E-valued measures of bounded p-variation into the space S (E)) and the isometric isomorphism BV 1k (E") ~
(Bp k(E)) is shown (E is any Banach space and 1 < p < o00). In view of this result and our Theorem 3.2 we can define the
space

Bvloc

k(2. E) = {T €D, (2,E): ¢T € BV, k(E) for all ¢ € D, (£2)}

(equipped with the topology generated by the family of seminorms {T — ||(Zn)_”/pﬁllvp(kpdx,g): ¢ € Dy, ($2)} when
p < oo (resp. {T — ”ﬁ”VOC(%dX,E): ¢ € D, (£2)} if p=00)) and propose the following question.

Problem 3.4. Let £2 be an open set in R", w e M, ke Ky, 1 < p <oo and let E be a Banach space. Are the spaces

BVI (2. E') and (B} (22, E)); isomorphic?

4. On sequence space representations of spaces of ultradistributions

In this section we give a number of results on sequence space representations of spaces of distributions and ultradistri-
butions. Based on these and using the solution to Problem 4.11 in [24] given by Cembranos and Mendoza in [3], we partially
answer Problem 4.10 in [24]. We also give a new proof of a well-known result: The short sequence

P(D)
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does not split (P(D) is an elliptic operator with constant coefficients and P'(£§) = (3_, [0% P (£)[%)1/2). (The proof we give is
based on the isomorphism Bloc () ~1].)
We shall omit the proof of the following simple result.

Lemma 4.1. Let §2 be an open setin R", w € M, k € K, 1 < p < o0, and let (Ej)j°; be a sequence of Banach spaces. Then the space
Bi;’_Ck(Q, [152, E;) is isomorphic to [ 32, B';fk(sz, Ej).

Theorem 4.2. Let 2 be an open setin R", w € M, k € K, and let E be a Banach space. Then

(1) B (82, E) is isomorphic to (I (E)™),
(2) Bllofc(ﬂ E) is isomorphic to (I; (E)Y,
(3) if E is a dual space and has the Radon-Nikodym property then B“’Ck(SZ E) is isomorphic to (Iso (E))N.

Proof. (1) and (2). The proof given in [33] is also valid in the vector-valued case and for weights k € K. (3) Suppose
E ~ F’ and recall that if (E; )°°1 is a sequence of Banach spaces then the space (@] 1 Ej )b is isomorphic to H] 1 E’ (see
[18, p. 287]). Then, taking into account Theorem 3.2 and (1), we get

BRC(2.B) = (B, (2. F)), = ((h(P) "), = (l(B)". O

(B] 1,1/k
Theorem 4.3. [ (1) and |1 (l») are not isomorphic.
Proof. See [3, Theorem 1]. O

Next we answer Problem 4.10 in [24] when g = oco.

Theorem 4.4. If 21 is an open setin R™, w1 € My, and ki € Ky, (resp. §22 open set in R™2, wy € My,, ky € Ky, ), then the spaces

BloC (24, B loc K, (§22)) and B¢, (§2,, BY °c | (§21)) are not isomorphic.

1.kq 0, k

Proof. By using the previous results we have the isomorphisms

B, (21, B, (22) = BY, (21, 15) = (B, (21.10)" = (111)) ") = (1 1))

and

BIC,, (22, B (21)) = B, (22, 1) = (B (22.11))" = (oo 1)) = (loa )"

Suppose now that our iterated spaces are isomorphic. Then (I1(Ioo))Y and (Is(11))Y are also isomorphic. Hence it follows
(by [4]) that there exist positive integers o, 8 such that I1(lse) < (Isc(1)¥ ~ lso(l1) and lso (1) < (11 (Iso))? ~ 11 (Iso). Then,
using Pelczynski’s decomposition method, we conclude that 1 (Ioo) 2~ o (I1). This contradicts Theorem 4.3. In consequence,
BllOfﬁ ($21, B';sz (£22)) and B{;’oﬁkz(gz, Blffﬁ (§21)) are not isomorphic. O
Remark 4.5. 1. We must point out that the space B"’Ck (2, Bll"f( (£21)) even contains no complemented subspace isomor-
phic to BlOC (.(21 BL"OC_kZ (£22)) (see the proof of Theorem 4.4 and use the final remarks of [3]).

