
Journal of Molecular and Cellular Cardiology 61 (2013) 164–171

Contents lists available at SciVerse ScienceDirect

Journal of Molecular and Cellular Cardiology

j ourna l homepage: www.e lsev ie r .com/ locate /y jmcc

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Original article

Nitric oxide regulates cardiac intracellular Na+ and Ca2+ by modulating Na/K ATPase
via PKCε and phospholemman-dependent mechanism☆

Davor Pavlovic a, Andrew R. Hall a, Erika J. Kennington a, Karen Aughton a, Andrii Boguslavskyi a,
William Fuller b, Sanda Despa c, Donald M. Bers c, Michael J. Shattock a,⁎
a Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas' Hospital, London, UK
b Division of Cardiovascular and Diabetes Medicine, Medical Research Institute, College of Medicine Dentistry and Nursing, University of Dundee, UK
c Department of Pharmacology, University of California Davis, CA, USA
Abbreviations: NO, nitric oxide; PKC, protein kina
VASP, vasodilatory protein; VF, ventricular fibrillation;
methyl ester; ARVM, adult rat ventricular myocytes; EG
acid; BDM, 2,3-butanedione monoxime; Bis, bisindolylm
GC, guanylate cyclase.
☆ This is an open-access article distributed under the t
Attribution License, which permits unrestricted use, dis
any medium, provided the original author and source a
⁎ Corresponding author at: Cardiac Physiology, The Rayn

London SE1 7EH, UK. Tel.: +44 2071880945; fax: +44 20
E-mail address: michael.shattock@kcl.ac.uk (M.J. Sha

0022-2828/$ – see front matter © 2013 The Authors. Pu
http://dx.doi.org/10.1016/j.yjmcc.2013.04.013
a b s t r a c t
a r t i c l e i n f o
Article history:
Received 21 December 2012
Received in revised form 11 April 2013
Accepted 12 April 2013
Available online 20 April 2013

Keywords:
Nitric oxide
Protein kinase C
Phospholemman
FXYD-1
Sodium pump
Arrhythmia
In the heart, Na/K-ATPase regulates intracellular Na+ and Ca2+ (via NCX), thereby preventing Na+ and Ca2+

overload and arrhythmias. Here, we test the hypothesis that nitric oxide (NO) regulates cardiac intracellular
Na+ and Ca2+ and investigate mechanisms and physiological consequences involved. Effects of both exoge-
nous NO (via NO-donors) and endogenously synthesized NO (via field-stimulation of ventricular myocytes)
were assessed in this study. Field stimulation of rat ventricular myocytes significantly increased endogenous
NO (18 ± 2 μM), PKCε activation (82 ± 12%), phospholemman phosphorylation (at Ser-63 and Ser-68) and
Na/K-ATPase activity (measured by DAF-FM dye, western-blotting and biochemical assay, respectively;
p b 0.05, n = 6) and all were abolished by Ca2+-chelation (EGTA 10 mM) or NOS inhibition L-NAME (1 mM).
Exogenously added NO (spermine-NONO-ate) stimulated Na/K-ATPase (EC50 = 3.8 μM; n = 6/grp), via
decrease inKm, in PLMWTbut not PLMKOor PLM3SAmyocytes (where phospholemman cannot be phosphorylated)
as measured by whole-cell perforated-patch clamp. Field-stimulation with L-NAME or PKC-inhibitor (2 μM Bis)
resulted in elevated intracellular Na+ (22 ± 1.5 and 24 ± 2 respectively, vs. 14 ±0.6 mM in controls) in
SBFI-AM-loaded rat myocytes. Arrhythmia incidence was significantly increased in rat hearts paced in the
presence of L-NAME (and this was reversed by L-arginine), as well as in PLM3SA mouse hearts but not PLMWT

and PLMKO. We provide physiological and biochemical evidence for a novel regulatory pathway whereby
NO activates Na/K-ATPase via phospholemman phosphorylation and thereby limits Na+ and Ca2+ overload
and arrhythmias. This article is part of a Special Issue entitled “Na+ Regulation in Cardiac Myocytes”.

