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Abstract

We study the dilaton stabilization in models with anomal@i&) symmetry by adding specific string-motivated, non-
perturbative corrections to the tree-level dilaton Kahler potential. We find that the non-perturbative effects can stabilize the
dilaton at a desirably large value. We also observe that the size of Fayet-lliopoulos term is reduced at the stabilized point.

0 2004 Published by Elsevier B.Wpen access under CC BY license.

Dilaton and moduli fields play an important role in  bilizing their VEVs. However, in the case with a single
superstring theory as well as extra-dimensional mod- gaugino condensation and the tree-level Kéhler poten-
els. Within the framework of 4D string models, cou- tial,
plings like gauge and Yukawa couplings are deter- . }
mined by vacuum expectation values (VEVS) of these Ko(S+ S) =—In(S+S), (D)
fields. In heterotic models, for example, the gauge cou- ) - o
pling ¢ is determined as/k? = (Re(S)) by the VEV the dilaton VEV cannot be stabilized at a finite value,
of the dilaton fieldS. However, in 4D models with ~ Putruns away to infinity. -

N = 1 supersymmetry (SUSY) these fields have per- Several models have been proposed to stabilize the
turbatively flat potential, and their VEVs are undeter- dilaton VEV. The models with double or more gaugino
mined. Thus, how to stabilize their VEVs is an impor- condensations, i.e., the so-called racetrack models, can
tant problem. The non-perturbative superpotential due Stabilize the dilaton VEV [1]. The problem of the

to gaugino condensations is a plausible origin for sta- acetrack type models is that the stabilized value of
the dilaton tends to be too small compared with the

value Ré&S) = 1/g2 ~ 2, which is suggested by the
— _ unified gauge coupling in the minimal supersymmetric
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0370-26930 2004 Published by Elsevier B.@pen access under CC BY license.
doi:10.1016/j.physletb.2003.12.044


https://core.ac.uk/display/82608028?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/

258 T. Higaki et al. / Physics Letters B 582 (2004) 257-262

Another possibility for the dilaton stabilization is  in the vacuum energy driving the inflation [24]in
to assume non-perturbative Kahler potential of the these applications, the size of the FI term, which is
dilaton field [2,3], as was studied in Refs. [3—7]. With determined as Eq. (2) in the heterotic case, is quite

a certain form of non-perturbative Kéhler potential, a

single gaugino condensation can stabilize the dilaton

at a finite value. Moreover, the dilaton VEV @f(1)

important.
In this Letter, we study the dilaton stabilization
mechanism in which a dominant role is played by the

can be realized for a reasonable choice of parameters dilaton-dependent FI term (2) due to non-perturbative
although one has still to fine-tune parameters so that Kéhler potential. In this scenario, the dilaton VEV

the tree-level vacuum energy vanishes.

On the other hand, it is usually true thBtterms
in the scalar potential do not play any essential role
on dilaton stabilization, because the dilaton field ap-
pears as an overall factor iR-terms. There can hap-
pen, however, an exception, that is, the case with
D-term for an anomalou#/(1) symmetry. Most of
4D string models have anomalotg1) symmetries

can easily be stabilized at weak coupling,(Re=

0 (1), as we will see below. Similar studies have been
done in Refs. [16,17], where the superpotential due
to gaugino condensation is also added to stabilize
the dilaton VEV. In our case, however, we do not
assume such dilaton-dependent superpotential. This
means that the dominant part of scalar potenyal

is given by V ~ (8gsKs)2. As a result, the dilaton

[8-10], whose anomalies can be canceled by the VEV is stabilized around the point satisfyirigs = O.

