Linear interpolation problems for matrix classes
and a transformational characterization of
\(M\)-matrices

Charles R. Johnsona,1, Ronald L. Smithb,*2

aDepartment of Mathematics, College of William and Mary, Williamsburg, VA 23187, USA
bDepartment of Mathematics, University of Tennessee at Chattanooga, 615 McCallie Avenue, Chattanooga, TN 37403-2598, USA

Received 16 August 2000; accepted 14 November 2000

Submitted by L. Elsner

Abstract

The linear interpolation problem (LIP) for a class of matrices \(\mathcal{C}\) asks for which pairs of vectors \(x, y\) there exists a matrix \(A \in \mathcal{C}\) such that \(Ax = y\). The LIP is solved for \(M\)-matrices, \(P\)-matrices, \(H\)-matrices, and \(H^+\)-matrices. In addition, a transformational characterization is given for \(M\)-matrices that refines the known one for \(P\)-matrices. There is no such characterization for \(H\)- or \(H^+\)-matrices. © 2001 Elsevier Science Inc. All rights reserved.

Keywords: Linear interpolation problem; \(P\)-matrices; \(M\)-matrices; \(H\)-matrices

All matrices throughout are real and square (unless otherwise indicated). A \(P\)-matrix is one whose principal minors are positive, a \(Z\)-matrix is one whose off-diagonal entries are nonpositive, and an (invertible) \(M\)-matrix is one that is both a \(P\)-matrix and an \(Z\)-matrix. The comparison matrix \(C(A)\) of the \(n \times n\) matrix \(A = (a_{ij})\) is \(C(A) = (c_{ij})\), in which \(c_{ii} = |a_{ii}|, i = 1, \ldots, n\), and \(c_{ij} = -|a_{ij}|, i \neq j\); \(A\) is called an \(H\)-matrix if \(C(A)\) is an \(M\)-matrix and, further, called an \(H^+\)-matrix if, in addition,

* Corresponding author. Tel.: +1-423-755-4569.
E-mail addresses: crjohnso@math.wm.edu (C.R. Johnson), rsmith@utcvm.utc.edu (R.L. Smith).
1 The work of this author was supported, in part, by National Science Foundation grant DMS 92-00899 and by Office of Naval Research contract N00014-90-J1739.
2 The work of this author was done with support from the Center of Excellence in Computer Applications at The University of Tennessee at Chattanooga and was completed while a 1999–2000 CECA Scholar.

0024-3795/01 - see front matter © 2001 Elsevier Science Inc. All rights reserved.
PII: S 0 0 2 4 - 3 7 9 5 (0 1) 0 0 2 5 5 - 5
A has positive diagonal entries. An H^+-matrix is a P-matrix. The Hadamard product of two vectors (or matrices of the same dimensions) is the entry-wise product and is denoted with \circ. We will make use of the fact that principal submatrices of P-, M-, H-, and H^+-matrices, are themselves P-, M-, H-, and H^+-matrices, respectively.

We call two nonzero vectors $x, y \in \mathbb{R}^n$ sign-related if $x \circ y \not\leq 0$ (entry-wise). It is known [2, Theorem 2.4] that A is a P-matrix if and only if for every vector $x \neq 0$, x and Ax are sign-related. For M-matrices many characterizations are known [1–3], but we add another that is reminiscent of the above “transformational characterization” of P-matrices. In addition, we solve the “linear interpolation problem” for each of M-, P-, H-, and H^+-matrices. By the linear interpolation problem (LIP) for a class of matrices \mathcal{C}, we mean the identification of all pairs $x, y \in \mathbb{R}^n$, $0 \neq x$, such that there is an $A \in \mathcal{C}$ for which $Ax = y$. Clearly, a transformational characterization of a class \mathcal{C} is related to a solution of the LIP for \mathcal{C}. However, we note that, while the LIP always has a solution for a class \mathcal{C}, there may be no transformational characterization of \mathcal{C}. If, for example, there is a class $\mathcal{C'}$ that properly contains \mathcal{C}, but for which the solution to the LIP is the same as that for \mathcal{C}, then there can be no transformational characterization of \mathcal{C}. This happens to be the case for both \mathcal{C} the H-matrices and the H^+-matrices.

