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It is shown that B loc
p′,1/k̃

(Ω) is isomorphic to (Bc
p,k(Ω))′b (Ω open set in R

n , 1 � p < ∞,

k Beurling–Björck weight) extending a Hörmander’s result (the proof we give is valid in
the vector-valued case, too). As a consequence, and using Vogt’s representation theorems
and weighted Lp-spaces of entire analytic functions, a number of results on sequence space
representations of Hörmander–Beurling are given.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction and notation

In [13, Chapter XV] Hörmander studies the behaviour of the Fourier–Laplace transform in the space Bc
2,k(Ω) =

ind →
K�Ω

[B2,k ∩ E ′(K )] when Ω is an open convex set in R
n and k is a temperate weight function on R

n , and then proves

a theorem on the representation of solutions of the equation P (D)u = 0 by integrals of exponential solutions (P (D) is
a constant coefficient partial differential operator). For this he obtains an appropriate collection of seminorms defining
the inductive limit topology of Bc

2,k(Ω), proves the isomorphism (Bc
2,k(Ω))′b � B loc

2,1/k̃
(Ω) and shows that every continuous

seminorm in Bc
2,k(Ω) is bounded by a seminorm of the form u → (

∫ |û(ζ )|2e−2φ(ζ ) dλ(ζ ))1/2 where û is the Fourier–Laplace
transform of u and φ is plurisubharmonic (see [13, Section 15.2]). In this paper we extend the former isomorphism to
Beurling–Björck weights [1] and as a consequence (and using Vogt’s representation theorems [33] and weighted L p-spaces
of entire analytic functions [25,30]) a number of results on sequence space representations of Hörmander spaces in the
sense of Beurling and Björck [1] (= Hörmander–Beurling spaces) are given. This research pursues the study on Hörmander–
Beurling spaces carried out in [1,6,12,13,29,33] and [24,25,27,28,32] (see also [14]).

The organization of the paper is as follows. Section 2 contains some basic facts about scalar and vector-valued Beurl-
ing ultradistributions and the definitions of the spaces which are considered in the paper. In Section 3 we show that
B loc

p′,1/k̃
(Ω, E ′) is isomorphic to (Bc

p,k(Ω, E))′b when ω ∈ M, k ∈ Kω , 1 � p < ∞ and E is a Banach space whose dual

E ′ possesses the Radon–Nikodým property (see Theorem 3.2), and we propose the following question: Are the spaces
B V loc

p′,1/k̃
(Ω, E ′) and (Bc

p,k(Ω, E))′b isomorphic (E is any Banach space) (Problem 3.4)? In Section 4, by using the previous

isomorphism, some representation theorems of Vogt [33, Theorems 5.2, 6.2] and the solution to Problem 4.11 in [24] given
by Cembranos and Mendoza in [3], we partially answer Problem 4.10 in [24] (see Theorem 4.4). We also show that, in
general, B loc

∞,k(Ω, E) is not isomorphic to either B loc
∞,k(Ω) ⊗̂ε E or B loc

∞,k(Ω) ⊗̂π E . Next it is shown that Bc
p,k(Ω, lq) (resp.

B loc
p,k(Ω, lq)) is isomorphic to

⊕∞
j=0 G j (resp.

∏∞
j=0 H j) where G0 (resp. H0) is isomorphic to lp(lq) and G j (resp. H j) is
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isomorphic to a complemented subspace of lp(lq) for j = 1,2, . . . . Then we describe the structure of the complemented
normed subspaces of B loc

p,k(Ω), B loc
p,k(Ω, lq) and

∏m
j=1 B loc

p j ,k j
(Ω j, lp). We also give a new proof (based on our representation

theorem B loc
p,k(Ω) � lNp ) of a well-known result on linear partial differential operators.

Notation. The linear spaces we use are defined over C. Let E and F be locally convex spaces. Then Lb(E, F ) is the locally
convex space of all continuous linear operators equipped with the bounded convergence topology. The dual of E is denoted
by E ′ and is given the strong topology so that E ′ = Lb(E,C). E ⊗̂ε F (resp. E ⊗̂π F ) is the completion of the injective (resp.
projective) tensor product of E and F . If E and F are (topologically) isomorphic we put E � F . If E is isomorphic to a
complemented subspace of F we write E < F . We put E ↪→ F if E is a linear subspace of F and the canonical injection is

continuous (we replace ↪→ by
d

↪→ if E is also dense in F ). If (En)∞n=1 is a sequence of locally convex spaces,
∏∞

n=1 En (EN if
En = E for all n) is the topological product of the spaces En;

⊕∞
n=1 En (E(N) if En = E for all n) is the locally convex direct

sum of the spaces En .