2. Note also that, in general, Bl°ck(.Q E) is not isomorphic to either BIOOOCk(.Q)@SE or BO"ock ®x E: In fact, let 1<p <00
and assume that B2, (£2, 1) is isomorphic to B, (2) ®: Ip. Then, by virtue of [19, (5), p. 282], [19, (2), p. 287], Theorem 4.2
and a result of Cembranos and Freniche [2, Theorem 3.2.1], we get

(loo(lp)) ~ I el ~ (loo ®e [p)N =~ (C(ﬂN)@,glp) ~ (C(BN, lp)) > cl.

Hence it follows, arguing as in Theorem 4.4, that I, (I5) contains a complemented copy of co. Then, by a result of Leung
and Rdbiger [2, Theorem 5.1.1], I, also contains a complemented copy of co. This contradiction shows that B&fk(ﬂ, Ip) and

Bg‘gﬁ,( ®e Ip are not isomorphic. On the other hand, since by Theorem 4.2 and [19, (5), p. 194] we have

N ~ ~ ~ N
B (2. 1) (lno() . B (2) @ b 215, 87 11 = (oo & DV = (1(10))

it follows that the spaces B¢, (£2,1;) and B¢, (£2) ® l; are not isomorphic.

00,k 00,k
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In the next theorem the following elementary fact will be used: “Let F =ind_, F; be the strict inductive limit of a

1
properly increasing sequence Fi C F» C --- of Banach spaces. Assume that every F; is a complemented subspace of Fjq
and that G; is a topological complement of Fj in Fjq. Then, the mapping F1 ® G ® G, ® --- — F : (f1,81,82,...) =~
f1+ 81+ g2+ -+ is an isomorphism”. We will also need the weighted Lp-spaces of vector-valued entire analytic functions

Lgk(E) and the operators Sk (f) :F‘l(xkf) (see [25]).

Theorem 4.6. Let §2 be an open set in R". Assume 1 < p, q < oo and let k be a temperate weight function on R" with kP € A} Then
the space Bp (82, 1g) (resp. Bl"i(Q lg)) is isomorphic to @] 0 Gj (resp. 1_[] 0 H] ) where G (resp. Ho) is isomorphic to I, (lq) and
G (resp. Hj) is isomorphic to a complemented subspace of 1, (Ig) for j=1,2,.

Proof. Let (K;) be a covering of £ consisting of compact sets such that K; C kj+1. Kj= K_] and kj has the segment
property (we may also assume, without loss of generality, that each K; is a finite union of n-dimensional compact intervals).
Then B¢ k(.Q,lq) = indﬁ[Bp,k(lq) NE'(Kj,lg)]. In this inductive limit, the step B x(lg) N E'(Kj,lg) is isomorphic (via the

Fourier transform) to L J(lq) and this space is isomorphic by Corollaries 4.2 and 5.1 of [25], to I, (Ig). Furthermore, L;’I,:j (M)

p.k
is a complemented subspace of L k’“ (lg): L J(lq) @ [kerS_g; N Lp'k’+l (1= L;I,:j“ (Ig). Thus, the space Gj =kerS_g; N
Lp I;J“ (Ig) is isomorphic to an 1nﬁn1te—d1men51ona1 complemented subspace of I,(l3). Then, by using the former result, we

obtain

BS (2,1 > L 1) ©G1 @G @ >yl ©G1 DG @ -

Next, since 1/k is a temperate weight function on R" such that 1/k?’ € A;,, we see that B¢
Bo ~lp(ly) and Bj <y (ly) for j=1,2,.... Therefore, by Theorem 3.2, we get

00 ’ ] 00
Block(g Iq)_( /1/]2(9’151/));:(@B])b:HB;:HH]
j=0 j=0

j=0

1/1('(2 ) = @520 Bj where

(here H; = B/].) where Ho ~1Ip(ly) and H;j <I,(lg) for j=1,2,..., and the proof is complete. O

Remark 4.7. (1) Let 2, p and k as in Theorem 4.6. In [25, Corollary 5.3] the space B;’k(Q, E) is showed to be isomorphic to
159 if dim E < 0o or E =1y, and to (I, (1))™ if E = I,. By duality (Theorem 3.2) it follows that Bl"c (2) ~ 1, Bgﬁ((g, Ip) =1
and B (2,12) = (lp ()"