Green-Schwarz (GS) mechanism. In heterotic mod-
els, the dilaton field transforms non-linearly lil§e—

S + 2idgsAs under anomaloud/(1) transforma-
tion V4 — V4 +iAs —iAa, Wheredgs is a GS
coefficient andV, is the anomaloud/(1) vector
multiplet. It follows that the dilaton Ké&hler poten-
tial is a functionK (s) of gauge-invariant combina-
tion s = S + S — 28gsVa. Accordingly, the anom-
alousU (1) D-term contains the Fayet—Illiopoulos (FI)
term

£ =bcs(Ks)M?, (2)
where M is the reduced Planck scale aid is the
first derivative of the dilaton Kahler potential. If we
take the tree-level Kéhler potenti&lh(s) and assume
that Re&S) = 0(1), we haves¥2/m = 10-1-1072.
(Hereafter we take th@/ = 1 unit.) In general, the
magnitude of the FI term depends on the dilaton VEV
as well as the form of dilaton Kahler potential. There-
fore, the anomalou#/(1) D-term can play a non-
trivial role in dilaton stabilization, as was suggested
before in Refs. [11,12].

The dilaton-dependent FI term has also several

phenomenologically interesting aspects. For example,

the ratio of the FI term to the Planck mass squared
can be an origin of coupling hierarchies [13,14].
The FI term can also be used to break SUSY [15-
18] as well as to mediate SUSY-breaking effects to
scalar mass terms [19-23]. Furthermore, in fhe

term inflation scenario, the Fl term is a dominant term

This minimum corresponds to the point discussed
before from the viewpoint of maximally enhanced
symmetry [12]. Moreover, we will present an example
of dilaton-dependent superpotential that does not spoail
the dilaton stabilization through the anomaldiigl)
D-term so that the resulting FI term has a suppressed
value compared with the value expected from the tree-
level Kahler potential.

Basically it is difficult to stabilize the dilaton only
through the D-term scalar potential if the Kahler
potential takes the tree-level form (1). To realize it, we
assume that non-perturbative effects generate another
term in the dilaton K&hler potential. Of course, it is
not clear, at present, which type of terms would be
generated by non-perturbative physics. Therefore, for
illustrating purpose, we use the following ansatz for
non-perturbative potential [5],

Knp(S+8) = d(S + §)P/2e~b(ST9Y2, @)
whered, p andb are real constants. It is required that
b > 0, for the non-perturbative term must vanish in
the weak coupling limit, ReS) = 1/g% — co. Then,

in models with an anomalous(1) 4, we consider the
total Kéhler potential of dilaton,

KV (s) = Ko(s) + Knp(s). 4

1 see, Refs. [25,26] foiD-term inflation scenarios in type |
models.
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Alternatively, the total dilaton K&hler potential of the see shortly. We have assumed that the second condi-
form tion in Eqg. (9) also satisfieB-flatness conditions. Ac-
tually, this solution corresponds to vanishifgterm

ISHOE In(ef0) 4 Kl ®) of Syand vanishingU (1) 4 IOD—term, so that SLthSY is
has also been discussed in the literature. We also giveunbroken in the dilaton sector. At this point (9), the
comments on the case witi® (s). second derivative o¥ is written as

Now let us explain our setting. The total Kahler 52y,
potential takes the form

9508

- Ks=A=0
K=K(S+S8—25csVa) + K(P', P’ 2 g2
o .GS_TA)_J_F E\ ) =(KV+2K —eK|W|2+SGS$ (10)
+ZKKI?(¢l’(pl)¢K62qKVA¢K+"'v (6) SS SS Re(S) .
K

. _ _ ) ~ On the right-hand side of this equation, the first term
where the first term is the dilaton Kahler potentlal can be neg|ec[ed when the (tree_|eve|) vacuum energy

K® or K®. In the second and third term®,’ are s taken to be approximately zero. (Note that the
gauge singlet moduli fields other than the dilaton field, vacuum energy contribution from the dilaton sector
and¢* stand for matter fields witl/ (1) 4 chargeg!. vanishes atkKs = A = 0.) Moreover, the second

The ellipsis denotes terms including gauge multiplets derivativek z must be positive because it determines
other thanU(1)4 and higher order terms af*. For a normalization of kinetic term of the dilaton. We find
superpotentialV’, we first consider the modelinwhich  that the right-hand side of Eqg. (10) are positive at
W does not include the dilaton field, Ks = A =0, and thus Eq. (9) corresponds to a local