Let 1 � p � ∞, k : R
n → (0,∞) a Lebesgue measurable function, and E a Fréchet space. Then L p(E) is the set of all

(equivalence classes of) Bochner measurable functions f : R
n → E for which ‖ f ‖p = (

∫
Rn ‖ f (x)‖p dx)1/p is finite (with the

usual modification when p = ∞) for all ‖ · ‖ ∈ cs(E) (see, e.g. [8]). L p,k(E) denotes the set of all Bochner measurable
functions f : R

n → E such that kf ∈ L p(E). Putting ‖ f ‖Lp,k(E) = ‖kf ‖p for all f ∈ L p,k(E) and for all ‖ · ‖ ∈ cs(E), L p,k(E)

becomes a Fréchet space isomorphic to L p(E). When E is the field C, we simply write L p and L p,k . If f ∈ L1(E) the Fourier

transform of f , f̂ or F f , is defined by f̂ (ξ) = ∫
Rn f (x)e−iξx dx. If f is a function on R

n then f̃ (x) = f (−x) for x ∈ R
n . The

letter C will always denote a positive constant, not necessarily the same at each occurrence.
Finally we recall the definition of A∗

p functions. A positive, locally integrable function ω on R
n is in A∗

p provided, for
1 < p < ∞,

sup
R

(
1

|R|
∫
R

ωdx

)(
1

|R|
∫
R

ω−p′/p dx

)p/p′

< ∞,

where R runs over all bounded n-dimensional intervals. The basic properties of these functions can be found in [7, Chap-
ter IV].

2. Spaces of vector-valued (Beurling) ultradistributions

In this section we collect some basic facts about vector-valued (Beurling) ultradistributions and we recall the defini-
tions of the vector-valued Hörmander–Beurling spaces. Comprehensive treatments of the theory of (scalar or vector-valued)
ultradistributions can be found in [1,10,15–17]. Our notations are based on [1] and [30, pp. 14–19].

Let M (or Mn) be the set of all functions ω on R
n such that ω(x) = σ(|x|) where σ(t) is an increasing continuous

concave function on [0,∞[ with the following properties:

(i) σ(0) = 0,
(ii)

∫ ∞
0

σ(t)
1+t2 dt < ∞ (Beurling’s condition),

(iii) there exist a real number a and a positive number b such that

σ(t) � a + b log(1 + t) for all t � 0.

The assumption (ii) is essentially the Denjoy–Carleman non-quasianalyticity condition (see [1, Section 1.5]). The two most
prominent examples of functions ω ∈M are given by ω(x) = log(1 + |x|)d , d > 0, and ω(x) = |x|β , 0 < β < 1.

If ω ∈ M and E is a Fréchet space, we denote by Dω(E) the set of all functions f ∈ L1(E) with compact support, such
that ‖ f ‖λ = ∫

Rn ‖ f̂ (ξ)‖eλω(ξ) dξ < ∞ for all λ > 0 and for all ‖ · ‖ ∈ cs(E). For each compact subset K of R
n , Dω(K , E) =

{ f ∈ Dω(E): supp f ⊂ K }, equipped with the topology induced by the family of seminorms {‖ · ‖λ: ‖ · ‖ ∈ cs(E), λ > 0},
is a Fréchet space and Dω(E) = ind→

K
Dω(K , E) becomes a strict (LF)-space. If Ω is any open set in R

n , Dω(Ω, E) is the

subspace of Dω(E) consisting of all functions f with supp f ⊂ Ω . Dω(Ω, E) is endowed with the corresponding inductive
limit topology: Dω(Ω, E) = ind →

K⊂Ω

Dω(K , E). Let Sω(E) be the set of all functions f ∈ L1(E) such that both f and f̂ are

infinitely differentiable functions on R
n with supx∈Rn eλω(x)‖∂α f (x)‖ < ∞ and supx∈Rn eλω(x)‖∂α f̂ (x)‖ < ∞ for all multi-

indices α, all positive numbers λ and all ‖ · ‖ ∈ cs(E). Sω(E) with the topology induced by the above family of seminorms
is a Fréchet space and the Fourier transformation F is an automorphism of Sω(E). If E = C then Dω(E) and Sω(E) coincide
with the spaces Dω and Sω (see [1]). Let us recall that, by Beurling’s condition, the space Dω is non-trivial and the usual

procedure of the resolution of unity can be established with Dω-functions (see [1, Theorem 1.3.7]). Furthermore, Dω
d

↪→ D

(see [1, Theorem 1.3.18]) and Dω is nuclear [33, Corollary 7.5]. On the other hand, Dω = D ∩ Sω , Dω
d

↪→ Sω
d

↪→ S (see [1,
Proposition 1.8.6, Theorem 1.8.7]) and Sω is nuclear also (see [10, p. 320]). If Eω is the set of multipliers on Dω , i.e., the
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set of all functions f : R
n → C such that ϕ f ∈ Dω for all ϕ ∈ Dω , then Eω with the topology generated by the seminorms

{ f → ‖ϕ f ‖λ = ∫
Rn |ϕ̂ f (ξ)|eλω(ξ) dξ : λ > 0, ϕ ∈ Dω} becomes a nuclear Fréchet space (see [33, Corollary 7.5]) and Dω

d
↪→

Eω . Using the above results and [17, Theorem 1.12] we can identify Sω(E) with Sω ⊗̂ε E . However, though Dω ⊗ E is dense in
Dω(E), in general Dω(E) is not isomorphic to Dω ⊗̂ε E (cf., e.g. [9, Chapter II, p. 83]). A continuous linear operator from Dω

into E is said to be a (Beurling) ultradistribution with values in E . We write D ′
ω(E) for the space of all E-valued (Beurling)

ultradistributions endowed with the bounded convergence topology, thus D ′
ω(E) = Lb(Dω, E). D ′

ω(Ω, E) = Lb(Dω(Ω), E) is
the space of all (Beurling) ultradistributions on Ω with values in E . A continuous linear operator from Sω into E is said
to be an E-valued tempered ultradistribution. S ′

ω(E) is the space of all E-valued tempered ultradistributions equipped with
the bounded convergence topology, i.e., S ′

ω(E) = Lb(Sω, E). The Fourier transformation F is an automorphism of S ′
ω(E).

