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Abstract
We present results of the mean-field analysis of the competition between charge and spin orders
in a model cuprate. Phase diagrams and temperature dependencies of the charge and magnetic
order parameters are calculated for different doping given different values of the on-site cor-
relation parameter, inter-site density-density coupling, and Heisenberg spin exchange integral.
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1 Introduction

The mechanism underlying the high-temperature superconductivity of copper oxides has re-
mained unelucidated and is still one of the greatest mysteries in the field of condensed matter
physics. The cuprate high-Tc superconductors start out life as antiferromagnetic insulators
in contrast with BCS superconductors being conventional metals. Unconventional behavior of
these materials under charge doping, in particular, a remarkable interplay of charge, lattice,
orbital, and spin degrees of freedom (see review article Ref.[1] and references therein), strongly
differs from that of ordinary metals and merely resembles that of a doped Mott insulator. The
fascinating issue of competing orders or intertwining effect between bulk superconductivity,
charge density waves and static magnetic order in the cuprate superconductors has attracted a
lot of attention for many years, however, the mechanisms are still unclear at present. In view
of this, working models which can reproduce several aspects of this interplay can certainly con-
tribute to a better understanding of the mechanisms at play. Here we address the competition
between charge and spin orders in a model cuprate and present both analytical and numerical
results of the mean-field approximation (MFA).

The rest of the paper is organized as follows. In Sec.2, we shortly consider an S=1 pseu-
dospin formalism to describe the charge degree of freedom in cuprates and introduce a simplified
Hamiltonian for a model cuprate. Section 3 is devoted to the MFA analysis of the Hamiltonian
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on a square lattice. In Sec.4, we present the MFA phase diagrams, showing temperature vs. on-
site correlation parameter and temperature vs. doping, as well as the temperature dependencies
of the charge and spin order parameters. In Sec.5, we shortly summarize our results.

2 S=1 pseudospin formalism and model cuprate

We start with a minimal model [2] of the copper oxides such as La2−xSrxCuO4 with the on-site
Hilbert space reduced to only three effective valence states (nominally Cu1+;2+;3+) of copper
ions in the CuO2 planes. Central point of the model implies the occurrence of unconventional
on-site quantum superpositions of the three valence states

|c〉 = c−1|Cu1+〉+ c0|Cu2+〉+ c+1|Cu3+〉 , (1)

characterized by different hole occupation: nh = 0, 1, 2 for Cu1+;2+;3+ centers, respectively, and
different conventional spin: s = 1

2 for Cu2+ center and s = 0 for Cu1+;3+ centers.
The three different valence charge states of the Cu1+;2+;3+ centers are associated with the

three components of the S = 1 pseudo-spin triplet with MS = −1, 0,+1, respectively, so
the local hole density nh and the doped hole concentration n are related with the pseudo-
magnetization and read as follows:

nh → Siz + 1 , n =
1

N

N∑
i=1

〈Siz〉 . (2)

Conventional spin density for mixed valence superpositions can vary inbetween 0 and 1 in
accordance with the weight of the Cu2+ center in the on-site superposition. Projection operator
P̂0 = ρ̂s = (1− Ŝ2

z ) picks out the s =
1
2 Cu2+ center in the on-site mixed valence superpositions

(1) and can be addressed to be the on-site spin density operator.
Effective S=1 pseudo-spin Hamiltonian which does commute with the z-component of the

total pseudo-spin
∑

i Siz can be written to be a sum of the three terms [3]:

Ĥ = Ĥpot + Ĥ
(1)
kin + Ĥ

(2)
kin , (3)

where Ĥpot includes the on-site and inter-site potential energy terms, while Ĥ
(1)
kin and Ĥ

(2)
kin

present the one- and two-particle inter-site hopping terms. A comprehensive analysis of the
full Hamiltonian for cuprates remains to be a longstanding challenge for the condensed matter
community. However, to uncover some specific features of the spin-charge competition, here-
after, in the paper we shall consider only simplified spin-pseudo-spin Hamiltonian which takes
into account the on-site and inter-site correlations, that is potential energy terms Ĥpot, and
conventional Heisenberg spin exchange coupling:

Ĥ = Δ

N∑
i=1

S2
iz − μ

N∑
i=1

Siz +
∑
〈ij〉

VijSizSjz +
∑
〈ij〉

Îij (�si, �sj) , (4)

where the sums run over sites of a two-dimensional square lattice, 〈ij〉 means the nearest
neighbors, Siz and �si are the on-site pseudo-spin and conventional spin operators, respectively.