. i minimum of the scalar potentia.
W= W(¢ 9 ) (7) Let us discuss a concrete example. We consider the
unlike the non-perturbative term generated by gaugino Kahler potentialk (V. Its first derivative with respect
condensation. This is an important assumption and we to the dilaton is obtained as
will come back to this point later. | 1 4 2

Under the above setting, the scalar potential is K{’(s)=—= + > sP/2 e [ p — bst/2]. (1)
given by s

The solutions to the equatidkié') = 0 behave differ-

V=K [i|K5W|2 ently for d < 0 case and/ > 0 case. Wherp and
K3 b are positive and fixed, thé < 0 case can lead to
+ (Kfl)”_ larger v_alue of R&S) _than thed > 0 case. For ex-
ample, in the case withh = b = 1 andd = —?, the
x (KW + W,)(K,—W + WJ-) — 3|W|2} dilaton VEV is stabilized as R§) = 2, while we ob-
tain RgS) = 0.125 in the case wittp = b =1 and
s 12 2 d = 8¢Y/2. Since we are interested in the solution
+ 2R4(S) (‘SGSKS - qu Kiic|¢"| ) T Re(S) = 0(1), we will mainly consider the case with
K

®) d < 0 and give a brief comment fat > 0O later.

; () —}— — _,2
wherek ¢ is the Kahler metric of the dilaton field, and Fig. 1 showsK'g” for p __b =1 %ndd = et We
subindicesl, J represent derivatives with respect to See that there are two solutionskg " = 0 (except the
the @' or ¢*. Here the ellipsis denote3-terms other ~ funaway one); one corresponds to the solution with

. . | : - |
than theU/ (1), D-term. A solution of the stationary ~ K2 > O while the other givesk () < 0. Thus the

conditiondV/aS = 0 is given by physical solution is given by R§) = 2 as mentioned
4 5 above. We also show in Fig. 2 how the stabilized
Ks=0, A= qu Kei|¢*|"=0. 9 dilaton VEV depends on the parametek 0. As |d|
K

becomes large, the stabilized value becomes small. In
The first equation is the condition of vanishing FI the limit |d| — oo, the stabilized value R§) comes
term, from which the dilaton is stabilized as we shall close to ¥2. On the other hand, ag| becomes small,
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Fig. 1. Kg) as a function of = 2RgS). The parameters ae =
b=1andd = —é.
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Fig. 2. The curve ofl (the vertical axis) against = 2Re(S) (the

horizontal axis) which satisfy(g) =0forp=b=1.Fors > 7.8,
we havek ¢s < 0 and such part of this curve does not correspond to
a physical solution.

the stabilized value R&) becomes large. However,
for d > —6.5, we have no solution thé') =0. The
maximum value of the dilaton VEV is RS) ~ 3.4
for d ~ —6.5. We note that in general the second
derivativek ;'; is suppressed slightly. For example, we
havek ¢z = 1/32 ford = —e?.

For other values op andb, we obtain qualitatively
the same results. The limid| — oo corresponds
to the minimum of Re€S), which is obtained as
Re(S) = p?/(2b%). As d decreases, the stabilized
value increases.

Here we give a comment on the case with- 0.
For p and b fixed positively, asd decreases, the
stabilized value of RE) increases, but it cannot
be larger thanp?/(8b%). Thus, ford > 0 we have
Re(S) = 0(1) for a large ratio ofp?2/(8b2) and a small
value ofd.

Similarly we can discuss the dilaton stabilization
for KO, Its first derivativek ;H) is calculated to be
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I 1

@M _

Ky = 172
1+ s exp(dsP/2e=bs7%)

|: 1
x| ==
s

+ isp/Ze—bsl/2

x(p— bsl/z) exp(dsp/ze_bsl/z)] (12)

For example, wherp = b = —d = 1, the equation
K" = 0 is satisfied by R€) = 3.9, where we have
K45 =0.13.

