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Docosahexaenoic acid (DHA) is important for brain function, and can be obtained directly from the diet or
synthesized in the body from a-linolenic acid (ALA). Debate exists as to whether DHA synthesized from
ALA can provide sufficient DHA for the adult brain, as measures of DHA synthesis from ingested ALA are
typically <1% of the oral ALA dose. However, the primary fate of orally administered ALA is b-oxidation
and long-term storage in adipose tissue, suggesting that DHA synthesis measures involving oral ALA tra-
cer ingestion may underestimate total DHA synthesis. There is also evidence that DHA synthesized from
ALA can meet brain DHA requirements, as animals fed ALA-only diets have brain DHA concentrations
similar to DHA-fed animals, and the brain DHA requirement is estimated to be only 2.4–3.8 mg/day in
humans. This review summarizes evidence that DHA synthesis from ALA can provide sufficient DHA
for the adult brain by examining work in humans and animals involving estimates of DHA synthesis
and brain DHA requirements. Also, an update on methods to measure DHA synthesis in humans is pre-
sented highlighting a novel approach involving steady-state infusion of stable isotope-labeled ALA that
bypasses several limitations of oral tracer ingestion. It is shown that this method produces estimates
of DHA synthesis that are at least 3-fold higher than brain uptake rates in rats.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
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1. Introduction

Docosahexaenoic acid (DHA, 22:6n-3) is highly concentrated in
the brain, and is important for brain function in part by regulation
of cell survival and neuroinflammation [1–5]. DHA cannot be syn-
thesized de novo in mammals, and therefore, must be obtained in
the diet primarily through fish, nutraceuticals and functional foods
[6] or synthesized within the body from a-linolenic acid (ALA,
18:3n-3). While fish oil also contains the n-3 PUFA eicosapen-
taenoic acid (EPA), DHA is the main n-3 PUFA in the brain as it is
concentrated at levels of about 10,000 nmol/g brain (10–15% of
brain fatty acids or about 5 g in an adult brain [7,8]), at least
50-fold more than EPA and 200-fold more than ALA [8,9].

In mammals, DHA synthesis rates from ALA are suggested to
be low relative to dietary intake and tissue demand, however,
debate exists as to whether the rate of DHA synthesis is suffi-
cient to meet functional requirements for DHA. Estimates of
DHA synthesis in humans are based on appearance of labeled
DHA following oral ingestion of stable-isotope ALA, or changes
in blood DHA following acute or chronic increases in ALA inges-
tion. Stable isotope methods have typically resulted in estimates
of percent conversion of ALA to DHA being less than 1% of the
ingested stable-isotope ALA, although estimates vary widely,
ranging from 0–9.2% (Table 1). Also, there is typically no increase
in plasma total lipid or phospholipid DHA when ALA intake is
increased in humans (reviewed in [10,11]), supporting the con-
clusion that DHA synthesis from ingested ALA is not an efficient
process in humans.

However, there is evidence that DHA synthesis from ALA can be
sufficient to maintain brain function. For example, vegetarians and
vegans, in which DHA derived from ALA is the sole source of DHA,
have plasma DHA levels that are 0–40% lower than omnivores
[12–14] and have neurological disease rates comparable to omnivores
[15–18] suggesting that ALA-derived DHA is sufficient to maintain
brain function in these individuals. In addition, dietary ALA, with no
DHA, is sufficient to completely restore brain DHA in rats [19] and
non-human primates [20] following in utero DHA depletion, although
retinal DHA was not completely restored in non-human primates.
Taken together, evidence suggests that ALA-derived DHA is sufficient
to maintain brain DHA levels and preserve function.