The first on-site term (”single-ion anisotropy”) describes the effects of a bare ”pseudo-
spin splitting” and relates with the on-site density-density interactions: Δ=U/2, U being
the correlation parameter, the second term, or a pseudospin Zeeman coupling, with chemical
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potential μ is needed to account for the charge density constraint, the third (Ising) term with
V > 0 describes the effects of the inter-site density-density interactions. The last term is
the antiferromagnetic Cu2+−Cu2+ Heisenberg spin exchange coupling, where instead of the
conventional bare exchange integral Iij we arrive at an effective pseudo-spin operator

Îij = P̂0iIijP̂0j = ρ̂si Iij ρ̂
s
j = (1− Ŝ2

iz)Iij(1− Ŝ2
jz) , (5)

that takes into account the on-site occupation dependence. It is worth noting that the exis-
tence of localized spins on the Cu2+ ions persisting up to slightly overdoping was ascertained
by Johnston [4] not long after the discovery of the cuprate superconductors. Unconventional
temperature and doping behavior of the localized spin contribution to magnetic susceptibility
χ2D(T ) was attributed to a rapid drop both of the intralayer Cu-Cu exchange integrals and
effective Cu spin moments with rising doping. However, the pseudospin operator form of the
effective exchange integral (5) points to a just another and more justified cause of the puzzle
around χ2D(T ), that is a rapid drop of the on-site Cu2+ fraction and, accordingly, on-site spin
density ρ̂s.

Obviously, both the on-site repulsion Δ > 0 and conventional spin exchange provide an
energy gain to the parent antiferromagnetic insulating (AFMI) phase with 〈Ŝ2

iz〉=0, while
both the on-site attraction Δ < 0 and inter-site coupling V > 0 do promote the charge order
thus driving the competition of the spin and charge orders.

3 Mean field approximation

Hereafter, we shall be concerned with a mean-field analysis of the model Hamiltonian (4) for
a 2D square lattice with the nearest-neighbor inter-site coupling, Vnn = V , Inn = I confining
ourselves to the simplest two-sublattice (A and B) approximation.

The Bogolubov inequality is used to estimate the grand potential Ω:

Ω(H) ≤ Ψ = Ω(H0) + 〈H −H0〉. (6)

Within the two-sublattice model we take

H0

T
= δ

∑
i

S2
iz −

∑
α,iα

βαSiαz −
∑
α,iα

γαP0iαsiαz, (7)

where δ = Δ/T , βα and γα are variational parameters (molecular fields), α = A,B. The mean
field estimate of the grand potential takes the form

2Ψ

TN
=

∑
α

[(
βα− ξ

)
Sα+γασα− log

(
e−δ coshβα+cosh γα

)]
+4ν SASB + j σAσB − log 4 , (8)

where ξ = μ/T , ν = V/T , j = I/T (V and I are density-density coupling parameter and bare
exchange integral for nearest neighbors), and

Sα =
sinhβα

coshβα + eδ cosh γα
, σα =

sinh γα
e−δ coshβα + cosh γα

(9)

are the mean values of the z-component of pseudospin and conventional spin on α-sublattice,
that is order parameters: |SA,B | ≤ 1, |σA,B | ≤ 1. Minimization of Ψ with respect to βα and γα
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gives the mean field equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βA − ξ = − 4ν sinhβB

coshβB + eδ cosh γB
,

βB − ξ = − 4ν sinhβA

coshβA + eδ cosh γA
,

γA = − j sinh γB
e−δ coshβB + cosh γB

,

γB = − j sinh γA
e−δ coshβA + cosh γA

,

2n =
sinhβA

coshβA + eδ cosh γA
+

sinhβB

coshβB + eδ cosh γB
.