If ω ∈ M, then Kω is the set of all positive functions k on R
n for which there exists a positive constant N such

that k(x + y) � eNω(x)k(y) for all x and y in R
n [1, Definition 2.1.1] (when ω(x) = log(1 + |x|) the functions k of the

corresponding class Kω are called temperate weight functions, see [13, Definition 10.1.1]). If k, k1, k2 ∈ Kω and s is
a real number then log k is uniformly continuous, ks ∈ Kω , k1k2 ∈ Kω and Mk(x) = supy∈Rn

k(x+y)
k(y)

∈ Kω (see [1, Theo-

rem 2.1.3]). If u ∈ Lloc
1 and

∫
Rn ϕ(x)u(x)dx = 0 for all ϕ ∈ Dω , then u = 0 a.e. (see [1]). This result, the Hahn–Banach theorem

and [5, Chapter II, Corollary 7] prove that if k ∈ Kω , p ∈ [1,∞] and E is a Fréchet space, we can identify f ∈ L p,k(E)

with the E-valued tempered ultradistribution ϕ → 〈ϕ, f 〉 = ∫
Rn ϕ(x) f (x)dx, ϕ ∈ Sω , and L p,k(E) ↪→ S ′

ω(E). If ω ∈ M,
k ∈ Kω , p ∈ [1,∞] and E is a Fréchet space, we denote by B p,k(E) the set of all E-valued tempered ultradistributions
T for which there exists a function f ∈ L p,k(E) such that 〈ϕ, T̂ 〉 = ∫

Rn ϕ(x) f (x)dx, ϕ ∈ Sω . B p,k(E) with the seminorms

{‖T ‖p,k = ((2π)−n
∫

Rn ‖k(x)T̂ (x)‖p dx)1/p: ‖ · ‖ ∈ cs(E)} (usual modification if p = ∞), becomes a Fréchet space isomor-
phic to L p,k(E). Spaces B p,k(E) are called Hörmander–Beurling spaces with values in E (see [12,13,33] for the scalar case
and [25,27,32] for the vector-valued case). We denote by B loc

p,k(Ω, E) (see [12,13,24,25,27,33]) the space of all E-valued
ultradistributions T ∈ D ′

ω(Ω, E) such that, for every ϕ ∈ Dω(Ω), the map ϕT : Sω → E defined by 〈u,ϕT 〉 = 〈uϕ, T 〉,
u ∈ Sω , belongs to B p,k(E). The space B loc

p,k(Ω, E) is a Fréchet space with the topology generated by the seminorms

{‖ · ‖p,k,ϕ : ϕ ∈ Dω(Ω), ‖ · ‖ ∈ cs(E)}, where ‖T ‖p,k,ϕ = ‖ϕT ‖p,k for T ∈ B loc
p,k(Ω, E), and B loc

p,k(Ω, E) ↪→ D ′
ω(Ω, E). We shall

also use the spaces Bc
p,k(Ω, E) which generalize the scalar spaces Bc

p,k(Ω) considered by Hörmander in [13], by Vogt in

[33] and by Björck in [1]. If ω, k, p, Ω and E are as above, then Bc
p,k(Ω, E) = ⋃∞

j=1[B p,k(E) ∩ E ′
ω(K j, E)] (here (K j) is any

fundamental sequence of compact subsets of Ω and E ′
ω(K j, E) denotes the set of all T ∈ D ′

ω(E) such that supp T ⊂ K j ).
Since for every compact K ⊂ Ω , B p,k(E) ∩ E ′

ω(K , E) is a Fréchet space with the topology induced by B p,k(E), it follows that
Bc

p,k(Ω, E) becomes a strict (LF)-space (strict (LB)-space if E is a Banach space): Bc
p,k(Ω, E) = ind→

j
[B p,k(E) ∩ E ′

ω(K j, E)].
These spaces are studied in [24,25,27].

3. The dual of Bc
p,k(Ω, E)

In [13, Chapter XV] Hörmander studies the behaviour of the Fourier–Laplace transform in the space Bc
2,k(Ω) =

ind→
K
[B2,k ∩ E ′(K )] when Ω is an open convex set in R

n and k is a temperate weight function on R
n . For this he discusses

the inductive limit topology in Bc
2,k(Ω), proves the isomorphism (Bc

2,k(Ω))′b � B loc
2,1/k̃

(Ω) [13, Section 15.2] and shows that

every continuous seminorm in Bc
2,k(Ω) is bounded by a seminorm of the form

u →
(∫ ∣∣û(ζ )

∣∣2
e−2φ(ζ ) dλ(ζ )

)1/2

,

where û is the Fourier–Laplace transform of u and φ is plurisubharmonic. In this section we extend the former isomorphism
to Hörmander spaces in the sense of Beurling and Björck [1] and prove that (Bc

p,k(Ω, E))′b � B loc
p′,1/k̃

(Ω, E ′) when ω ∈ M,

k ∈Kω , 1 � p < ∞ and E is a Banach space. A number of applications of this duality will be given in the next section.
Let us recall that a Dω(Ω)-partition of unity in Ω (= open set in R

n) is a sequence (θ j) in Dω(Ω) such that: (i) θ j � 0
for j = 1,2, . . . , (ii)

∑
j θ j ≡ 1 in Ω , (iii) for every compact set K ⊂ Ω there exist a positive integer m and a bounded open

set W such that K ⊂ W ⊂ W̄ ⊂ Ω and
∑m

j=1 θ j ≡ 1 in W .

