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1. INTRODUCTION

It is well known that for every positive integer » there exists a 1-factori-
zation of the complete graph K,,. (For this result and for undefined
graph-theoretical notions and standard notation, see [12].) Although the
question about the existence of 1-factorizations of K, is answered easily,
the problem of determining the number N(2n) of pairwise nonisomorphic
1-factorizations of K, appears to be a difficult one. Known results on
N(2n) can be summarized as follows: N(2) = N(4) = N(6) = 1 (this is
easily obtained). Further, N(8) = 6 (proved by Safford [7] in 1906 and
again by Wallis [18] in 1972). Gelling ([9]; see also [10]) used a computer
to obtain N(10) = 396 (he also determined the orders of the groups of
the respective 1-factorizations). Finally, a recent result of Wallis [19]
states that N(2n) > 2 forn > 4.

The main purpose of this paper is to improve this last result. We show
in Section 3, among other things, that the number N(2n) goes to infinity
with n, by making use of the relationship between 1-factorizations and
quasigroups satisfying certain identities (this relationship has apparently
been noticed also in [13, 14]). The same result is proved again in Section 5
where we use two recursive constructions to show that the number A(2n)
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of pairwise nonisomorphic automorphism-free 1-factorizations of K,
goes to infinity with »n. Finally, some results concerning embeddings of
1-factorizations and Steiner triple systems are obtained in Sections 4 and 6.

2. PRELIMINARIES

Throughout this paper, all quasigroups are understood to be finite.
The reader is referred to [6] for basic notions in the theory of quasigroups
and latin squares used in what follows.

A commutative quasigroup (V, o) satisfying the identity xcx = yoy
will be called a CC-quasigroup. An idempotent commutative quasigroup
(V, o) satisfying the identity x o (x o y) = y is called a Steiner quasigroup
(also an idempotent totally symmetric quasigroup). A commutative loop
(V, ©) satisfying the identities x o x = e, x o (x o y) = y (where e is the
identity element) is called a Steiner loop (or totally symmetric loop).
It is well known that there is a one—one correspondence between Steiner
quasigroups of order »n and Steiner loops of order » + 1 [4].

A Steiner triple system (briefly STS) is a pair (S, %) where S is a finite
set and 4 is a collection of 3-subsets of S (called triples) such that every
pair of distinct elements of S belongs to exactly one triple of %. The
number | S | is called the order of (S, #). It is well-known that there is a
Steiner triple system of order » if and only if » = 1 or 3 (mod 6). It is
also well known that the theory of Steiner triple systems is coextensive
with that of Steiner quasigroups. Therefore, a Steiner quasigroup [loop]
of order n exists if and only if n = 1 or 3 (mod 6) [ = 2 or 4 (mod 6)].

Two quasigroups (¥, o) and (W, ®) are isotopic if there exist three
bijections «, B, v: ¥V — Wsuch that (xa @ yB) = (xey)yforallx,ye V.
If « = then (V,0) and (W, &) are rc-isotopic, and if « = =y
then (V, <) and (W, &) are isomorphic.

A 1-factorization of K,, (briefly OF(K,,)) will be denoted by a pair
(V, ) where V = V(K,,) is the vertex-set of K,, and F = {F,};, - is
the set of 1-factors which can be indexed by any (2n — 1)-subset Iz of V.

THEOREM 1. There is a one-one correspondence between the 1-factori-
zations of K,, and the CC-quasigroups of order 2n.

Proof. Let (V,#) be a l-factorization of K,,. Define a binary
operation o on the set V by

XoX =4, where u is the unique element of V\Iz ,
and
Xoy=2 if x = y and the edge [x, y] belongs to the factor F, of &#.

Obviously, (¥, o) is a CC-quasigroup of order 2n.
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Conversely, let (V, o) be a CC-quasigroup of order 2xn. Then for all
x€V, xox = u for some ue V, Put ¥(K,,) = V and for all ze V\{u}
define a factor F, of K,, to contain all edges [x, ¥], x # y, such that
x oy = z, Clearly, (V, #), where F = {F},cp\tu) » is an OF(K,,).

Under our convention, two 1-factorizations (V, %) and (W, ) of K,,
(where & = {F,-}z-e,gr , Y = {G}ia g) are isomorphic if there exist two
bijections

w VW yilg—Iy

such that [x, y] € F; & [xa, yal e F,,- .
Obviously one can extend y’ to y: ¥ — W uniquely by putting

xy = xy', forxelg,
uy = v, where {u} = V\Ig ,{v} = V\lg.

and

This observation results in the following theorem:

THEOREM 2. Let (V, F) and (W, 9) be two OF(K,,) and let (V, °) and
(W, ®) be the corresponding CC-quasigroups of order 2n (under the corre-
spondence established by Theorem 1). Then (V, %) and (W, ¥9) are iso-
morphic if and only if (V, ¢) and (W, ®) are rc-isotopic.