(10)

In terms of order parameters Sα and σα, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

SA =
sinh(ξ − 4νSB)

cosh(ξ − 4νSB) + eδ cosh jσB
,

SB =
sinh(ξ − 4νSA)

cosh(ξ − 4νSA) + eδ cosh jσA
,

σA = − sinh jσB

e−δ cosh(ξ − 4νSB) + cosh jσB
,

σB = − sinh jσA

e−δ cosh(ξ − 4νSA) + cosh jσA
,

2n = SA + SB .

(11)

The last equation accounts for the charge density constraint (2). Instead of the sublattice’s order
parameters it would be convenient to use their combinations, or analogues of the ferromagnetic
and antiferromagnetic vectors:

n =
SA + SB

2
, SCO =

SA − SB

2
, σFM =

σA + σB

2
, σAFM =

σA − σB

2
. (12)

Given n = 0 there are (pseudo)antiferromagnetic solutions:

SA = −SB = S , σA = −σB = σ , ξ = 0, (13)

with a checkerboard charge (CO) or spin (AFM) ordering. In this case the mean field equations
take the form as follows:

⎧⎪⎪⎨
⎪⎪⎩

S =
sinh 4νS

cosh 4νS + eδ cosh jσ
,

σ =
sinh jσ

e−δ cosh 4νS + cosh jσ
.

(14)

It should be emphasized that given nonzero doping n �= 0 we arrive at a ”(pseudo)ferrimagnetic”
ground state (CO+FIM) with SCO �= 0, σFM �= 0, and σAFM �= 0 for a wide range of the values
of the positive coupling parameters.
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4 Phase diagrams and the temperature dependencies of
the charge and spin order parameters

The boundary between charge-ordered (CO) phase, where SA �= SB , and non-ordered (NO)
phase, where SA = SB , can be determined from the analysis of the mean field equations.
Implicit equations of the CO-NO boundary for the T−Δ and T−n phase diagrams are as
follows

1 = 4ν
1 + eδ coshβ

(eδ + coshβ)
2 , β = log

neδ +
√
1− n2 + n2e2δ

1− n
. (15)

These correspond to the second order phase transitions, if

sinhβ
(
e2δ − eδ coshβ − 2

)
(β + 4νn) < 0 , (16)

otherwise to the first order transitions.
Similarly, the boundary of antiferromagnetic (AFM) phase, where σA �= σB , can be found.

Its implicit equation for the T−Δ and T−n phase diagrams reads as follows:

1 + e−δ coshβ = j , (17)

where β is defined by Exp.(15). We arrive at the second order transition if T > I/3, otherwise
it is the first order transition.

Figure 1: (Color online) T−Δ phase diagrams. The dashed lines correspond to first order
transition, the solid ones correspond to second order transition (see text for detail).

The T−Δ and T−n phase diagrams shown in Figs.1 and 2 were calculated using the nu-
merical solution of the set of nonlinear coupled equations, Eqs.(15) and (17), given different
doping and inter-site coupling parameters. It is worth to note, that strictly speaking the curves
in Figs.1 and 2 determine the boundaries of the phase stability. The dashed lines correspond
to first order transition, the solid ones correspond to second order transition. The lines of
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Figure 2: (Color online) T−n phase diagrams. The dashed lines correspond to first order
transition, the solid ones correspond to second order transition (see text for detail).

the first order phase transitions, that is the lines of equal potentials can be found with nu-
merical minimization of grand potential. The temperature and coupling parameters here and
below are given in units of the bare exchange integral I. Here NO denotes the non-ordered
”(pseudo)paramagnetic” phase with an uniform charge distribution, SA = SB = n but without
the spin and charge order, σA =σB =0 (SCO = 0, σAFM = 0, σFM = 0).

At nonzero doping the checkerboard charge ordering in the CO phase where SCO �= 0 does
coexist with a spin paramagnetism: σA = σB = 0 while the checkerboard spin ordering in
AFM phase where σAFM �= 0, σFM = 0 is accompanied by a ”pseudo-spin paramagnetism”:
SCO = 0. For the low-temperature ”(pseudo)ferrimagnetic” CO+FIM phases with coexistence
of charge and spin orders we have SA �= SB , σA �= σB or σAFM �= 0, σFM �= 0, SCO �= 0. The
distinctive feature of the CO+FIM phase consists in manifestation of the uncompensated spin
magnetization.