Lemma 3.1. Let Ω be an open set in R
n, ω ∈ M, k ∈ Kω , 1 � p � ∞, and E a Banach space. Let (θ j) be a Dω(Ω)-partition of unity

in Ω . Then the inductive limit topology on Bc
p,k(Ω, E) is generated by the seminorms

‖T ‖(C j) =
∞∑
j=1

C j‖θ j T ‖p,k, T ∈ Bc
p,k(Ω, E),

varying (C j) in R
N+ .

Proof. See Proposition 3.10 of [27]. �
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In the next result we will need the spaces l1(C j, E) and l∞(C j, E): If (C j) is a sequence in R
N+ and E is a Banach space

then l1(C j, E) (resp. l∞(C j, E)) denotes the set of all sequences (x j) ∈ EN such that ‖(x j)‖1 = ∑∞
j=1 C j‖x j‖E < ∞ (resp.

‖(x j)‖∞ = sup j C j‖x j‖E < ∞). With the norm ‖ · ‖1 (resp. ‖ · ‖∞) l1(C j, E) (resp. l∞(C j, E)) becomes a Banach space.

Theorem 3.2. Let Ω be an open set in R
n, ω ∈ M, k ∈ Kω , 1 � p < ∞, and let E be a Banach space whose dual E ′ possesses the

Radon–Nikodým property. Then B loc
p′,1/k̃

(Ω, E ′) is isomorphic to (Bc
p,k(Ω, E))′b .

Proof. Choose a fixed Dω(Ω)-partition of unity (θ j) in Ω and let L be an element in (Bc
p,k(Ω, E))′ . By Lemma 3.1 we can

find a sequence (C j) in R
N+ such that

∣∣L(T )
∣∣ �

∞∑
j=1

C j‖θ j T ‖p,k, T ∈ Bc
p,k(Ω, E).

Then the linear mapping

Z : Bc
p,k(Ω, E) → l1

(
C j, B p,k(E)

)
T → (θ j T )

is continuous. Furthermore, since each T can be written in the form T = ∑m
j=1 θ j T (m varying with T ), we conclude that

Z is injective. Now we consider the linear form L ◦ Z−1. Since |L ◦ Z−1((θ j T ))| � ‖(θ j T )‖1, the Hahn–Banach theorem
shows that there exists a linear form (L ◦ Z−1)− ∈ (l1(C j, B p,k(E)))′ of norm at most 1 which extends L ◦ Z−1. Then, by the
isometric isomorphism

A : l∞
(

1

C j
, B p′,1/k(E ′)

)
→ (

l1
(
C j, B p,k(E)

))′

defined by 〈(T j), A((S j))〉 = (2π)−n ∑∞
j=1

∫
Rn 〈T̂ j(x), Ŝ j(x)〉dx, we can find (S j) ∈ l∞( 1

C j
, B p′,1/k(E ′)) such that A((S j)) =

(L ◦ Z−1)− , and so

L ◦ Z−1((θ j T )
) = L(T ) = (2π)−n

∞∑
j=1

∫
Rn

〈
θ̂ j T (x), Ŝ j(x)

〉
dx

for each T ∈ Bc
p,k(Ω, E). Next we shall prove that the linear mapping

Φ : (Bc
p,k(Ω, E)

)′
b → B loc

p′,1/k̃
(Ω, E ′)

L → ∑∞
j=1 θ j S̃ j

(the series
∑∞

j=1 θ j S̃ j converges in B loc
p′,1/k̃

(Ω, E ′) since this space is a Fréchet space and
∑∞

j=1 ‖θ j S̃ j‖p′,1/k̃,ϕ =∑∞
j=1 ‖(θ jϕ) S̃ j‖p′,1/k̃ < ∞ for each ϕ ∈ Dω(Ω) in virtue of the properties of the sequence (θ j)) is an isomorphism. Let us

see that Φ is well defined. Let (L ◦ Z−1)= another extension of L ◦ Z−1 to l1(C j, B p,k(E)) and let (S1
j ) ∈ l∞( 1

C j
, B p′,1/k(E ′))

the sequence which represents this extension. Let us check that
∑∞

j=1 θ j S̃ j = ∑∞
j=1 θ j S̃1

j . By Fourier’s inversion formula,

the properties of the Bochner integral and the embedding B loc
p′,1/k̃

(Ω, E ′) ↪→ D ′
ω(Ω, E ′) (see Section 2) we have for all

ϕ ∈ Dω(Ω) and all e ∈ E ,〈
ϕ,

∞∑
j=1

θ j S̃ j

〉
=

∞∑
j=1

〈ϕ, θ j S̃ j〉 =
∞∑
j=1

〈ϕθ j, S̃ j〉 = (2π)−n
∞∑
j=1

〈ϕ̂θ j, Ŝ j〉

and

(2π)−n

〈
e,

∞∑
j=1

〈ϕ̂θ j, Ŝ j〉
〉

= (2π)−n
∞∑
j=1

〈
e, 〈ϕ̂θ j, Ŝ j〉

〉 = (2π)−n
∞∑
j=1

〈
e,

∫
Rn

θ̂ jϕ(x) Ŝ j(x)dx

〉

= (2π)−n
∞∑
j=1

∫
Rn

〈(
θ j(ϕ ⊗ e)

)∧
(x), Ŝ j(x)

〉
dx = L(ϕ ⊗ e).