© 2013 The Authors. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Maintenance of diastolic intracellular [Na+] ([Na]i) and [Ca2+] ([Ca]i)
is crucial for the normal cardiac function. In the heart, [Na]i indirectly
controls [Ca]i via Na/Ca exchanger, thus, regulating contractility. With
each action potential, Na+ enters the cell through voltage gated Na+

channels and the only quantitatively significant mechanism for extrud-
ing this Na+ is the Na/K-ATPase. Na/K-ATPase stimulation reduces
se C; PLM, phospholemman;
L-NAME, N(G)-nitro-L-arginine
TA, ethylene glycol tetraacetic
aleimide; PLB, phospholamban;

erms of the Creative Commons
tribution, and reproduction in
re credited.
e Institute, St. Thomas' Hospital,
71880970.
ttock).

blished by Elsevier Ltd. All rights re
[Na]i and thus indirectly [Ca]i (via Na/Ca exchanger), allowing the cell
to maintain diastolic [Ca]i in the range of 100–200 nM. Regulation
of the cardiac Na/K-ATPase occurs via the FXYD accessory protein
phospholemman (PLM)[1–3]. Unphosphorylated PLM tonically inhibits
Na/K-ATPase and this inhibition is relieved by phosphorylation at
Ser-63, Ser-68 or Ser/Thr-69 by PKC [4,5] or at Ser-68 by PKA [1,2,6].
PKA activation results in Na/K-ATPase stimulation via Ser-68 PLM phos-
phorylation, thus, limiting [Na]i and [Ca]i and reducing the propensity for
triggered arrhythmias [7] during fight or flight. The physiological role of
PKC-induced Na/K-ATPase stimulation has not been established. Raising
intracellular Ca2+ either artificially or through pacing-induced contrac-
tion activates constitutively expressed nitric oxide synthase (NOS),
generating nitric oxide (NO) in submicromolar concentrations [8,9].
Confusingly, NO has been reported to mediate both inhibition [10–15]
and stimulation of the Na/K-ATPase [16–21]. In the present study, we
have examined the effects of NO on the Na/K-ATPase activity, [Na]i
and [Ca]i in ventricular myocytes and whole hearts. We have also inves-
tigated the signaling pathway involved in themodulation of Na/K-ATPase
by NO.
served.
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2. Methods

Detailed methodology is provided in the SI for techniques such as
single ventricular myocyte contractility, Ca2+ transients, intracellular
Na+ measurements [7], endogenous NO synthesis, western blotting
[5], Na/K-ATPase assay [1,22], electrophysiology and PKC activation.
Adult rat ventricular myocytes (ARVM) were isolated from the hearts
of adult male rats and PLMWT, PLM3SA (Genoway, France) and PLMKO,
PLMWT (University of Virginia Transgenic Facility) mice by standard
collagenase enzymatic digestion [22,23]. PLM3SA mouse is a novel
knock-in mouse line globally expressing an unphosphorylatable form
of PLM in which residues 63, 68 and 69 have been mutated to alanines
(see SI for details). Myocytes were field-stimulated for up to 20 min at
20 V and 2 or 3 Hz, in the presence of a number of pharmacological
agents. Rat hearts were paced at 300 bpm or 600 bpm and mouse
hearts at 550 and 800 bpm (5 ms pulse, 1.5 times threshold) via a uni-
polar electrode inserted into the base of the left ventricle with reference
to the metal aortic cannula and were monitored for arrhythmias using
heart rate variability (HRV) software (HRV module, ADI instruments,
US). HRV software scores the extent of arrhythmias from 0 to 25
(arbitrary units) and ventricular fibrillation is scored as 30. In separate
experiments in rat hearts, VF threshold was determined using a proto-
col adapted from Zaugg et al. [24]. Quantitative data are shown as
mean ± standard error of the mean (SEM). Differences between
experimental groups were tested by one-way ANOVA followed by a
Bonferroni post-hoc test or by paired or unpaired T-tests. In arrhythmia
studies, VF incidencewas compared using Fisher's exact test and contin-
gency tables. In experimentsmeasuring VF threshold, pilot experiments
showed that within heart variability was normally distributed (as
assessed by the Kolmogorov-Smirnov test for normality); however, as
previously shown by others [24], variation in VF threshold between
hearts was logarithmically distributed. Log10 VF thresholds were there-
fore compared by one-way ANOVA followed by a post-hoc Student–
Newman–Keuls test. Differences were considered significant at p b 0.05.
It should be noted that while the rat heart clearly can sustain VF, the
ability of the mouse to do so may be limited by the small size of the
heart and the perfusion conditions [25]. We have therefore used a dif-
ferent method to assess arrhythmias in the mouse hearts. Heart rate
variability (HRV) analysis software was used to measure the variability
of the inter-beat interval. Standard deviation of change in adjacent
beat-to-beat intervals (i.e. SD of ΔNN) was derived and this was used
to give the value reported as an “Arrhythmia Score.”