In addition to a biological precedent for dietary ALA supplying
adequate DHA for the brain, there is also environmental rationale
to pursue this possibility. Concern has been raised regarding the
environmental sustainability of current recommendations for
DHA intake [21], as fish are the primary dietary source of DHA
[22] and the world’s fish stocks are declining [23]. Although con-
troversial [24] it has been estimated that 100% of the world’s fish
taxa will have collapsed by 2048 [23], indicating that strategies
to reduce non-essential demands on fisheries be considered.
Therefore, determining if DHA can be supplied by synthesis from
ALA will be important to reduce the pressure on declining fish
stocks. To accomplish this, it is essential that the extent to which
Table 1
Summary of published studies that have used stable-isotope labeled ALA to measure DHA

Reference Subjects (No. and sex) Dose (mg) Blood frac

Emken et al. 1994 [134] 7M 2.8 g TL
Pawlosky et al. 2001 [136] 4M, 4F 1 g TL
Burdge et al. 2002 [132] 6M 700 mg TL
Burdge et al. 2002 [133] 6F 700 mg TL
Burdge et al. 2003 [131] 14M 700 mg TL
Pawlosky et al. 2003 [135] 5M, 5F 1 g TL
McCloy et al. 2004 [138] 6F 47 mg TL
Hussein et al. 2005 [140] 12M 400 mg TL
Goyens et al. 2005 [139] 14M, 15F 190 mg PL
Gillingham et al. 2013 [137] 14M, 25F 45 mg TL
ALA can be converted into DHA in humans is evaluated and com-
pared to the requirement for DHA.

This review critically examines the methodologies used to esti-
mate DHA synthesis from ALA in humans and presents evidence
suggesting that DHA synthesis capacity in humans may be greater
than previously estimated. Studies measuring DHA synthesis in
adult humans will also be reviewed in the context of the brain.
Additionally, a novel technique to measure DHA synthesis, that
can be used in humans, the steady-state infusion method, is pre-
sented and evaluated as a means to determine, for the first time,
a quantitative DHA synthesis-secretion rate in adult humans. In
2009, Barcelo-Coblijn and Murphy elegantly argued that ALA is a
significant contributor to tissue DHA [25]. Herein, we provide an
update of the literature with a focus on brain DHA homeostasis.
2. Current intakes of n-3 PUFA and relation to brain function

In the North America, mean dietary intakes of DHA in adult (20–
39 years of age) men and women are about 70 and 60 mg/d respec-
tively, while intakes of ALA in adult men and women are about 1700
and 1300 mg/d, respectively [26]. Preformed DHA is found primarily
in marine sources, while ALA is found in seeds and seed oils including
flax, canola, and soy [26]. The Institute of Medicine (IOM) recom-
mends an adequate intake for ALA of 0.6–1.2% of total calories
[27]. There is only one documented case of specific n-3 PUFA defi-
ciency observed in a patient undergoing total parenteral nutrition,
with 0.6% of fatty acids as ALA in a dietary emulsion (equivalent to
0.12–0.21% of calories based on IOM acceptable macronutrient dis-
tribution ranges), that developed neuropathy and blurred vision that
was reversed upon increasing ALA in the emulsion 10-fold [28].
There is no specific recommendation for DHA; however, the IOM
does state that 0–10% of the requirement for ALA can be made up
from EPA and DHA [27], corresponding to approximately 0–0.12%
of calories, or 0–160 mg/d based on a 2000 kcal diet. Recommen-
dations for daily intake of EPA and DHA for primary prevention of
coronary heart disease range from 200 to 3000 mg/d (reviewed in
[29]), but we are not aware of any specific recommendations regard-
ing DHA intakes pertaining to the adult brain.

DHA is highly concentrated in the brain and retina, and reduc-
tions in brain and retina DHA in rodents and non-human primates
are associated with cognitive impairments such as severe learning
deficits and anxiety, as well as visual impairments such as lower
electroretinogram amplitude and longer electroretinogram recov-
ery time (reviewed in [30]). Supplemental DHA is associated with
improved visual acuity in pre-term infants [31], and infant formula
containing DHA and arachidonic acid (ARA, the main n-6 PUFA in
the brain) improves cognitive development up to one year
post-partum [32]. However, the effect of these PUFA treatments
later in childhood is not clear [33,34]. Lower post-mortem brain
DHA is present in major depressive disorder relative to controls
[35–37], however, supplemental EPA, but not DHA, appears to be
effective in the management of depressive symptoms [38,39].
synthesis.