(2) Note that, in general, B'OCk(SZ E) is not isomorphic to either B'OCk(SZ) ®; E or B"’f{(Q) ®x E: In fact, let 2, p, q and k

as in Theorem 4.6 and assume that B?C((Q, lg) is isomorphic to BZ’i(Q) ®e lg (resp. Bg’f (2) lg). Then, by Theorem 4.6,
the previous note, [19, (5), p. 282] and [19, (5), p. 194], we get

o0 (o]
[TH; =15 ®lg =~ Uty & 1" (resp. [1Hi~ (lp@lq)N),
j=0 j=0
wtl?re Ho~I,(g) and H;j < lp(lq) for j=1,2,.... Hence it follows, reasoning as in Theorem 4.4, that I,(lg) ~1p ¢ Ig (resp.
I, ®x lg) but this is false when p’ < g (resp. p < q’) by a result of Holub [11, Proposition 3.7] (resp. [11, Proposition 3.6]). In
consequence, the spaces B‘;i(fz l) and B"’c () ®e I (resp. B';C,((Q) ®x lq) are not isomorphic when p’ < q (resp. p <q').
(3) By using the previous results we can describe the structure of the complemented (normed) subspaces of Bg’j((.Q),
Bl"C (82,1 and [T 1Bl"c (.Ql-,lpi): (i) Let X be an infinite-dimensional complemented (normed) subspace of Bl;j((.Q) (22
open set in R", w € ,M k € K and p € {1, 0o} or k temperate weight function on R" such that kP € A} and p € (1, 00)).
Then Bloc (82) =~ lg and thus X becomes a complemented subspace of I,. This implies, since I, is prime [20, Theo-
rems 2.a.3, 2.a.7], that X ~ 1. (ii) Let X be an infinite-dimensional complemented (normed) subspace of Bg’j((fz,lq) (2
open set in R", p,q € (1,00) and k temperate weight function on R" with kP ¢ A}). Then, since Bllick(fz,lq) <(p (lq))N in
virtue of Theorem 4.6, X becomes a complemented subspace of I, (lg). This implies, in the case g =2, that X is isomorphic
to either I, I, [ ®1p or I, (I2) by a result of Odell [26]. (iii) Let X be an infinite-dimensional complemented (normed) sub-
space of 1_[, 1 Block ($2i,1p,) (825 open set in R", 1 < py <--- < pm < 00, k; temperate weight function on R" with k,.p" € A3,
i=1,...,m). Then, since

m
]‘[B,;’ k(20 L) = [ [l = Upy @+~ @ 1p,)",
i=1
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we have that X <1l @--- ®lp, and so there exist 1< iy <--- < iy <m such that X ~ Iy, &--- @I, in virtue of [20,
Theorem 2.c.14].

(4) We omit the proof of the following result:

B¢ (21,1g) >~ B\ (22,1g,) <= p1=psand g1 =0,

(£2; open set in R", p;, q;i € (1, 00), k; temperate weight function on R" with I<p’ € A* i=1,2).

We conclude this section by showing a result on linear partial differential operators (the result is well known, see e.g.
[21,22,31,34]). The proof we give is based on our representation theorem B';ﬁ{(.Q) ~1.

Theorem 4.8. Let §2 be an open set in R" (n > 2), 1 < p < oo, k a temperate weight function on R" such that kP € A} and P(D) an
elliptic operator with constant coefficients. Then the short sequence

RGN

0— N(P(D)) — B"’c (2) —> B‘OC,{/P,(Q) -0

is exact and does not split, i.e., the operator P(D) has no continuous linear right inverse (here N(P (D)) is the kernel of P(D)).

Proof. P(D) is well defined by [13, Theorem 10.1.11] and the short sequence is exact in virtue of [13, Corollary 10.8.2] and
[13, Theorem 10.6.7]. The closed subspace N(P(D)) of Bloc (£2) coincides, algebraic and topologically, with the subspace
N(2)={f € £(2): P(D)f =0} of £(2) (by [12, Theorem 1.11.10], [12, Theorem 1.11.11] and the closed graph theorem)
and thus it is a nuclear Fréchet space. Note also that, for every connected component O of £2, the space N(O) equipped
with the topology induced by £(0), is a nuclear Fréchet space with continuous norms (since all f € N(O) is real analytic
in O, see e.g. [1, Corollary 4.1.4]) isomorphic to a complemented subspace of N(P(D)). Now assume that the short sequence
splits. Then N(P(D)) is a complemented subspace of Bg’j((.Q). Since this space is isomorphic to lg by Remark 4.7(1), it
follows that, for any connected component O of §2, the space N(O) becomes isomorphic to an infinite-dimensional (n > 2)
complemented subspace of II;‘. This implies, taking into account a result of Metafune and Moscatelli [23, Theorem 1.2], that

N(0) is isomorphic to either I, I, x w, w or IIE. This contradiction completes the proof. O
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