3. Results

3.1. Endogenous NO induces PLM and PLB phosphorylation

In order to determine whether field-stimulation results in endoge-
nous NO synthesis, ARVM were loaded with NO sensitive fluorescent
dye and paced from rest for 20 min at 3 Hz. As expected, field-
stimulation induced a significant increase in [NO]i and this increase
was abolished by the general NOS-inhibitor, L-NAME (1 mmol/L), as
shown in Figs. 1A and B (n = 6/grp). Increase in [NO]i was not due to
movement artifacts as it could not be abolished in the presence of
2.5 mmol/L of myofilament-desensitizer BDM (Fig. 1C). However, re-
moval of extracellular Ca2+with 10 mmol/L EGTA completely abolished
NO synthesis (Fig. 1D).We infer that it is Ca2+ andnot action potential or
contraction that mediates the rise in NO.

Interestingly, field-stimulation (3 Hz) resulted in sustained increases
in PLM phosphorylation (Na/K-ATPase regulatory protein) at Ser-63
and Ser-68 (Fig. 2A and B) but no change was observed in total PLM
or Ser-69 residue (see Fig. S1A). It should be noted that in rat, PLM 69
residue is a threonine and in a mouse, 69 is serine. However, since
this residue is neither strongly basally phosphorylated [26] nor does it
respond to pacing, this is unlikely to confound our studies. Similarly,
increases were observed in phosphorylation of SERCA2a regulatory
protein phospholamban (PLB) at Ser-16 and Thr-17 residues (Fig.
S1B). PKA agonist (forskolin)was used as a positive control and resulted
in increase in PLB Ser-16 phosphorylation, but not Thr-17 (Fig. S1B, left
panel). Field-stimulation-induced phosphorylation of PLB at Thr-17
[27,28] and Ser-16 [29] was observed by others.

3.2. PLM phosphorylation occurs via Ca2+/NO-dependent PKCε
activation

To investigate the signaling pathways mediating PLM phosphory-
lation, pharmacological agents were assessed for their ability to
reduce PLM phosphorylation at Ser-63 and Ser-68, following 20 min
of pacing (Fig. 2A). Whereas PKA-inhibitor H-89 (2 μmol/L) and PKG-
inhibitor KT-5832 (1 μmol/L) had no significant effect on Ser-63 phos-
phorylation, PKC inhibitor Bis (2 μmol/L) completely abolished pacing-
induced PLM phosphorylation at both Ser-63 and Ser-68. PKC-agonist
PMA (300 nmol/L) was used as a positive control (Fig. 2A, left panel,
last two lanes). No change in PLM phosphorylation was observed in
the presence of CaMKII-inhibitor KN-93 (2 μmol/L) as shown in Fig. S2.
KN-93 reduced PLB phosphorylation at Thr-17 residue, a known CaMKII
substrate (Fig. S2A).