tion Time (days) Conversion to DHA Method

2 3.79% AUC
7 0.05% Modeling
21 ND AUC
21 9.2% AUC
2 0.04% AUC
7 0.05–0.08% Modeling
7 0.34% dose/l plasma AUC
14 <0.01% Modeling
9 0.08% Modeling
1 0.17–0.22% of dose recovered Single blood sample



56 A.F. Domenichiello et al. / Progress in Lipid Research 59 (2015) 54–66
Although somewhat controversial [40], brain DHA may also be
lower in Alzheimer’s disease [41–44] as compared to normal aging
in which brain DHA is relatively stable [45] and prospective studies
demonstrate a protective effect of fish intake on Alzheimer’s dis-
ease incidence (reviewed in [29] and [46]). However, it should be
mentioned that clinical trials investigating the use of fish oil sup-
plements to prevent/reverse cognitive decline associated with
Alzheimer’s disease have produced mostly neutral findings in their
pre-registered endpoints [47–50]. The effect of DHA on brain func-
tion has previously been reviewed in detail [46,51–55].

3. Current model for brain DHA uptake

PUFA such as DHA are present in the circulatory system in
either the unesterified form, bound to albumin, or in the esterified
form as cholesteryl esters, phospholipids and triacylglycerides. To
enter the brain, DHA must cross the blood brain barrier (BBB), a
process that can be mediated either by receptor-facilitated trans-
port or passive diffusion. The endothelium of brain capillaries con-
tains lipoprotein receptors [56], however, lipoprotein receptor
knock-out mice do not have lower brain DHA levels [57,58]. It
has also been suggested that the major plasma pool supplying
the brain is the unesterified DHA pool [59]. Additionally, in
rodents, unesterified DHA crosses the BBB rapidly in a
non-competitive manner suggesting that the mechanism by which
DHA crosses the BBB is via passive diffusion [60,61]. Based on the
model that plasma unesterified DHA is the major DHA pool that
enters the brain, brain DHA uptake rates in the rat can be measured
by infusing radiolabeled unesterified-DHA and measuring how
much gets incorporated into the brain, after correcting for plasma
radioactivity (i.e. brain exposure to radioactivity) and the pool size
[62]. More recently, this concept was applied to humans using
positron emission tomography to image the incorporation of
[1-11C]-DHA into the brain and quantify a rate of DHA uptake into
the brain [63]. The rate of DHA uptake into the brain is assumed to
be replacing DHA that is consumed in the brain, and therefore, can
be used as an estimate for the brain DHA requirement. It has been
Fig. 1. DHA is synthesized from ALA in the liver by a series of desaturations, elongations
by n-6 PUFA and n-9 fatty acids (not shown) leading to competition between n-3 PUFA, n-
the D6 desaturase, where 4 PUFA (2 n-3 PUFA and 2 n-6 PUFA) compete for a single enzy
b-oxidation occurs in the peroxisome, to where 24-carbon PUFA are transferred. The final
where they along with other PUFA can be esterified to lipoproteins (eg. VLDL) and secre
reported that the brain DHA uptake rate in humans is between 2.4
and 3.8 mg/day [63,64]. Based on current estimates of ALA con-
sumption in adult males of 1700 mg/day, the percent conversion
of ALA to DHA would need to be 0.14–0.22% to match the brain
DHA requirement [65]. Therefore, it is possible that even a small
amount of DHA synthesis may be sufficient to meet adult brain
DHA uptake demands. We have found that in rats DHA synthesis
rates are at least 3-fold higher than brain DHA uptake rates indicat-
ing that rats may synthesize enough DHA to support the brain [66].
However, the conclusion that ALA is sufficient to support the brain
will depend on what proportion of synthesized DHA is available to
the brain (i.e. the brain-body partition coefficient for DHA). It is
also important to recognize that if another plasma DHA pool con-
tributes to brain DHA, current estimates of brain DHA uptake will
be underestimates. It is possible that the plasma lysophosphatidyl-
choline (LPC) pool is a major contributor to brain DHA, especially in
the rodent pup where i.v. injections of radiolabeled-LPC-DHA
resulted in 12-fold higher brain radioactivity compared to
pups injected with radiolabeled-unesterified-DHA [67,68].
Additionally, the orphan receptor Mfsd2a has recently been shown
to transport LPC-DHA in vitro, and ablation of Mfsd2a resulted in
decreased uptake of LPC-DHA and lowered brain DHA composition
compared to wild-type controls [69]. Serum LPC-DHA levels, as
measured by liquid-chromatography tandem mass spectrometry,
range from 1.5 to 30 lM [70–73], while measures of serum
unesterified-DHA range from 1 to 4 lM to [74–76] as measured
by TLC-GC-FID. However, measurement of LPC- and unesterified
DHA in single studies in rodents shows that unesterified DHA
ranges from 10-fold higher than LPC-DHA to approximately equal
[73,77]. The apparent discrepancy between the contribution of
non-esterified and LPC DHA to brain phospholipid DHA may be
explained by different half-lives and different experimental proce-
dures between laboratories. A more comprehensive comparison of
non-esterified DHA and LPC-DHA concentrations using the same
technique within studies is required. Regardless, current estimates
of brain DHA uptake may be underestimates if LPC-DHA proves to
be a major contributor to adult brain DHA uptake.
and a b-oxidation. Enzymes involved in the synthesis of DHA from ALA are also used
6 PUFA, and n-9 fatty acids for these enzymes. This competition is most apparent for
me. The desaturations and elongations occur in the endoplasmic reticulum and the
products (DHA and 22:5n-6) are then transferred back to the endoplasmic reticulum
ted into the blood.
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4. Pathway of DHA synthesis