As expected, at sufficiently high temperatures only fully nonordered NO phase survives.
Interestingly that the transition into the fully ordered low-temperature CO+FIM phase occurs
only via intermediate ”partially ordered” CO or AFM phases, the ordering phase transitions
NO-CO and NO-AFM can be of the first or second order, depending on the magnitude of the
coupling parameters and doping. The temperature of this transition can only weakly depend
on the correlation parameters (at Δ > I). As expected, the increase of the inter-site coupling
V > 0 does extend the region of the charge order, while the increase of the on-site repulsion
does suppress the charge order stabilizing the low-temperature spin order.

We see a crucial effect of the doping under the charge density constraint (2). First, the
rising doping does effectively suppress the parent AFM phase, so the phase survives only as a
small island often being deep inside the CO+FIM phase. However, the charge ordering with
SA �= SB survives even for large values of the correlation parameter Δ though this makes the
active Sz = ±1 pseudospin states to be energy unfavorable ones. It should be noted that the
doping dependence of the NO-CO transition temperature for a wide range of the on-site and
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Figure 3: (Color online) Temperature dependence of the charge and spin order parameters at
different values of doping n and correlation parameter Δ (see text for detail).

Figure 4: (Color online) T−n phase diagram at Δ = 1.25 and the temperature behavior of the
order parameters at n = 0.1 and n = 0.2. The dashed lines correspond to first order transition,
the solid ones correspond to second order transition (see text for detail).

inter-site coupling parameters has much in common with that of a pseudogap temperature T ∗

in real cuprates [1] that implies its relation with a some sort of charge ordering.

The Figs.3 and 4 do illustrate the temperature behavior of the spin and charge order parame-
ters calculated numerically on the assumption that the system follows the global minimum of the
grand potential. We clearly see features typical for order parameters near phase transitions of
the first or second order. Fig.3a shows temperature dependencies of the order parameters under
a cascade of the sharp first-order phase transitions: NO→CO→AFM→CO+FIM. Figs.3b,c,d
show similar dependencies for the phase transitions: NO→CO→CO+FIM, NO→AFM→
CO+FIM. The both Figs.3b,d concern with NO→CO→CO+FIM transition, however, with a
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clearly different character of the CO→CO+FIM transition. It is worth noting that both spin
and charge order parameters obey a ”kinematic” constraint at T = 0: (σFM + σAFM )T=0 =1
and (n+ SCO)T=0 =1 everywhere for AFM and CO phases, in fact, except the CO-FIM phase
where the former relation continues to work while the latter breaks, instead, we arrive at
SCO =σFM =n that evidences a crucial change of the spin-charge order with a full ferromagnet-
ically ordered B-sublattice of Cu2+ ions (SB =0, σB =1) and magnetically diluted A-sublattice
(SA =2n, σA =2n− 1).

Given certain values of the model parameters we have observed effect of a dramatic change
of spin-charge order under relatively minor change of the doping. This situation is shown in
Fig.4. Given n ≤ 0.1 the system displays mainly magnetic behavior, while at n ≈ 0.2 the
magnetic order becomes significantly suppressed with a sharp rise of the charge order. The
situation resembles a well known suppression of the antiferromagnetic order with doping in
cuprates [1].

5 Conclusions

We have analysed the competition between static charge and spin orders in a model cuprate us-
ing a two-sublattice mean-field approximation. Phase diagrams and temperature dependencies
of the charge and magnetic order parameters are calculated for different doping given different
values of the on-site correlation parameter, inter-site density-density coupling, and Heisenberg
spin exchange integral. At variance with t − J -model [1] our model did emphasize the role of
on-site and inter-site correlations and the occupation dependent spin exchange coupling in the
competition of static spin and charge orders. Notwithstanding the fact that the present results
have been obtained for a strongly simplified model, we have found that the evolution of the spin
and charge orders with the model parameters and doping shares some common trends with real
cuprates, so that the model can be used for study of the spin-charge competition and inter-
twinning effects. Obviously, that the taking account of one- and two-particle transport terms,
long-range character of the inter-site Coulomb coupling, and inhomogeneous potential, typical
for nonisovalently substituted cuprates, with going beyond MFA should be made for the genuine
description of the competing orders in these materials. From the other hand, notwithstanding
all the limitations, the model presented here is of interest in its own right, as an instructive
tool to study an interplay of two competing orders.
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