As NO can signal through a cGMP/sGC/PKG [30] we examined
whether PLM phosphorylation is sensitive to NOS and sGC inhibitors,
using L-NAME (1 mmol/L) and ODQ (1 μmol/L), respectively (Fig. 2B).
L-NAME significantly reduced phosphorylation at both Ser-63 and
Ser-68 (Fig. 2B, middle and right panel). However, ODQ had no effect
on PLMphosphorylation, suggesting that sGC and PKG are not required.

We tested whether endogenous NO can induce PKC activation by
examining the extent of translocation of PKCε and PKCδ from cytosolic
tomembranous fraction as a result of field stimulation. PKCεmembrane
fraction increased, whereas no significant translocation of PKCδ was
observed (Figs. 3A,B). PKCε translocation (following 20 min of field-
stimulation) was abolished by either chelating extracellular Ca2+

(using EGTA) or by NOS inhibition (using L-NAME), whereas no change
was observed in PKCδ (Figs. 3A,B). Similar to our previous data, pacing-
induced PLMphosphorylation at Ser-63 and Ser-68was abolished in the
presence of EGTA and L-NAME, whereas total PLM expression was
unaltered (Fig. 3A). PKCε but not PKCδ membrane fraction increased
(and cytosolic fraction decreased) in a time dependent manner when
myocytes were paced from quiescence, whereas, PMA (300 nmol/L)
treatment of non-stimulated cells, alone, induced a significant translo-
cation of both PKCε and PKCδ (Fig. S3).

3.3. NO stimulates Na/K-ATPase in a PLM-dependent manner

To test whether endogenous NO increases Na/K-ATPase activity,
Na/K-ATPase activity was measured in field-stimulated (3 Hz) ARVM
using a biochemical Na/K-ATPase assay. Na/K-ATPase activity was sig-
nificantly higher in paced vs. non-paced cells (4.40 ± 0.73 vs. 1.89 ±
0.40 μmol/mg/5 min; n = 7), as shown in Fig. 4A. This increase was
abolished in the presence of EGTA (10 mmol/L), L-NAME (1 mmol/L)
and Bis (2 μM), indicating that pacing-induced increase in Na/K-ATPase
activity is due to Ca2+/NOS-dependent PKC activation. In order to dis-
sect contributions of eNOS and nNOS isoforms, Na/K-ATPase activity
was measured at 1 and 100 μM of L-NIO. Both concentrations resulted
in Na/K-ATPase inhibition (Fig. 4A), consistent with eNOS but not
excluding nNOS involvement.

To test whether exogenous NO can activate Na/K-ATPase activity in
quiescent rat andmousemyocytes, Na/K-ATPase pump current (Ip) was
measured in the presence of an NO donor (spermine-NONO-ate), using
whole-cell perforated patch-clamp technique. Patch pipette [Na+] was
either 30 or 100 mmol/L, allowing detection of changes in apparent
Na+ affinity or Vmax. Spermine-NONO-ate significantly increased Ip in
ARVM at 10 and 30 μmol/L in the presence of 30 mmol/L of patch
pipette (Fig. 4B). Furthermore, 10 μmol/L of spermine NONO-ate signif-
icantly increased Ip in PLMWT but not PLMKO (Fig. 4C) indicating that
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NO-induced increase in Ip is PLM-dependent. The stimulatory effect of
spermine NONO-ate was lost when pipette Na+ was increased to
100 mmol/L (see Fig. S4A) suggesting that the effects of NO on the
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were not due to spermine artifacts (see Fig. S4B). Furthermore, no effect
of NO on Ip was observed when PLM3SA myocytes were treated with
10 μmol/L of spermine NONO-ate (Fig. S4C) showing that the
NO-induced stimulatory effect requires PLM phosphorylatable residues.

3.4. NO regulates intracellular Na+ and Ca2+

In order to analyze whether NO affects [Na]i and [Ca]i, ARVM
were field-stimulated in the presence of NOS or PKC inhibitors. It
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non-treated controls (Fig. 4D). Thus, NO-dependent Na/K ATPase acti-
vation pathway acts to limit the rise in [Na]i in a beating ARVM.
Increases in [Na]i can induce increases in [Ca]i via Na/Ca exchanger
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in Ca2+ transients (100 ± 21 %) and sarcomere length shortening
(circa 81 ± 19.4 %), compared to non-treated cells (Figs. S5A and 5B),
as well as spontaneous Ca2+ transients occurring between triggered
beats (Fig. S5C).