Repeating the argument with
∑∞

j=1 θ j S̃1
j we conclude that

∑∞
j=1 θ j S̃ j = ∑∞

j=1 θ j S̃1
j . Now let (C ′

j) ∈ R
N+ another sequence

such that |L(T )| � ∑∞
j=1 C ′ ‖θ j T ‖p,k for T ∈ Bc (Ω, E). Let Z ′ be the corresponding operator, let (L ◦ Z ′−1)− be an extension
j p,k
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of L ◦ Z ′−1 to l1(C ′
j, B p,k(E)) and let (S ′

j) ∈ l∞( 1
C ′

j
, B p′,1/k(E ′)) the sequence which represents this extension, then L(T ) =

(2π)−n ∑∞
j=1

∫
Rn 〈θ̂ j T (x), Ŝ ′

j(x)〉dx, T ∈ Bc
p,k(Ω, E), and also 〈e, 〈ϕ,

∑∞
j=1 θ j S̃ ′

j〉〉 = L(ϕ ⊗ e) for ϕ ∈ Dω(Ω) and e ∈ E . Then
Φ is well defined. If Φ(L) = 0 then 〈e, 〈ϕ,Φ(L)〉〉 = 0 = L(ϕ ⊗ e) for all ϕ ∈ Dω(Ω) and all e ∈ E , thus L = 0 on Dω(Ω) ⊗ E .

Since this space is dense in Dω(Ω, E) (see Section 2) and Dω(Ω, E)
d

↪→ Bc
p,k(Ω, E) (see Proposition 3.6 of [27]), it follows

that L = 0. Consequently, Φ is one-to-one. Furthermore, Φ is surjective: Let (χ j) a sequence in Dω(Ω) such that χ j = 1
in a compact neighborhood of supp θ j . Let S be an element of B loc

p′,1/k̃
(Ω, E ′). Then we have (convergence in B loc

p′,1/k̃
(Ω, E ′))

S = ∑∞
j=1 θ j S = ∑∞

j=1(θ jχ j)S = ∑∞
j=1 θ j(χ j S) = ∑∞

j=1 θ j X̃ j where X j = χ̃ j S . Now we define the functional

L(T ) = (2π)−n
∞∑
j=1

∫
Rn

〈
θ̂ j T (x), X̂ j(x)

〉
dx, T ∈ Bc

p,k(Ω, E).

Since ∣∣L(T )
∣∣ � (2π)−n

∞∑
j=1

∫
Rn

∥∥θ̂ j T (x)
∥∥

Ek(x)
∥∥ X̂ j(x)

∥∥
E ′

1

k(x)
dx �

∞∑
j=1

‖θ j T ‖p,k‖X j‖p′,1/k

for all T ∈ Bc
p,k(Ω, E), it follows that L ∈ (Bc

p,k(Ω, E))′ . Then Φ(L) = S and Φ is surjective.

Now we prove that Φ−1 is continuous: Let A be a bounded set in Bc
p,k(Ω, E). Since this space is a strict (LB)-space,

there is a compact set M in Ω such that A is contained and bounded in the step B p,k(E) ∩ E ′
ω(M, E) (see [18, (4), p. 223]).

Take a sequence (χ j) in Dω(Ω) such that χ j = 1 in a compact neighborhood of supp θ j , j = 1,2, . . . , and let m be such that
θ j = 0 in M for all j > m. Then, taking into account Proposition 3.4 of [27] and that every S ∈ B loc

p′,1/k̃
(Ω, E ′) can be written

in the form S = ∑∞
j=1 θ j X̃ j with X j = χ̃ j S , we get

sup
T ∈A

∣∣Φ−1(S)(T )
∣∣ = sup

T ∈A

∣∣∣∣∣(2π)−n
∞∑
j=1

∫
Rn

〈
θ̂ j T (x), X̂ j(x)

〉
dx

∣∣∣∣∣ � sup
T ∈A

m∑
j=1

‖θ j T ‖p,k‖X j‖p′,1/k

� sup
T ∈A

m∑
j=1

‖θ j‖1,Mk ‖T ‖p,k‖S‖p′,1/k̃,χ j
� C

m∑
j=1

‖θ j‖1,Mk ‖S‖p′,1/k̃,χ j

for all S ∈ B loc
p′,1/k̃

(Ω, E ′) (C is a constant > 0). Hence it follows the continuity of Φ−1. Then Φ becomes an isomorphism

since B loc
p′,1/k̃

(Ω, E ′) and (Bc
p,k(Ω, E))′b are Fréchet spaces (Bc

p,k(Ω, E) is a (DF)-space by [18, (4), p. 402] and so its strong

dual is a Fréchet space (see [18, (1), p. 397])). The proof is complete. �
Remark 3.3. When k(x) is a temperate weight function, p = 2 and E = C, our theorem yields the isomorphism which
appears in [13, p. 279].