We first give a transformational characterization of M-matrices. For this we need a refinement of the sign-related condition. Suppose $0 \neq x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$. Let P be a permutation matrix chosen so that

$$Px = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \end{bmatrix}$$

in which $X_1 > 0$, $X_2 < 0$, and $X_3 = 0$ (entry-wise) and suppose that

$$Py = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix}$$

is partitioned conformally with x. (Since M-matrices are closed under permutation similarity, this partitioning applies to any pair of vectors $0 \neq x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$. That is, we may assume any pair of vectors $0 \neq x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ have the partitioned form of Px and Py.) Except for X_1 and X_2, any one or two of X_1 (and then Y_1), X_2 (and then Y_2), and X_3 (and then Y_3) may be empty. We say that x and y are doubly sign-related if

(P1) \[X_1 \circ Y_1 \not\leq 0 \quad \text{and} \quad X_2 \circ Y_2 \not\leq 0 \]

and

(P2) if X_1 is empty and X_3 is not, then $Y_3 \geq 0$ and if X_2 is empty and X_3 is not, then $Y_3 \leq 0$. (Note that (P1) implies x and y are sign-related.)

We then have the following theorem.
Theorem 1. If \(A \in M_n(\mathbb{R}) \), then \(A \) is an \(M \)-matrix if and only if for every \(0 \neq x \in \mathbb{R}^n \), \(x \) and \(Ax \) are doubly sign-related.

Proof. Let \(A \in M_n(\mathbb{R}) \). If \(n = 1 \), the result is clear. Assume hereafter that \(n \geq 2 \). For sufficiency, suppose that for any nonzero vector \(x \), the pair \(x, y = Ax \) satisfies (P1) and (P2). Now (P1) implies that \(A \) is a \(P \)-matrix. So we just need to show \(A \in Z \). Assume the contrary, say \(a_{ij} \geq 0 \), some \(i \neq j \). If \(x = -e_j \), then \(X_1 \) is empty and \(X_3 \) is not. But, \(Y_3 \neq 0 \), which contradicts (P2) and completes the proof of sufficiency.

Conversely, suppose that \(A \) is an \(M \)-matrix, \(0 \neq x \in \mathbb{R}^n \), and \(y = Ax \). Writing \(x \) in partitioned form and partitioning \(y \) and \(A \) conformally with \(x \), we have

\[
\begin{bmatrix}
Y_1 \\
Y_2 \\
Y_3
\end{bmatrix} = \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix} \begin{bmatrix}
X_1 \\
X_2 \\
X_3
\end{bmatrix}
\]

in which \(X_1 > 0 \), \(X_2 < 0 \), and \(X_3 = 0 \). Thus, assuming \(X_1 \) is nonempty, \(A_{11}X_1 + A_{12}X_2 = Y_1 \) or, solving for \(X_1 \), we have \(X_1 = (A_{11})^{-1}(Y_1 - A_{12}X_2) \). Now, if \(Y_1 \leq 0 \), then, since \((A_{11})^{-1} \) and \(A_{12}X_2 \) are nonnegative, it follows that \(X_1 \leq 0 \), a contradiction. Hence, \(Y_1 \not\leq 0 \) so that \(Y_1 \circ Y_1 \not< 0 \). Similarly, if \(X_2 \) is nonempty, it follows that \(X_2 \circ Y_2 \not< 0 \). So (P1) holds.