In order to assess the physiological significance of this NO pathway
at physiological heart rates and its ability to protect against arrhythmias,
isolated rat hearts were paced at 300 and 600 bpm in the presence or
absence of L-NAME (300 μmol/L). Pacing at 600 bpm caused 1 out of 6
hearts to spontaneously fibrillate, however, in the presence of L-NAME
6 out of 6 hearts developed ventricular fibrillation (VF) as shown in
Fig. 5A. Indeed, VF threshold data demonstrate that VF threshold is sig-
nificantly reduced with L-NAME and this reduction could be abolished
by outcompeting L-NAME with L-arginine (Fig. 5B).

In order to directly test whether NO-induced PLM phosphoryla-
tion is at least in part responsible for this anti-arrhythmic effect, we
have generated a transgenic mouse where PLM phosphorylation res-
idues were mutated to alanines (PLM3SA). In PLM3SA mice, Na/K pump
activity cannot be increased via kinase-mediated PLM phosphoryla-
tion. Indeed, addition of PKA agonist forskolin had no effect on the
Ip in PLM3SA mice but increased Ip in PLMWT mice (see Figs. S6A and
6B). It should be noted that PLM3SA mice showed a significant de-
crease in PLM expression and a small but non-significant increase in
Na/K ATPase α-1 and α-2 isoform expression (Figs. S6C and S6D).
Thus, through decrease in PLM/Na/K-ATPase ratio, PLM3SA mice
have maintained unchanged basal Na/K ATPase activity under non-
stimulated conditions. Mouse PLMWT and PLM3SA hearts were paced
at 550 and 800 bpm and the incidence of arrhythmias was quantified
using heart rate variability software. PLM3SA hearts paced at both 550
and 800 bpm showed significantly higher susceptibility to arrhythmias,
compared to their wild-type littermates (Fig. 5C). Not surprisingly,
there were no significant differences in arrhythmia scores between
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in paced mouse WT and PLMKO hearts (D). Aerobically perfused mouse hearts were subjecte
and assessed for arrhythmias using HRV software. Data are shown as arrhythmia scores an
PLMKO and their wild-type littermates (Fig. 5D), considering that
PLMKO hearts differ from the PLM3SA hearts in that they have a
disinhibited sodium pump [2] and are thus protected against Na+ and
Ca2+ overload.
4. Discussion

The role of NO signaling has been well defined in blood vessel
dilation and neuronal transmission, however despite many observed
effects; the integrated role of NO in regulating cardiac function is am-
biguous. The plethora of effects includes the modulation of cardiac
contractility but, confusingly, NO has been reported to have both neg-
ative [31,32] and positive inotropic effects [11,33,34]. The specific
nature of the subcellular mechanisms underlying these diverse effects
in the heart is largely unknown or contradictory. The present study
provides evidence that endogenous NO helps maintain Na+ and
Ca2+ homeostasis and thus prevent arrhythmias in both field-
stimulated isolated myocytes and field-stimulated whole hearts at
physiological frequencies. We show that NO activates Na/K-ATPase
via PKCε-induced phosphorylation of PLM at Ser-63 and Ser-68. We
also show that exogenously added NO increases apparent Na+ affinity
of Na/K-ATPase in ratmyocytes in a dose-dependentmanner. The effect
on Ip observed in the presence of an NO donor was found to be PLM-
dependent. NO in the isolated heart was shown to be protective and
inhibition of the NO pathway either via NO inhibition or PLMmutation
was found to be pro-arrhythmic. Taken together, these results suggest a
novel endogenous pathway (Fig. 6), whereby endogenous NO stimu-
lates the Na/K-ATPase via PLM phosphorylation, and thus protects the
heart against Na+ and Ca2+ overload and arrhythmias at physiological
heart rates.
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4.1. Pacing-induced stimulation of NO synthesis