In [32] the spaces B V p,k(E) are introduced (by using the natural embedding of the space V p(kp dx, E) of the finitely
additive E-valued measures of bounded p-variation into the space S ′

ω(E)) and the isometric isomorphism B V p′,1/k(E ′) �
(B p,k(E))′ is shown (E is any Banach space and 1 � p < ∞). In view of this result and our Theorem 3.2 we can define the
space

B V loc
p,k(Ω, E) = {

T ∈ D ′
ω(Ω, E): ϕT ∈ B V p,k(E) for all ϕ ∈ Dω(Ω)

}
(equipped with the topology generated by the family of seminorms {T → ‖(2π)−n/pϕ̂T ‖V p(kp dx,E): ϕ ∈ Dω(Ω)} when
p < ∞ (resp. {T → ‖ϕ̂T ‖V∞( 1

k dx,E)
: ϕ ∈ Dω(Ω)} if p = ∞)) and propose the following question.

Problem 3.4. Let Ω be an open set in R
n , ω ∈ M, k ∈ Kω , 1 � p < ∞ and let E be a Banach space. Are the spaces

B V loc
p′,1/k̃

(Ω, E ′) and (Bc
p,k(Ω, E))′b isomorphic?

4. On sequence space representations of spaces of ultradistributions

In this section we give a number of results on sequence space representations of spaces of distributions and ultradistri-
butions. Based on these and using the solution to Problem 4.11 in [24] given by Cembranos and Mendoza in [3], we partially
answer Problem 4.10 in [24]. We also give a new proof of a well-known result: The short sequence

0 → N
(

P (D)
) → B loc (Ω)

P (D)−−−→ B loc ′ (Ω) → 0
p,k p,k/P
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does not split (P (D) is an elliptic operator with constant coefficients and P ′(ξ) = (
∑

α |∂α P (ξ)|2)1/2). (The proof we give is
based on the isomorphism B loc

p,k(Ω) � lNp .)
We shall omit the proof of the following simple result.

Lemma 4.1. Let Ω be an open set in R
n, ω ∈M, k ∈Kω , 1 � p � ∞, and let (E j)

∞
j=1 be a sequence of Banach spaces. Then the space

B loc
p,k(Ω,

∏∞
j=1 E j) is isomorphic to

∏∞
j=1 B loc

p,k(Ω, E j).

Theorem 4.2. Let Ω be an open set in R
n, ω ∈M, k ∈Kω , and let E be a Banach space. Then

(1) Bc
1,k(Ω, E) is isomorphic to (l1(E))(N) ,

(2) B loc
1,k(Ω, E) is isomorphic to (l1(E))N ,

(3) if E is a dual space and has the Radon–Nikodým property then B loc
∞,k(Ω, E) is isomorphic to (l∞(E))N .

Proof. (1) and (2). The proof given in [33] is also valid in the vector-valued case and for weights k ∈ Kω . (3) Suppose
E � F ′ and recall that if (E j)

∞
j=1 is a sequence of Banach spaces then the space (

⊕∞
j=1 E j)

′
b is isomorphic to

∏∞
j=1 E ′

j (see
[18, p. 287]). Then, taking into account Theorem 3.2 and (1), we get

B loc
∞,k(Ω, E) � (

Bc
1,1/k̃

(Ω, F )
)′

b � ((
l1(F )

)(N))′
b � (

l∞(E)
)N

. �
Theorem 4.3. l∞(l1) and l1(l∞) are not isomorphic.

Proof. See [3, Theorem 1]. �
Next we answer Problem 4.10 in [24] when q = ∞.

Theorem 4.4. If Ω1 is an open set in R
n1 , ω1 ∈ Mn1 and k1 ∈Kω1 (resp. Ω2 open set in R

n2 , ω2 ∈Mn2 , k2 ∈Kω2 ), then the spaces
B loc

1,k1
(Ω1, B loc

∞,k2
(Ω2)) and B loc

∞,k2
(Ω2, B loc

1,k1
(Ω1)) are not isomorphic.

Proof. By using the previous results we have the isomorphisms

B loc
1,k1

(
Ω1, B loc

∞,k2
(Ω2)

) � B loc
1,k1

(
Ω1, lN∞

) � (
B loc

1,k1
(Ω1, l∞)

)N � ((
l1(l∞)

)N)N � (
l1(l∞)

)N

and

B loc
∞,k2

(
Ω2, B loc

1,k1
(Ω1)

) � B loc
∞,k2

(
Ω2, lN1

) � (
B loc

∞,k2
(Ω2, l1)

)N � ((
l∞(l1)

)N)N � (
l∞(l1)

)N
.

Suppose now that our iterated spaces are isomorphic. Then (l1(l∞))N and (l∞(l1))N are also isomorphic. Hence it follows
(by [4]) that there exist positive integers α, β such that l1(l∞) < (l∞(l1))α � l∞(l1) and l∞(l1) < (l1(l∞))β � l1(l∞). Then,
using Pelczynski’s decomposition method, we conclude that l1(l∞) � l∞(l1). This contradicts Theorem 4.3. In consequence,
B loc

1,k1
(Ω1, B loc

∞,k2
(Ω2)) and B loc

∞,k2
(Ω2, B loc

1,k1
(Ω1)) are not isomorphic. �

Remark 4.5. 1. We must point out that the space B loc
∞,k2

(Ω2, B loc
1,k1

(Ω1)) even contains no complemented subspace isomor-

phic to B loc
1,k1

(Ω1, B loc
∞,k2

(Ω2)) (see the proof of Theorem 4.4 and use the final remarks of [3]).