An OF(K,,) isomorphic to an OF(K,,) for which the corresponding
CC-quasigroup is a Steiner loop will be called a Steiner 1-factorization.
Thus, Steiner 1-factorizations of K, exist if and only if » = 1 or 2 (mod 3).

THEOREM 3. Two Steiner 1-factorizations of K,, are isomorphic if
and only if the corresponding Steiner loops are isomorphic.

Proof. 1t is well known [3] that any two isotopic Steiner loops are
necessarily isomorphic.

3. NONISOMORPHIC 1-FACTORIZATIONS OF K,

The best results to-date on the number of pairwise nonisomorphic
STS are due to Wilson [20]. In view of Theorem 3, Wilson’s bounds yield
the following:

LEMMA 4. Let n = 1 or 2 (mod 3), and let S(2n) denote the number
of pairwise nonisomorphic Steiner 1-factorizations of K,, . Then

exp (En—IZ—l)Z (log(2n — 1) — 5)) < S2n)

< exp ((2—'1;,);1—)2— (log(2n ) —12—)) 1

582b/20/3-5
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Denote by C(¢) the number of distinct symmetric latin squares of order ¢
with constant diagonal (= the number of distinct CC-quasigroups of
order t), by D(¢) the number of distinct diagonalized symmetric latin
squares of order ¢, and by E(t) the number of distinct latin squares of order
t with constant diagonal. Trivially, C(¢) = ¢ and D(¢) = 0 for ¢ even,
C(t) = 0 and D(t) = t! for ¢ odd, and E(¢) = t for all . The number of
pairwise nonisomorphic OF(K,,) is denoted by N(K,,).

LEMMA 5. Let n = ks where k and s are positive integers. Then

(@) N(K,,) = (CQ2k) C(s)/[(2ks)'?®) max [s}(s — DL.. 211 1JEE-1)]
if 5 is even, and e

(b) N(Ky) = (C(2k) D(S)E(S))/[(2ks)!]* s*) max
n=ks

[s)(s — DL.2!11HEDif 5 is odd.

Proof. Let k and s be positive integers such that »n > ks, and let
L = 1,; || be a symmetric latin square of order 2k with constant diagonal
based on K ={1,2,...,2k}. Let § = {1, 2,..., s} and construct a latin
square V or order 2n = 2ks based on S X K as follows:

Case 1. s is even. Let M = || m,, || be a symmetric latin square of
order s with constant diagonal based on S, andlet P¥ = | pi [;
i,j=1,2,.,2k, i <j; be a set of k(2k — 1) (not necessarily distinct)
latin squares of order s, all based on S. Define V as follows: the element
Vyi.s (= the entry in the cell ((x, i), (3, ) of V) is

Upiyi = (mml s 11]) lfi =j>‘
= (P> 1) if i <j,
= (P, 1) ifi>]

Obviously, V' is a symmetric latin square of order 2ks with constant
diagonal. It is well known [11] that there are at least s! (s — 1)!... 2! 1!
distinct latin squares of order s. As we have C(2k) choices for L, C(s)
choices for M and at least s!(s — 1)!... 2! 1! choices for each p¥ we
obtain that there are at least [C(2k) C(s) s! (s — 1)L... 21 11]*Z&-D) distinct
latin squares of order 2ks with constant diagonal (based on the same set)
when s is even.

Case 2. s is odd. Let Q = | q,, || be a diagonalized symmetric latin
square of order s, let R? = ||r}, |, i = 1, 3,..., 2k — 1 be a set of k (not
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necessarily distinct) latin squares of order s with constant diagonal.
Further, let P9 = || p¥ II, i, j = 2,..., 2k, i <j, j % i+ 1 for i odd, be
a set of 2k(k — 1) (not necessarily distinct) latin squares of order s (all
of Q, R, P based on S). Define a latin square W of order 2ks based on
S X K as follows: The element w,, ,; (= the entry in the cell ((x, i), ( »,/))
of Wis

Waiyi = (Gay» 1) ifi=j
=iy, 1) fj=i+1,i=13.,2k—1
= (e, 1)  ifi=j+1,j=1,3,.,2k—1
= (pY,, 1) ifi<j i+ 1% jforiodd
= (pi, 1) ifi>j i)+ 1forieven.

Obviously, W is a symmetric latin square but its diagonal is not constant.
However, for any xeS and ie{l, 3,..., 2k — 1} the entries in the four
cells ((x,9), (x,1)), ((x,i+ 1), (x,i+ 1), ((x,)(xi+1), and
((x, i + 1), (x, 7)) form a sublatin square of W of order 2. By interchanging
the two elements in this square, and by performing this interchange for
all xe S and ie{l, 3,..., 2k — 1} one obtains from W a symmetric latin
square ¥ with constant diagonal. Now we have C(2k) choices for L,
D(s) choices for Q, E(s) choices for one of the R¥’s, and E(s)/s choices
for each of the remaining k — 1 R®s (since the diagonal of every R’ has to
be occupied by the same element), and at least s! (s — I)l.. 2! 1!
choices for each P¥. Thus there are at least C(2k) D(s) E(s)*
[st(s — DL.. 2 11P**-U/ skt distinct latin squares of order 2ks with
constant diagonal (based on the same set) when s is odd.