Previously, it has been shown that raising intracellular Ca2+

either artificially or through field-stimulation activates constitutively
expressed NOS, generating NO in submicromolar concentrations [8,9].
In the present study, pacing induced an increase in [NO]i with in-
creases in DAF-FM fluorescence corresponding to those observed in
the presence of 40 μM exogenously applied spermine-NONO-ate
(Fig. S8C). L-NAME, a general NOS inhibitor, abrogates the pacing-
induced increase in [NO]i, indicating that NO is synthesized through
NOS activation. In turn, this NOS activation is dependent on Ca2+,
as NO synthesis is blocked by chelation of extracellular Ca2+ with
10 mmol/L EGTA. In the presence of EGTA, both Ca2+ influx and
Ca2+-induced-Ca2+-release (via ryanodine receptors) are prevented
while the action potential, albeit attenuated, is likely to be maintained
suggesting it is Ca2+, rather than depolarization that is required
for NOS activation. Importantly, in myocytes where Ca2+ was still
present but sarcomere shortening was mechanically uncoupled
using BDM, increases in [NO]i were still observed (Fig. 1C) indicating
that the increase in [NO]i is Ca2+-dependent and not due to contrac-
tion or dye-concentration artifacts. It should be noted that at this con-
centration BDM does not completely abolish sarcomere shortening
but rather reduces it by approximately 95%. Higher concentrations
of BDM were not used due to its ability to deplete Ca2+ from the
SR. Nevertheless, no inhibition or indeed reduction in NO synthesis
was observed compared to the field-stimulated controls, suggesting
that Ca cycling was not affected.

4.2. Endogenous NO stimulates Na/K-ATPase via PLM phosphorylation

NO has been reported to both inhibit and stimulate Na/K-ATPase. It
is likely that differences in the NO donors used and the concentrations
of NO generated may add to the ambiguous nature of NO. Indeed,
Vila-Petroff and colleagues have shown that NO donor, S-nitroso-N-
acetylpenicillamine, produces biphasic contractile effects in cardiac
tissue, with a positive inotropy at low NO concentrations and negative
inotropy at high concentrations [32]. In this study, inhibition of endog-
enous NO resulted in positive inotropy. The effects of NO investigated
here are likely to be more physiologically relevant as endogenous NO
synthesis pathways are activated by field-stimulation. It is possible
that inherent NO instability can result in the formation of peroxynitrite,
which has been shown to directly inhibit Na/K-ATPase [35,36]. In our
experiments NO stimulates Na/K-ATPase by increasing its apparent
Na+ affinity, which is in agreement with the study by William et al.
[16]. However, whereas William and colleagues suggest that NO-
induced Na/K-ATPase stimulation is PLM-independent, we observed
that this stimulation occurs via PKCε-induced PLM phosphorylation at
residues Ser-63 and Ser-68. Indeed, we observed no stimulation in
NO-treated PLMKO (Fig. S4C) and PLM3SA animals (Fig. 4C).

When applied to field-stimulated ARVM, L-NAME caused a dramatic
reduction in endogenous NO synthesis (Fig. 1B), PKCε activation
(Fig. 3D), PLMphosphorylation (Figs. 2A and B) and Na/K-ATPase activ-
ity (Fig. 4A). Specifically, L-NAME caused an inhibition of Na/K-ATPase
activity by 43% whereas L-NIO, a more selective eNOS inhibitor (at a
concentration of 1 μM has an 8-fold selectivity for eNOS [37]) reduced
Na/K-ATPase activity by 29%. One hundred micromolar of L-NIO
(at 100 μM, L-NIO inhibits both eNOS and nNOS) further reduced
Na/K-ATPase activity (compared to the inhibition observed with 1 μM
of L-NIO) indicating a possible involvement of both eNOS and nNOS
isoforms. Similarly, in rapidly paced cat ventricular myocytes, NO was
produced as a result of both eNOS and nNOS activation [38]. However,
due to the inherent non-selective nature of NOS inhibitors, these data
should be confirmed in eNOS and nNOS mutants. It should be noted
that Na/K-ATPase activity assay is a blunt tool and involves the assess-
ment of ouabain-sensitive ATPase activity on a very significant
non-specific background ATPase activity in cardiac myocytes. This
gives this assay an inherent variability (i.e. large error bars) which
makes resolving differences at the lower end of the rangemore difficult,
as demonstrated by its inability to resolve reduction of Na/K ATPase
activity below baseline (non-paced) using Bis as shown in Fig. 4A.