Moreover, if \(X_1 \) is empty and \(X_3 \) is not, then, partitioning \(y \) and \(A \) conformally with \(x \), we have

\[
y = \begin{bmatrix}
Y_2 \\
Y_3
\end{bmatrix} = \begin{bmatrix}
A_{22} & A_{23} \\
A_{32} & A_{33}
\end{bmatrix} \begin{bmatrix}
X_2 \\
X_3
\end{bmatrix} = Ax
\]

(since \(x \neq 0 \), \(X_2 \) is nonempty). Thus, \(Y_3 = A_{32}X_2 + A_{33}X_3 = A_{32}X_2 \geq 0 \). The case in which \(X_2 \) is empty and \(X_3 \) is nonempty implies \(Y_3 \leq 0 \) is similar. So, (P2) holds which completes the proof. \(\square \)

We next turn to linear interpolation problems. In the case of \(M \)-matrices, we know from Theorem 1 a necessary condition for the LIP. Interestingly, it is also sufficient.

Lemma 1. Let \(0 < x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n \). If \(x \) and \(y \) are sign-related, then there is an \(M \)-matrix \(A \in M_n(\mathbb{R}) \) such that \(Ax = y \).

Proof. Let \(0 < x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n \), and suppose that \(x, y \) are sign-related. Then \(y \) has at least one positive entry. Since \(M \)-matrices are closed under positive diagonal equivalence, we may assume that the entries of \(x \) are all \(1 \) and \(y \) are all \(-1\), \(0 \), or \(1 \). And, since \(M \)-matrices are closed under permutation similarity, we may assume that \(\{ i : x_i = 1, y_i = 1 \} = \{ 1, \ldots, p \} \), \(\{ i : x_i = 1, y_i = 0 \} = \{ p + 1, \ldots, q \} \), and \(\{ i : x_i = 1, y_i = -1 \} = \{ q + 1, \ldots, n \} \) in which \(0 \leq p \leq q \leq n \). Let

\[
A = \begin{bmatrix}
I_q & 0 & 0 \\
A_{21} & I_{q-p} & 0 \\
A_{31} & 0 & I_{n-q}
\end{bmatrix}
\]
in which $A_{21} = [-e(q - p) \ 0]$ and $A_{31} = [-2e(n - q) \ 0]$ ($e(r)$ denoting the r-vector consisting of all ones). Then A is an M-matrix satisfying $Ax = y$. □

Note that $Ax = y \iff A(-x) = -y$, so that the conclusion of the lemma also holds if $x < 0$. Also, notice that, in either of these cases, sign-related is equivalent to doubly sign-related.

Theorem 2. If $0 \neq x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$, then there is an M-matrix $A \in M_n(\mathbb{R})$ such that $Ax = y$ if and only if x and y are doubly sign-related.

Proof. Let $0 \neq x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$. As mentioned prior to the lemma, we need only to show sufficiency of the doubly sign-related condition. So suppose that x, y satisfy (P1) and (P2). Then $y \neq 0$ also. As before, we may assume that the entries of x and y are all $-1, 0, or 1$, and, further, that

$$x = \begin{bmatrix} e(p) \\ -e(q) \\ 0 \end{bmatrix}.$$

Partition y conformally with x as

$$y = \begin{bmatrix} Y_1 \\ Y_2 \\ Y_3 \end{bmatrix},$$

and, by permutation similarity, we may assume that

$$Y_3 = \begin{bmatrix} e(r) \\ -e(s) \\ 0 \end{bmatrix}.$$

By the lemma there is a $p \times p M$-matrix A_{11} satisfying $A_{11}e(p) = Y_1$ and a $q \times q M$-matrix A_{22} satisfying $A_{22}(-e(p)) = Y_2$. Let the first columns of A_{31} and A_{32} be

$$\begin{bmatrix} 0 \\ -e(s) \\ 0 \end{bmatrix} \quad \text{and} \quad \begin{bmatrix} -e(r) \\ 0 \\ 0 \end{bmatrix},$$

respectively, partitioned conformally with Y_3, and let the other entries of A_{31} and A_{32} be 0. Then, if

$$A = \begin{bmatrix} A_{11} & 0 & 0 \\ 0 & A_{22} & 0 \\ A_{31} & A_{32} & I_{n-p-q} \end{bmatrix},$$

A is an M-matrix such that $Ax = y$, which completes the proof. □

Notice that a dual result holds for inverse M-matrices.