Since each equivalence class (under rc-isotopy) of latin squares of order
2n contains at most {(2n)!]* distinct latin squares the inequalities (a)
and (b) follow.

One finds easily C(6) = 4320; thus, we have the following corollary:

COROLLARY 6. Letn = 0(mod 3), n = 3s. Then

4320s[s!...211 1]

N(K,n) = (6] for s even
4320s.5![s!(s — 1)1,..2111]2
> [T for s odd.

THEOREM 7. lim, . N(Kj,) = 0.
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Proof. Forn =1 or 2 (mod 3) the statement follows from Lemma 4,
and for » = 0 (mod 3) from Corollary 6.

4. EMBEDDINGS OF 1-FACTORIZATIONS

Given a 1-factor F of K, , any nonempty set of edges from F will be
called a subfactor of F. Given two 1-factors F and F' of K,,, FNF’
denotes the set of edges contained in both F and F’, thus F N F’ is either
empty or is a subfactor of both F and F’. Given two sets # and F#* of
1-factors of K,, , we denote F N F' = {F,NF;/ |F,e ¥, F/ ¢ ¥F'}.

An OF(K,,) (W, %) is said to be a sub-1-factorization (briefly sub-OF)
of an OF(K,,) (V, %) if (1) WC V and (2) there exists a (one-to-one)
mapping y: Iy — Iz such that for each je Iz, the 1-factor G;€ % is a
subfactor of F;, € #.

The number n/s is said to be the index of (W, %) in (V, F). If (W, %)
is a sub-OF of (V,F) and W (. V will also say that (W, %) is embedded
into (V, F).

THEOREM 8. An OF(K,,) can be embedded into an OF(K,,) if and only
ifn = 2s.

Proof. It has been proved in [5] that every symmetric diagonalized
latin square of order k can be (properly) embedded into a symmetric
diagonalized latin square of order ¢ if and only if ¢ > 2k + 1 (both k
and t are necessarily odd). Since there is an obvious one-one corre-
spondence between symmetric diagonalized latin squares of order k and
symmetric latin squares with constant diagonal of order k 4 1, this is
equivalent to saying that a symmetric latin square with constant diagonal
of order 2s can be embedded into a symmetric latin square with constant
diagonal or order 2n if and only if n > 2s.

It (V, F) and (W, G) are OF(K,,) and OF(K,,), respectively, and if both
are sub-OF of an OF(K,,) (Z,5) and V¥V W = @ then (V, #) and
(W, %) are said to be disjointly embedded into (Z, ).

THEOREM 9. Let (V, F) and (W, %) be OF(K,,) and OF(K,,), respec-
tively, and let VN W = @. Then (V, F) and (W, 9) can be disjointly
embedded into an OF(K,,) for every n = 4 max(s, t).

Proof. Let n = 4max(s, t) and let Z,, Z, be any two disjoint n-sets
such that V'C Z, and WC Z,. By Theorem 8, (V, #) can be embedded
into an OF(K,) (Z,,#") and (W, %) can be embedded into an
OF(K;) (Z,,#*). Let #* = {Hil}ielxl , H* = {Hiz}isl_*z , and let
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Z = {X;, X;,..., X,,} be the set of 1-factors in any 1-factorization of the
complete bipartite graph K, , [12] with the vertex-set Z, U Z, (where
the subgraph induced by Z, is null). Let o be any bijection a: Lg: — Lys,
and put

H,; = Hil |V H,-zm forallie le s H = {Hi}ieI*]. .
Then (Z, YV Z,, # U Z) is an OF(K,,) with (V, &) and (W, ¥) disjointly
embedded into (Z, U Z,, # U Z).

CoRrRoOLLARY 10. Let (V, F) and (W, %) be two OF(K,,) such that
VAW = @&. Then (V,#) and (W, %) can be disjointly embedded into
an OF(K,,).

We conclude this section with a lemma which will be needed in sub-
sequent sections.

Lemma 11. Let (V,, %) and (V, , ;) be two sub-OF of an OF(V, #).
Then either FNF, = & or ViV, , F NF)is a sub-OF of (V, F).