4.3. PKCε as a terminal kinase

The signaling pathway through which NO exerts its effects is a
subject of debate. In many systems, NO has been shown to signal
through (i) a cGMP-dependent pathway (for review, see Fischmeister
et al.)[30], (ii) cGMP-independent pathway, (iii) via S-nitrosylation
(for review, see Stamler et al.)[39] or (iv) via an increase in cAMP
through activation of PKA [32,40]. Here we show that endogenously
synthesized NO increases PLM phosphorylation at residues Ser-63
and Ser-68 via PKCε activation. Although, PKG inhibitor KT-5823
caused a small reduction in PLM phosphorylation at Ser-68, sGC inhibi-
tor (ODQ) did not reduce PLM phosphorylation suggesting that PKG is
not the critical terminal kinase. Similarly, William et al. found that
NO-induced increase in Na/K-ATPase Ip was not sensitive to ODQ [16].
Furthermore, we have previously shown that recombinant PKG1α is
not able to phosphorylate PLM in vitro [41]; however, other PKG
isoforms are yet to be tested. It is likely that the PKG inhibitor
KT-5832 at a concentration used in this study partially inhibits PKC.
The Ki of KT5823 is 234 nmol/L for PKG and 4 μmol/L for PKC; thus,
some PKC inhibition at the concentration used here (1 μmol/L) is
expected and this is likely to account for the slight reduction in PLM
phosphorylation observed here. Indeed, KT5832 at a lower concentra-
tion of 600 nmol/L had no effect on PLM phosphorylation (Fig. S2).
KT5832 did, however, reduce phosphorylation of a known PKG sub-
strate vasodilator-stimulated phosphoprotein (VASP) at Ser-239 resi-
due [42] as shown in Fig. S2. Similarly, more specific PKG inhibitor,
RP-8-bromo-cGMPs (100 μmol/L), reduced VASP Ser-239 phosphoryla-
tion but had no effect on PLM phosphorylation (Fig. S2). Thus, whilst
contraction of cardiac myocytes activates both PKC and PKG pathways
via NO, only PKCε kinase appears to be involved in the phosphorylation
of PLM at residues Ser-63 and Ser-68. In field-stimulated cells, [Ca]i will
increase and this rise in [Ca]i can enhance both NOS and PKC activity
(for review, see Lammerding et al. 2004)[43]. Indeed, we show that
Ca2+ chelation with EGTA prevents NO production (Fig. 1D).

Ping and colleagues found that NO (either endogenousNOproduced
during ischemia or exogenousNO generated byNOdonors) induces late
phase ischemic preconditioning by activating PKCε, via S-nitrosylation
[44,45]. Indeed, our data demonstrate that field-stimulation induces
activation of PKCε but not PKCδ and this PKC translocation is dependent
on Ca2+ and NOS activation as shown in Fig. 3. Therefore, it is reason-
able to conclude that the terminal kinase involved in pacing-induced
PLM phosphorylation is PKCε rather than PKG. Furthermore, we have
previously demonstrated that receptor-mediated PKC activation in
adult rat ventricular myocytes elicits a similar PLM phosphorylation
profile to the one observed in this study, with sustained Ser-63 and
Ser-68 phosphorylation [5].