So far, we have considered the model without
dilaton-dependent superpotential. In that case, the
minimum of the scalar potential is determined by
Ks = 0 corresponding to vanishing Fl term. On the
other hand, if a dilaton-dependent term is generated
non-perturbatively in the superpotential, one may ex-
pect that such term would drastically change the sit-
uation, that is, the dilaton VEV would no longer be
determined by the anomalods(1l) D-term. This is
not necessarily the case, however. We now present a
class of models in which the superpotential contains a
dilaton-dependent term, but the dilaton VEV is dom-
inantly determined by the anomalod&1) D-term.

In fact, a sub-dominant effect from the superpotential
slightly shifts the minimum from the poirts =0, as
we shall see shortly.

Here we consider a toy model wiJ (2) x U (1) 4
gauge group. The model has fdiuw (2) doublet chiral
superfieldsQ¢ (i =1,...,4; a = 1,2) which have
anomaloud/(1)4 chargesy; with )", ¢; # 0. In this
case, thesU(2) strong dynamics deforms the moduli
space of vacua into [27]

Pf(M;}) = exp(—872S), (13)

where M;; is the meson operator corresponding to
0, Q;. The right-hand side correspondsAd, where

A =expg—2725] is the dynamical scale (in the = 1
unit). Suppose that the superpotential includes only
the term with a Lagrange multiplier that enforces the
above constraint (13). Furthermore, we assume Kahler
potentials OfM,'j to be K(Mij, Mij) = (Mij]\;[ij)l/z

for simplicity. Then, the anomalou§ (1)4 D-term
takes the form

D =6GgsKs — Z %(MijMij)l/z’ (14)
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whereg;; =qi +q;-
Now, we may estimate the minimum of the scalar
potential by solving

SesKs=_ %(Mijﬁ;[ij)l/2~

Combining Eq. (15) with the quantum constraint (13),
we obtain

Ks= 0(exgB — 4n?Re(S)]), (16)

where we have definetks = ¢—# and assumed that
gi; = 0(1). Normally we have8 = O(1) sincedgs =
10~1-1072 in the unitM = 1. If the stabilized value
before adding the superpotential is given by(Re=
0(1), the right-hand side in Eq. (16) is sufficiently
suppressed as long As= O(1). If this is the case, we
may consistently approximate the minimum condition
by K5 ~ 0 as before. This situation does not change
even forg = 0(10) because A2 Re(S) > B.

It is important, however, to notice that the FI term
& does not vanish exactly. In the above toy model, it is
estimated as

(15)

€] = 156K s|M?
= 0(M?exp(~872)) ~ 0 (1) GeV2,

when RéS) = 2. Thus the FI term is non-vanishing,
but quite suppressed in this model. If we consider a
model with larger rank of gauge group, the dynamical
scaleA can be larger. Accordingly a larger Fl tegm=
0(A?) can be generated. For example, in the model
which hasSU(7) gauge group with seven flavors and
Re(S) = 2, we obtain the dynamical scalet| ~
103 GeV. In general, this type of models lead, up to
U (1) charges, to

1€ 8w
M? b’
whered’ is the one-loop gauge beta-function coeffi-
cient in the model with quantum moduli space. We
also note that the stabilized VEV of 2 B® is slightly

shifted from the valueg of previous case satisfying
Ks(so) = 0 exactly. Such shifgs is negligible as long

as
8r? 8r?

b'8GsK ¢5(s0) b’

Otherwise, the shift is not small, and we have to fully

solve the stationary condition of the scalar potential.

17

2

= |6csKs| = exp[— 2 RG(S)], (18)

so> <1 (19)
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To summarize, we have studied the dilaton stabi-
lization in the model with the non-perturbative dilaton
Kéahler potential and anomaloids(1) gauge symme-
try. It is found that non-perturbative effects can stabi-
lize the dilaton at a finite value @ (1). Another inter-
esting property of this stabilization mechanism is that
one can reduce the order of magnitude of FI term. We
give a toy model in which small dynamical scale and
FI term are generated. If gauge group is larger, they
can become larger. That would have interesting appli-
cations, e.qg., for th®-term inflation scenario. Finally
we add that in the models discussed here, SUSY is not
broken in the dilaton sector, and the tree-level vacuum
energy contribution from this sector vanishes. In order
to break SUSY, we must take into account effects from
other moduli fields or tree-level superpotential.
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