Proof. If #F NF, # @, then there are two distinct vertices
a,beVynNV,. Then the edge [a, b] belongs to some l-factor F;e #.
Obviously, the subfactor F; | V, = F;* € % and the subfactor F; | V, =
F2e %, , and [a, b] € FA, [a, b] € F,2 as well. Let ¢ be any vertex in V; N ¥V,
other than q, b (if it exists), and let d be the vertex in V such that [c, d] € F; .
Then we must have d e V; since (V,, #) is a sub-OF of (V, #) and
deV, since (V,,%,) is a sub-OF of (V, #). Thus de V, NV, which
in turn implies that (V; N V, , # N %) is a sub-OF of (V, ).

5. AUTOMORPHISM-FREE 1-FACTORIZATIONS

An automorphism of a 1-factorization (V, #) is an isomorphism of
(V, #) with itself. An automorphism of (¥, #) corresponds to an
rc-autotopy of the CC-quasigroup (V, ), i.e., to a pair of bijections
a, y: V — V such that (a, ) is an rc-isotopy of (V, o) with itself.

An OF(K,,) is said to be automorphism-free if it has only the trivial
automorphism. Obviously, an OF(K,,) is automorphism-free (briefly AF)
if and only if the corresponding CC-quasigroup has only the trivial
rc-autotopy (i.e., both « and y are identity mappings).

Let A(2n) denote the number of pairwise nonisomorphic AF OF(K,,).
It is known that A4(2) = A(4) = A(6) = A(8) = 0, A(10) = 298 [9].
Recently, it has been shown [15] that an automorphism-free Steiner
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triple system of order » exists if and only if » > 15 (and n =1 or 3
(mod 6), of course), and that the number of nonisomorphic AF STS of
order n goes to infinity with n. In view of Theorem 3, the following theorem
is immediate.

THEOREM 12. Let n =1 or 2 (mod 3). Then A(2n) =1 for n > 8,
and lim,,,, A(2n) = «c.

Unfortunately, one cannot use AF STS directly to show the existence
of an AF OF(K,,) for every n. For this we have to use a different method.
Below two recursive constructions are given which enable us to build
AF OF(K,,) from “smaller” AF OF.

In what follows we denote by GF(K,,) the particular series of 1-factori-
zations which is probably the best known and has been discovered and
studied by many authors (see, e.g., [1, 2, 12, 14]).

THEOREM 13. If there exists an AF OF(K,,) then there exists an
AF OF(Ky,).

Proof. Let (V,,%,) be any AF OF(K,,) and let (V,,%;) be the
GF(K,,). By Corollary 10, (V{,%#) and (V,,%;) can be disjointly
embedded into an OF(K,,). Let (V, %) (where V = V, U FV,) be any
OF(K,,) containing (V; , %) and (V, , %,) as (disjoint) sub-OF of index 2.
We will show that (V, #) is an AF OF(K,,). Observe that if («, y’) is an
automorphism of (V, %), then y': Iz — Iz is induced by a: ¥'— V, thus
it is enough to consider just one mapping a.

1. Assume first that « is a nontrivial automorphism of (¥, &) which
maps (V;, %) onto itself. Then necessarily xa = x for every xe ¥V,
every 1-factor of # is fixed under o and consequently every 1-factor of
%, must be fixed under «. But it is well known that GF(K,,) has no
nontrivial automorphism fixing all its factors.

II. Assume now that « is a nontrivial automorphism of (¥, %)
which maps (V,, %) onto (V', #') where (V', #') is another sub-OF
of (V, %) of index 2, A simple numberical argument shows then that
IVNnVyl=|VNV,=nand(V' NV, F NF)I(V' NV, F NF)]
is a sub-OF of (V, , %) [sub-OF of (V, , %;)] of index 2. However, GF(K,,)
cannot have a sub-OF of index 2 (cf. [15, Theorem 3.1]). This completes
the proof.

COROLLARY 14. A(4n) = (2n — 3)! A(2n).

Proof. let (V,,#) and (V,, %) be as in Theorem 13. To obtain
(V, %), we have (2n — 1)! choices for the bijection a* (cf. proof of



1-FACTORIZATIONS OF THE COMPLETE GRAPH 273

Theorem 9), and therefore (2n — 1)! distinct AF OF(K,,) corresponding
to a fixed AF OF(K,,) (and to a fixed 1-factorization of K,, ,,). On the
other hand, the order of the automorphism group of GF(K,,) does not
exceed (2n — 1)(2n — 2) ([2]; cf. also [15]) thus there are at least (2n — 3)!
nonisomorphic OF(K,,) obtained from a given AF OF(K,,) (V1,%).
Obviously, any two AF OF(K,,) constructed as in Theorem 13 and
obtained from two nonisomorphic AF OF(K,,) are also nonisomorphic
and the Corollary follows.

In order to prove the next theorem, we need one more auxilliary device.
The following definitions are taken from [16] (cf. also [15)).