4.4. Functional consequence of pacing-induced NO mediated PLM
phosphorylation

Results in Figs. 5A and B demonstrate that pacing of rat hearts
(at physiological heart rates) has little effect on VF threshold per se;
however, when NOS is inhibited, pacing is profoundly pro-arrhythmic
with 100% of hearts going into VF. This suggests that endogenous NO
exerts a strong protective effect against arrhythmias. NO may exert
a range of other protective effects including PLB phosphorylation
[34,46] (and the associated improvement in SR Ca handling), altered
L-type Ca channel function [47,48], reduced RyR leak [49] and improved
mitochondrial metabolism [38]. However, the mechanism described in
this study (i.e. the phosphorylation of PLM and resulting stimulation of
Na/K-ATPase) clearly contributes to the anti-arrhythmic effect of NO as



Fig. 6. Schematic diagram of the proposed signaling pathway.
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shown by data in Fig. 5C. We provide direct evidence that inactivation
of this NO-dependent Na+/Ca2+ regulatory pathway (via PLM3SA

mutation) results in elevated diastolic intracellular Ca2+ levels, com-
pared to their WT littermates (Fig. S7A). Importantly, in PLM3SA

mouse myocytes, field-stimulation in the presence and absence of
β-adrenergic receptor stimulation resulted in significantly higher
susceptibility to arrhythmias, compared to their WT littermates
(Fig. S7B). Fig. S7B shows examples of spontaneous Ca2+ transients
occurring between triggered beats in myocytes from PLM3SA mice.
Such spontaneous Ca2+ transients occurred in 4/19 cells in the
absence, and 17/19 cells in the presence of β-adrenergic receptor
stimulation, indicating that both NO and PKA-mediated regulatory
pathways are required for maintenance of Na+ and thus Ca2+ homeo-
stasis (see Fig. 6 for proposed pathway). Whether this mechanism is
present in vivo where sympathetic stimulation may dominate, and if
so, to what extent, remains to be investigated. At submaximal levels
of β-receptor agonist (isoprenaline), effects of endogenous NO and
sympathetic stimulation on PLM phosphorylation are additive (see
Fig. S8). These data show that PKA and PKC pathways can act in concert
and have an additive effect on PLM phosphorylation at residue Ser-68,
providing evidence that two pathways are not conflicting as previously
reported for other substrates with cAMP and cGMP [30]. While the
contribution of each pathway to the maintenance of intracellular Na+

has not been determined, this may depend on the prevailing condi-
tions. It is also possible that Na+ accumulation causes a mild acidifica-
tion and that this could contribute to arrhythmias seen under these
conditions. To what extent this occurs remains to be investigated.

The most likely substrates (other than PLM) that could contribute
to the anti-arrhythmic effects of NO are PLB, NCX and RyR. At present
there is little evidence showing that L-type Ca2+ channels are modi-
fied by endogenous PLM. Wang et al. show effects only of PLM over-
expression [50]. It seems unsurprising that the uncontrolled over-
expression of a small membrane spanning protein interferes with
ion channel function but it remains to be demonstrated that this
occurs in cells expressing normal levels of endogenous PLM. NCX is
a much more interesting possibility. According to the work of Cheung
and colleagues, NO-induced phosphorylation of NCX-associated PLM
would be expected to inhibit NCX [51]. Since in our studies activation
of NOS protects against Ca2+ overload, it seems unlikely that this
would involve an inhibition of NCX.
4.5. Conclusions

Here we report that increased [Ca]i, as a result of heart contrac-
tion, induces synthesis of NOS-derived NO, which in turn stimulates
myocardial Na/K-ATPase via a PKCε-mediated PLM phosphorylation.
The resulting Na/K-ATPase stimulation plays an important role in
protecting the heart against Na+ and Ca2+ overload (via NCX) and
resultant arrhythmias both at a single cell level and in a heart at phys-
iological heart rates. Furthermore, disruption of this mechanism may
result in diastolic dysfunction and hypertrophy observed in cardio-
myopathies where NO synthesis is impaired such as, heart failure,
uremic cardiomyopathy or sepsis.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.yjmcc.2013.04.013.
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