2. Note also that, in general, B loc
∞,k(Ω, E) is not isomorphic to either B loc

∞,k(Ω)⊗̂ε E or B loc
∞,k ⊗̂π E: In fact, let 1 � p < ∞

and assume that B loc
∞,k(Ω, lp) is isomorphic to B loc

∞,k(Ω)⊗̂ε lp . Then, by virtue of [19, (5), p. 282], [19, (2), p. 287], Theorem 4.2
and a result of Cembranos and Freniche [2, Theorem 3.2.1], we get(

l∞(lp)
)N � lN∞⊗̂εlp � (l∞ ⊗̂ε lp)N � (

C(βN) ⊗̂ε lp
)N � (

C(βN, lp)
)N

> cN

0 .

Hence it follows, arguing as in Theorem 4.4, that l∞(lp) contains a complemented copy of c0. Then, by a result of Leung
and Räbiger [2, Theorem 5.1.1], lp also contains a complemented copy of c0. This contradiction shows that B loc

∞,k(Ω, lp) and

B loc
∞,k ⊗̂ε lp are not isomorphic. On the other hand, since by Theorem 4.2 and [19, (5), p. 194] we have

B loc
∞,k(Ω, l1) � (

l∞(l1)
)N

, B loc
∞,k(Ω) ⊗̂π l1 � lN∞ ⊗̂π l1 � (l∞ ⊗̂π l1)

N � (
l1(l∞)

)N
,

it follows that the spaces B loc (Ω, l1) and B loc (Ω) ⊗̂π l1 are not isomorphic.
∞,k ∞,k
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In the next theorem the following elementary fact will be used: “Let F = ind→
j

F j be the strict inductive limit of a

properly increasing sequence F1 ⊂ F2 ⊂ · · · of Banach spaces. Assume that every F j is a complemented subspace of F j+1
and that G j is a topological complement of F j in F j+1. Then, the mapping F1 ⊕ G1 ⊕ G2 ⊕ · · · → F : ( f1, g1, g2, . . .) →
f1 + g1 + g2 + · · · is an isomorphism”. We will also need the weighted L p-spaces of vector-valued entire analytic functions

LK
p,k(E) and the operators S K ( f ) =F−1(χK f̂ ) (see [25]).

Theorem 4.6. Let Ω be an open set in R
n. Assume 1 < p,q < ∞ and let k be a temperate weight function on R

n with kp ∈ A∗
p . Then

the space Bc
p,k(Ω, lq) (resp. B loc

p,k(Ω, lq)) is isomorphic to
⊕∞

j=0 G j (resp.
∏∞

j=0 H j) where G0 (resp. H0) is isomorphic to lp(lq) and
G j (resp. H j ) is isomorphic to a complemented subspace of lp(lq) for j = 1,2, . . . .

Proof. Let (K j) be a covering of Ω consisting of compact sets such that K j ⊂ K̊ j+1, K j = K̊ j and K̊ j has the segment
property (we may also assume, without loss of generality, that each K j is a finite union of n-dimensional compact intervals).
Then Bc

p,k(Ω, lq) = ind→
j
[B p,k(lq) ∩ E ′(K j, lq)]. In this inductive limit, the step B p,k(lq) ∩ E ′(K j, lq) is isomorphic (via the

Fourier transform) to L
−K j

p,k (lq) and this space is isomorphic, by Corollaries 4.2 and 5.1 of [25], to lp(lq). Furthermore, L
−K j

p,k (lq)

is a complemented subspace of L
−K j+1

p,k (lq): L
−K j

p,k (lq) ⊕ [ker S−K j ∩ L
−K j+1

p,k (lq)] = L
−K j+1

p,k (lq). Thus, the space G j = ker S−K j ∩
L
−K j+1

p,k (lq) is isomorphic to an infinite-dimensional complemented subspace of lp(lq). Then, by using the former result, we
obtain

Bc
p,k(Ω, lq) � L−K1

p,k (lq) ⊕ G1 ⊕ G2 ⊕ · · · � lp(lq) ⊕ G1 ⊕ G2 ⊕ · · · .
Next, since 1/k̃ is a temperate weight function on R

n such that 1/k̃p′ ∈ A∗
p′ , we see that Bc

p′,1/k̃
(Ω, lq′ ) � ⊕∞

j=0 B j where

B0 � lp′(lq′ ) and B j < lp′ (lq′ ) for j = 1,2, . . . . Therefore, by Theorem 3.2, we get

B loc
p,k(Ω, lq) � (

Bc
p′,1/k̃

(Ω, lq′ )
)′

b �
( ∞⊕

j=0

B j

)′

b
�

∞∏
j=0

B ′
j =

∞∏
j=0

H j

(here H j = B ′
j) where H0 � lp(lq) and H j < lp(lq) for j = 1,2, . . . , and the proof is complete. �

Remark 4.7. (1) Let Ω , p and k as in Theorem 4.6. In [25, Corollary 5.3] the space Bc
p,k(Ω, E) is showed to be isomorphic to

l(N)
p if dim E < ∞ or E = lp , and to (lp(l2))(N) if E = l2. By duality (Theorem 3.2) it follows that B loc

p,k(Ω) � lNp , B loc
p,k(Ω, lp) � lNp

and B loc
p,k(Ω, l2) � (lp(l2))N .

(2) Note that, in general, B loc
p,k(Ω, E) is not isomorphic to either B loc

p,k(Ω) ⊗̂ε E or B loc
p,k(Ω) ⊗̂π E: In fact, let Ω , p, q and k

as in Theorem 4.6 and assume that B loc
p,k(Ω, lq) is isomorphic to B loc

p,k(Ω) ⊗̂ε lq (resp. B loc
p,k(Ω) ⊗̂π lq). Then, by Theorem 4.6,

the previous note, [19, (5), p. 282] and [19, (5), p. 194], we get

∞∏
j=0

H j � lNp ⊗̂ε lq � (lp ⊗̂ε lq)
N

(
resp.