An (A4, k)-system is a set of k disjoint pairs ( p, , ¢,) covering the elements
of {1, 2,..., 2k} exactly once and such that g, — p, =rforr =1,2,... k.
Similarly, a (B, k)-system is a set of k disjoint pairs ( p, , ¢,) covering the
elements of {1, 2,..., 2k — 1, 2k + 1} exactly once and such thatg, — p, =r
for r = 1, 2,..., k. It is known (see, e.g., [16]) that an (4, k)-system exists
if and only if k¥ = 0 or 1 (mod 4), and a (B, k)-system exists if and only
if k£ = 2 or 3 (mod 4). Observe that an (4, k) system and a (B, k)-system
is essentially the same thing as what has been called by several authors
a Skolem (2, k)-sequence and a hooked Skolem (2, k)-sequence (cf. [15]).

THEOREM 15. If there exists an AF OF(K,,) then there exists an
AF OF(Kyn+)-

Proof. Let (V, %) be any AF OF(K,,), V = {a,, as,..., dsn_1, a*},
F = {Fk}ke,}_. Further let U=4{b;|i=12,..,2n — 1}, X =
{o0;1i=1,2,.., 7} and let (X U {a*}, ), where @ = {D;|i = 1,2,..., 7}
be the GF(Ky). Let L={p,,q)1¢.—p,=r, r=12,..,n—1}
be an (4,n — 1)-system or (B,n — l)-system according to whether
n=12 (mod 4) or n =0,3 (mod 4). Denote further ¥ = U — W
where W = {b,|i = p,orq,,r = 4,5,....n — 1;(p,, q,) € L}. Obviously
| Y| =7 Nowlet ¥ =1{b, [i=1,2..,7.Put S=VUUUX and
H = o VB U E where , B, € are the following sets of 1-factors:

M - {Ak | k == 1, 2,..., 2n - 1}, Ak = Akl UFkB’

where 8 is any bijection from {1, 2,..., 2n—1} into I, 4,' = {[c0;, b,-;+k_1] |
i=12..,T1v {[b7,+k—1 ’ ba,+k—1] [r=4,5..,n—1}

#B={B.|k=12,.2n—1}, B,= B, UB;UB;U({b,a*},
Bk/ = {[bk+1 ’ bk+3]’ [bk-l » bk+2], [bk—3 s blc—2]}
By ={[lwo;,aqp s lli=1,2,..,7}

BI,«’:, = {[ak—p,-!-l ’ bk+r][ r= 4, 55"'3 n— 1}9
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and
€ ={C;li=12,...,T),
Ci=C/YD;,C/ ={[ay,bjsxillk=1,2,.,2n — 1}

with subscripts reduced modulo 2» — 1 to the range {1, 2,...,2n — 1}
whenever necessary. It is readily verified that (S, ) is an OF(K,, ).

In order to show that (S, #) is automorphism-free we show first that
(V, %) is the unique sub-OF of (S, 5#) of index 2 -+ 3/n. Assume that
(V', #') is another sub-OF of (S, 3#) with | V' | = 2n. Distinguish the
following cases (in the discussion below, we refer to a l-factor from the
set o/ (# and €) as an &/-factor (#-factor and %-factor)).

Case 1. VN V' = . Then no l-factor F, of &’ can be a subfactor
of a #-factor or of a ¥-factor, as such a 1-factor contains at most three
edges joining vertices from U U X. However, we have by our assumption
2n > 10, and thus in > 3. Therefore all 1-factors of &' are subfactors
of &/-factors. Since | V' | = 2n, among the 2n vertices of ¥’ chosen in any
way from 2n + 6 vertices of U U X there must be two vertices b, , b,
such that x — y =1 or 2 or 3 (mod 2n — 1). But no «/-factor contains
an edge joining any two such vertices b, and b, which contradicts the fact
that (V', #') is an OF(K,,).

Case 2. |V nV'| = 1. This case is similar to case 1.

Case 3. |VNV'| =2 and thus FNF # g. By Lemma 1],
VoV, FnF)is a sub-OF of (S, ), and also of (V, F) and of
(V', #'). Therefore | ¥V N V' | < nand consequently | V' N (U U X)| > n.
Distinguish the following subcases:

Case 3a. | V' 0 X | = 2. Then &' must contain at least one 1-factor
which is a subfactor of a ¥-factor, and it follows that either | V' N U | =
[V'anV]ior |[VNAU{+1=|V' nV¥V| This implies that #' must
contain at least | V' N U | 1-factors which are subfactors of .o/-factors
(since these are the only 1-factors containing edges joining vertices from U
to vertices in X). Since (V' N V', F N F') is a sub-OF of (V, F) it follows
thatthecase| V' N U| = | V' N V|isimpossibleandso | V' N U |+ 1 =
| V' v V|. This in turn implies that the number of vertices in V' N X is
odd, giving | V"N X| = 3. Since (V' N (X Vi{a*}), F NnD)is also a
sub-OF of (S, 5#), and GF(K;) does not contain any sub-OF of index 2,
it follows that V' N X = X and therefore | V' NV | =n— 3,
V' N U|=n—4. Since #-factors are the only 1-factors containing
edges joining vertices from X to vertices in ¥\{a*} and since there are
n — 4 vertices in V' N (V\{a*}), there must be n — 4 1-factors in #’ which
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are subfactors of #-factors, n — 4 1-factors which are subfactors of
&/ -factors, and 7 1-factors which are subfactors of %-factors. As there
are altogether (";*) edges joining vertices from ¥’ N U and there are
$(n — 4)(n — 11) edges joining vertices from V' N Uin all n — 4 1-factors
of #’ which are subfactors of «7-factors, there are exactly 3(n — 4)
edges joining vertices from V' N U in the n — 4 1-factors of #' which are
subfactors of the #-factors. This implies that each 1-factor of %” which
is a subfactor of a #-factor contains exactly three edges joining vertices
from V' N U. Among the vertices of V' N U there must be two vertices
b, , b, such that | x — y| = 1 (mod 2n — 1). Without loss of generality,
let x = 1, y = 2. Then the definition of the set # implies b, , b5, bq , b, €
V' n U which in turn implies ¥’ N U = U which is a contradiction.

Case 3b. |V'NnX|=1. Then |V'NU|>=n—1. Since edges
joining vertices from U to vertices in X are contained only in =/-factors
it follows that &' contains at least n — 1 1-factors which are subfactors
of &/-factors. On the other hand, (V' N V', F N F')is a sub-OF of (S, o)
and | VN V' | < n; therefore, #' contains at most n — 1 1-factors which
are subfactors of &/-factors; thus, it contains exactly » — 1 such 1-factors.
It follows that | VNV’ | =nand | V"N U] = n — 1. The remaining n
1-factors of %’ must be subfactors of #-factors and #-factors. Since the
latter do not contain any edges joining vertices from V, it must be that
in all these 1-factors of #~ edges join vertices from ¥ to verticesin V' N U
except for one edge which joins the unique vertex of ¥’ N X to a vertex
of V. Among the n — 1 vertices of V' N U there must be two vertices
b,,b,such that | x — y| =1, 2, or 3 (mod 2» — 1). But the edge b, b,
does not occur in any l-factor of %’ which contradicts the fact the
V', #') is an OF(K,,).

Case 3c. VVOX=ga.Then| V' NnU|Z |V V|V NNU|=
| V' N V| = n then no 1-factor of &’ can contain an edge joining two
vertices b, ,b,e V' n U such that | x —y| = 1,2, or 3 (mod 27 — 1).
Since V' N U must contain two such vertices, this case cannot occur. If
IV'nU} > ]|V NnV| then no 1-factor of F' can be a subfactor of a
Efactor. If | V' NU|=n+1,| V' NnV|=n—1 then there must be
n — 2 1-factors of &#’ which are subfactors of «/-factors and n + 1
1-factors of %’ which are subfactors of #-factors. It follows that each
vertex from V' N U must be joined by an edge to another vertex from
V'’ n U in exactly two 1-factors of #’ which are subfactors of #-factors.
That is, for every vertex b, in ¥’ N U there must be exactly two other
vertices b, , b, in V"N U such that | x —y| =1, 2, or 3 (mod 2n — 1)
and [x—z|=1,2,or3(mod2n—1). As |[V'NnU|=n-+1this is
evidently impossible. The impossibility of the case | V"N U| =n + 2,
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[ V'NV|=n—2is shown in a similar fashion, while the assumption
[VNnUl=n+3,|VNV]|=n~—3implies V"N U = U, a contra-
diction. Obviously, | ¥’ N U| cannot exceed | ¥’ N V| by more than 6
which completes this case.

Thus, (V, #) is the unique sub-OF of (S, #) of index 2 + 3/n. Assume
now that « is a nontrivial automorphism of (S, #). Then « must map
(V, #F) onto itself and as (V, &) is automorphism-free, we have a;o0 = a; ,
foralli = 1, 2,..., 2n — 1, and a*« = a*. Therefore each of the 1-factors
Ay, k = 1,2,..,2n — 1, must be fixed under « which is obviously possible
only if b =25, for all i=1,2,..,2n—1 and oo,&a = oo; for
i =1,2,..,7. This completes the proof of Theorem 15.

COROLLARY 16. A(4n -+ 6) = (2n — 2)! A(2n)j42.

Proof. To obtain (S, #) from (V, %) by the construction in
Theorem 15 we have (2n — 1)! choices for the bijection 8. Thus we
obtain (2n — 1)! distinct AF OF(K,,,s) corresponding to a fixed
AF OF(K,,) (and to a fixed (4,n — 1) or (B, n — 1)-system). Further
we observe that any automorphism « of (S, 5#) has to map the set of
subfactors {B,' |k = 1,2,...,2n — 1} onto itself and so we must have
b = b, foreachi =1, 2,...,2n — 1 and for some x {1, 2,..., 2n — 1}.
The proof of the corollary is then completed by taking into account that
the order of the automorphism group of GF(R) is 42.