In the case of P-matrices, the transformational characterization (sign-related) mentioned earlier also gives a necessary condition for the P-matrix LIP. Interestingly, the
fact that the condition is also necessary seems not to have been noticed. A natural proof solves the LIP for H^+-matrices at the same time.

Theorem 3. For the pair $0 \neq x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$, the following statements are equivalent:

(i) there is an H^+-matrix A such that $Ax = y$;

(ii) there is a P-matrix A such that $Ax = y$; and

(iii) x and y are sign-related.

Proof. Certainly (i) implies (ii) since H^+-matrices are P-matrices. That (ii) implies (iii) follows from the transformational characterization of P-matrices [2]. So it remains to show that (iii) implies (i). Thus, x and y agree in sign in some position. So, by permutation similarity, we can assume $x_1y_1 > 0$. It is straightforward to check that

$$
A = \begin{bmatrix}
\frac{y_1}{x_1} & 0 & \ldots & 0 \\
\frac{y_2-x_2}{x_1} & 1 & \ddots & \\
\frac{y_3-x_3}{x_1} & 0 & \ddots & \\
\vdots & \vdots & \ddots & 0 \\
\frac{y_n-x_n}{x_1} & 0 & \ldots & 0 \\
\end{bmatrix}
$$

is an H^+-matrix satisfying $Ax = y$. □

Since the H^+-matrices are properly contained in the P-matrices, yet, according to Theorem 3, the solution to the LIP is the same for both, there can be no transformational characterization of H^+-matrices. Any constraint in the relation between x and Ax for H^+-matrices must admit general P-matrices as well.

We also note the solution to the LIP for H-matrices. Again, we shall see that it does not lead to a transformational characterization of H-matrices.

Theorem 4. If $0 \neq x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$, then there is an H-matrix A such that $Ax = y$ if and only if $x \circ y \neq 0$.

Proof. Let $0 \neq x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ and let A be an H-matrix such that $Ax = y$. Then $y \neq 0$ also. Suppose $x \circ y = 0$. Then, by permutation similarity, we may assume x, y, and A are partitioned conformally as

$$
x = \begin{bmatrix} X_1 \\ 0 \end{bmatrix}, \quad y = \begin{bmatrix} 0 \\ Y_2 \end{bmatrix},
$$

and

$$
A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}
$$

in which $X_1 \neq 0$. Then
Ax = \begin{bmatrix} A_{11}X_1 \\ A_{21}X_1 \end{bmatrix} = \begin{bmatrix} 0 \\ Y_2 \end{bmatrix},

which implies \(A_{11}X_1 = 0 \), contradicting the fact that \(A_{11} \), a principal submatrix of an \(H \)-matrix, is nonsingular. Thus, \(x \circ y \neq 0 \).

Since \(H \)-matrices are invariant under invertible diagonal multiplication, the converse follows from Theorem 3 ((iii) \(\rightarrow \) (i)) and noting that if \(x \circ y \neq 0 \), there is an invertible diagonal matrix \(D \) such that \(x \) and \(Dy \) are sign-related. \(\square \)

There is, however, a larger class for which the LIP has the same solution set as for \(H \)-matrices. Call a matrix \(A \in M_n(\mathbb{R}) \) \emph{principally nonsingular} (PN) if every principal submatrix is nonsingular; \(H \)-matrices are PN because a principal submatrix of an \(H \)-matrix is an \(H \)-matrix; the containment is proper. The same proof shows that, for \(0 \neq x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^n \), there is a PN-matrix \(A \) such that \(Ax = y \) if and only if \(x \circ y \neq 0 \). Thus, there is no transformational characterization of \(H \)-matrices. It is also straightforward to observe that \(A \) is a PN-matrix if and only if for each \(x \neq 0 \), \(x \circ Ax \neq 0 \).

Acknowledgements

We would like to thank Professor Ludwig Elsner and the referee for their diligence in the review of this paper.

References