∞∏
j=0

H j � (lp⊗̂π lq)
N

)
,

where H0 � lp(lq) and H j < lp(lq) for j = 1,2, . . . . Hence it follows, reasoning as in Theorem 4.4, that lp(lq) � lp ⊗̂ε lq (resp.
lp ⊗̂π lq) but this is false when p′ � q (resp. p � q′) by a result of Holub [11, Proposition 3.7] (resp. [11, Proposition 3.6]). In
consequence, the spaces B loc

p,k(Ω, lq) and B loc
p,k(Ω) ⊗̂ε lq (resp. B loc

p,k(Ω) ⊗̂π lq) are not isomorphic when p′ � q (resp. p � q′).
(3) By using the previous results we can describe the structure of the complemented (normed) subspaces of B loc

p,k(Ω),

B loc
p,k(Ω, lq) and

∏m
i=1 B loc

pi ,ki
(Ωi, lpi ): (i) Let X be an infinite-dimensional complemented (normed) subspace of B loc

p,k(Ω) (Ω
open set in R

n , ω ∈ M, k ∈ Kω and p ∈ {1,∞} or k temperate weight function on R
n such that kp ∈ A∗

p and p ∈ (1,∞)).

Then B loc
p,k(Ω) � lNp and thus X becomes a complemented subspace of lp . This implies, since lp is prime [20, Theo-

rems 2.a.3, 2.a.7], that X � lp . (ii) Let X be an infinite-dimensional complemented (normed) subspace of B loc
p,k(Ω, lq) (Ω

open set in R
n , p,q ∈ (1,∞) and k temperate weight function on R

n with kp ∈ A∗
p). Then, since B loc

p,k(Ω, lq) < (lp(lq))N in
virtue of Theorem 4.6, X becomes a complemented subspace of lp(lq). This implies, in the case q = 2, that X is isomorphic
to either l2, lp , l2 ⊕ lp or lp(l2) by a result of Odell [26]. (iii) Let X be an infinite-dimensional complemented (normed) sub-
space of

∏m
i=1 B loc

pi ,kk
(Ωi, lpi ) (Ωi open set in R

n , 1 < p1 < · · · < pm < ∞, ki temperate weight function on R
n with kpi

i ∈ A∗
pi

,
i = 1, . . . ,m). Then, since

m∏
B loc

pi ,ki
(Ωi, lpi ) �

m∏
lNpi

� (lp1 ⊕ · · · ⊕ lpm )N,
i=1 i=1
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we have that X < lp1 ⊕ · · · ⊕ lpm and so there exist 1 � i1 < · · · < ik � m such that X � lpi1
⊕ · · · ⊕ lpik

in virtue of [20,
Theorem 2.c.14].

(4) We omit the proof of the following result:

B loc
p1,k1

(Ω1, lq1 ) � B loc
p2,k2

(Ω2, lq2 ) ⇐⇒ p1 = p2 and q1 = q2

(Ωi open set in R
n , pi,qi ∈ (1,∞), ki temperate weight function on R

n with kpi
i ∈ A∗

pi
, i = 1,2).

We conclude this section by showing a result on linear partial differential operators (the result is well known, see e.g.
[21,22,31,34]). The proof we give is based on our representation theorem B loc

p,k(Ω) � lNp .

Theorem 4.8. Let Ω be an open set in R
n (n � 2), 1 < p < ∞, k a temperate weight function on R

n such that kp ∈ A∗
p and P (D) an

elliptic operator with constant coefficients. Then the short sequence

0 → N
(

P (D)
) → B loc

p,k(Ω)
P (D)−−−→ B loc

p,k/P ′ (Ω) → 0

is exact and does not split, i.e., the operator P (D) has no continuous linear right inverse (here N(P (D)) is the kernel of P (D)).

Proof. P (D) is well defined by [13, Theorem 10.1.11] and the short sequence is exact in virtue of [13, Corollary 10.8.2] and
[13, Theorem 10.6.7]. The closed subspace N(P (D)) of B loc

p,k(Ω) coincides, algebraic and topologically, with the subspace
N(Ω) = { f ∈ E(Ω): P (D) f = 0} of E(Ω) (by [12, Theorem 1.11.10], [12, Theorem 1.11.11] and the closed graph theorem)
and thus it is a nuclear Fréchet space. Note also that, for every connected component O of Ω , the space N(O ) equipped
with the topology induced by E(O ), is a nuclear Fréchet space with continuous norms (since all f ∈ N(O ) is real analytic
in O , see e.g. [1, Corollary 4.1.4]) isomorphic to a complemented subspace of N(P (D)). Now assume that the short sequence
splits. Then N(P (D)) is a complemented subspace of B loc

p,k(Ω). Since this space is isomorphic to lNp by Remark 4.7(1), it
follows that, for any connected component O of Ω , the space N(O ) becomes isomorphic to an infinite-dimensional (n � 2)
complemented subspace of lNp . This implies, taking into account a result of Metafune and Moscatelli [23, Theorem 1.2], that

N(O ) is isomorphic to either lp , lp × ω, ω or lNp . This contradiction completes the proof. �
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