LemMA 17. There exists an AF OF(K,,) for n = 6,7, and 9.
Proof. Here they are! (For the sake of brevity all brackets are omitted.)

AFOF(12): 1,6 25 34 7,02 811 9,10
26 13 45 912 810 7,11
36 24 15 812 79 10,11
46 35 12 1012 911 78
56 1,4 23 1,12 7,10 89
1,7 29 312 48 510 61l
1,8 27 310 49 511 612
1,9 2,11 3,7 412 58 6,10
1,10 28 3,11 47 512 69
1,11 2,12 39 410 57 68
1,12 2,00 38 411 59 67

AFOF(4): 12 35 47 613 811 9,10 12,14
23 46 15 7,14 9,12 10,11 8,13
34 57 26 18 10,13 11,12 9,14
45 1,6 37 29 11,14 12,13 8,10
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AF OF(14). 56 2,7 14 3,10 8,12 13,14 9,11
67 13 25 411 913 8,14 10,12
1,7 24 36 512 10,14 89 11,13
1,9 28 3,14 412 510 6,11 713
1,10 2,13 38 4,14 511 69 7,12
1,11 2,14 39 48 513 6,12 7,10
1,12 2,10 3,13 49 58 614 711
1,13 2,12 3,11 4,10 514 6.8 7.9
1,14 211 3,12 4,13 59 6,10 7,8

AF OF(18): 1,10 26 3,5 4,7 89 11,18 1217 13,16 14,15
2,11 3,7 46 58 1,9 10,12 13,18 14,17 15,16
3,12 48 57 69 1,2 11,13 10,14 15,18 16,17
413 59 68 1,7 23 12,14 11,15 10,16 17,18
514 1,6 79 28 34 13,15 12,16 11,17 10,18
6,15 27 1,8 39 45 14,16 13,17 12,18 10,11
7,16 38 29 14 56 1517 14,18 10,13 11,12
817 49 13 25 6,7 16,18 10,15 11,14 12,13
918 15 24 36 78 10,17 11,16 12,15 13,14
1,11 2,10 3,18 4,14 517 6,06 7,15 812 9,13
1,18 2,12 3,11 415 516 6,14 7,17 813 9,10
L,12 2,13 3,10 4,17 515 6,18 7,11 816 9,14
1,13 2,14 3,17 4,10 518 6,11 7,12 8§15 9,16
1,14 2,15 3,13 4,16 510 6,17 7,18 38111 9,12
1,15 2,16 3,14 412 511 6,10 7,13 8,18 9,17
1,16 2,17 3,15 4,18 512 6,13 7,10 8§14 9,11
1,17 2,18 3,16 4,11 513 6,12 7,14 810 9,15

In order to verify that our OF(K,,) are automorphism-free we proceed
as follows:

Given an OF(K,,), the union of any two of its 1-factors is a 2-factor
each component of which is an even circuit of length at least four. There-
fore to any pair of 1-factors of OF(K,,) corresponds a partition of 2r into
even parts not smaller than 4. If T}, T, ..., T, are all such partitions we
may assign to each 1-factor F; of OF(K,,) a t-vector (1}, ty,..., t;?) where
t;# is the number of 1-factors G such that to the 2-factor F; U G, the
partition T; corresponds, and ¥j_, ¢ = 2n — 2. For instance, for our
OF(K;,) we get the ¢-vectors in Table 1. '

Since the types of the 1-factors are invariant under isomorphism it
follows that any automorphism of our OF(K;,) must map each factor
F; onto itself except possibly F, and F; which could be interchanged.
It is then verified rather easily that this can be achieved only by the identity
mapping of the vertices.
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TABLE I
Partitions
Factors 12 - 8-+4 6+6 4+4+4+4 3
F, 0 3 4 3 10
F, 4 2 4 0 10
F, 4 2 4 0 10
F, 2 3 4 1 10
F, 3 2 4 1 10
F; 4 5 1 0 10
F, 2 6 1 1 10
Fy 7 1 0 2 10
F, 7 3 0 0 10
Fypo 7 2 0 1 10
Fy 3 5 1 1 10
TABLE 11
Partitions
14 10 + 4 8§+6 6+4+4 b
4 7 0 1 12
4 6 1 1 12
0 10 2 0 12
4 7 1 0 12
4 8 0 0 12
4 7 1 0 12
3 8 1 0 12
6 3 2 1 12
7 4 1 0 12
3 6 1 2 12
6 2 3 1 12
6 5 1 0 12
5 5 2 0 12

Similarly, for our OF(K,,) and OF(K,) we obtain the t-vectors in
Tables 1T and ITI. From these tables it is again easily seen that both
1-factorizations are automorphism-free.

THEOREM 18. An AF OF(K,,) exists if and only if n = 5.

Proof. As already mentioned, there is no AF OF(K,,) for n < 4.
By [9], there exists an AF OF(K;,) (actually, there are exactly 298 noniso-
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TABLE 111

Partitions

18 14+412+610+8 10+4+48+6+4 6+6+6 6+4+4+4 3

16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
16
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morphic AF OF(K,,)), and by Theorem 13, there exists an AF OF(K,).
Further, an AF OF(K,,) for n = 6, 7 and 9 exists by Lemma 17 while the
existence of an AF OF(K,,) for n = 8 and 11 follows from Theorem 12.
Assume therefore n >> 12, and assume that for all m < n (m = 5) there
exists an AF OF(K,,,). If n = 0 (mod 2) then there exists an AF OF(K,)
and by Theorem 13 there exists an AF OF(K,,). If n = 1 (mod 2) then
there exists an AF OF(K, ;) where n > 10 therefore by Theorem 15
there is an AF OF(K,,).

THEOREM 19. lim,_ . A(2n) = oo.

Proof. The statement follows from Corollary 14 and Corollary 16.

6. EMBEDDINGS INTO AF STS AND AF OF

In order to prove the two theorems of this section, we need a lemma
concerning the following (well-known) construction.

CoNSTRUCTION A. Let (S, #) be a Steiner triple system of order v
where S = {a,, a5 ,...,a,} Put v + 1 = 2n and let (T, %), ¥ = {F,-}is,y ,
be an OF(K,,) and SNT=g. Put $S*=SUT and #*=HUIE
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where € = {{a;, x, y} | [x, y] € F;,ie lg}. Then (S* #*) is an STS of
order 2v + 1.

LemMma 20. If (T, %) is an AF OF(K,,) which does not contain a
sub-OF of index 2 then the Steiner triple system (S*, #*) is also auto-
morphism-free.

Proof. Assume first that there is a nontrivial automorphism « of
(S*, #*) which maps (S, #) onto itself. Then the set of triples € must
be also mapped onto itself by «. Since (7, #) is automorphism-free
it follows that xa = x for all x € T. However, any automorphism of
(S*, #*) fixing at least half the number of elements of S* necessarily
fixes all elements of S*.

II. Assume now that there is a nontrivial automorphism « of
(S*, #*) which maps (S, %) onto (S', #') where (S’, #') is another STS
of order v. Then (SN S', & N %) must be an STS of order (v — 1)
and (S'\S, #) (where # = {Hj}i,,, H;={x,y]ll{a:,x y}€B\B,
a; €S N S'}) is a sub-OF of (T, #) of index 2 (cf. [15, Theorem 3.1]). This
contradiction completes the proof.

A partial Steiner triple system is a pair (P, 2) where P is a finite set
and 2 is a collection of 3-subsets of P such that each pair of distinct
elements of P belongs to at most one triple of 2.

THEOREM 21. Every partial Steiner triple system can be embedded
into an automorphism-free Steiner triple system.

Proof. Let (P, 2) be a partial STS. Then (P, 2) can be completed to
a finite STS (S', #') [17]. Let | S’ | = u. Put
v=u if u=1o0r9(mod12)
=2u-+3 if u=3(mod 12)
=2u+7 if u=7(mod12).

It

f

By [8], (S, #’) can be embedded into an STS of order v, say (S, #).
Let (T,%) be an AF OF(K,,) where 2n=v+1 and TnS = &.
Since v = 1 or 9 (mod 12) we have n = 1 or 5 (mod 6). But no OF(K,,)
with # odd can contain a sub-OF of index 2. Therefore using Construc-
tion A and Lemma 20, we obtain an STS or order 2v + 1 (S*, #*) which
is automorphism-free with (P, 2) embedded into (S*, #*).

COROLLARY 22. For every STS of order v (S, %) there exists an
AF STS(S*, #%*) or order not exceeding 4v + 15 such that (S, #) can be
embedded into (S*, #*).
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THEOREM 23. Any OF(K,;) can be embedded into an AF OF(K,,) for
some n.

Proof. Let(V, 9) be an OF(K,,). Put

t=3s if s=1or2(mod?3)
=25+ 2 if s =0 (mod 3).

If t > s, then by Theorem 8 (¥, %) can be embedded into an OF(K,,),
say (W, #). (If t = 2 we just put W = V, and # = %). Taking (W, %)
and any STS of order 2t — 1, we can use Construction A to obtain an
STS of order 4¢+ — 1, which, in turn, can be embedded by Corollary 22
into an AF STS or order v, say, (S, #). Then the Steiner AF OF(K,,)
(where 2n = v + 1) obtained from (S, #) obviously contains (V, %) as a
sub OF.
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