Fig. 1 depicts the synthesis pathway of DHA from ALA. The
desaturase and elongase enzymes that are used to synthesize
longer chain PUFA (for example DHA) are most highly expressed
in the liver as compared to heart or brain [78–80], corresponding
to more than 30-fold higher rates of DHA synthesis in this organ
[81]. ALA is desaturated by the rate-limiting D6-desaturase
enzyme in the endoplasmic reticulum (ER) to form 18:4n-3
[82,83], followed by elongation to 20:4n-3 and desaturation by
D5-desaturase to form 20:5n-3 (EPA). EPA can be elongated further
to 22:5n-3 (docosapentaenoic acid – DPAn-3), and 24:5n-3.
24:5n-3 is desaturated by D6-desaturase forming 24:6n-3, which
is transferred from the ER to the peroxisome where it is
b-oxidized to form 22:6n-3 (DHA) [11,82,84,85]. DHA is then trans-
ferred back to the ER where it can undergo esterification, lipopro-
tein packaging and secretion to the blood.

The pathway is active towards both n-3 and n-6 PUFA as well as
n-9 fatty acids, resulting in potential competition for enzyme activ-
ity between the families of fatty acids. This is particularly impor-
tant for the rate-limiting enzyme, D6-desaturase, which is active
towards both ALA and linoleic acid (LNA), as well as 24-carbon
n-3 and n-6 PUFA [86,87]. Dietary PUFA down regulate the expres-
sion and activity of the enzymes involved in DHA synthesis in the
liver [78,79,81,88]; thus, decreasing the hepatic DHA synthesis rate
[89]. The brain is capable of synthesizing DHA [81,90], however,
brain DHA synthesis is approximately 100-fold lower than brain
DHA uptake and consumption rates, indicating that brain DHA syn-
thesis does not contribute significantly to brain DHA homeostasis
[91]. Interestingly, dietary n-3 PUFA deprivation does not affect
the expression of the desaturases or elongases or the DHA synthe-
sis rate in the brain, in contrast to increased synthesis found in the
liver [81]. DHA synthesis-secretion in the liver is at least 3–10-fold
greater than brain DHA consumption rates [66,92], which, com-
bined with the finding of up-regulated hepatic DHA synthesis dur-
ing n-3 deprivation, suggests that hepatic DHA synthesis is capable
of maintaining brain DHA homeostasis.

Recently, alternative mechanisms for DHA synthesis have been
proposed [84,93–95]. An experiment performed in baboons deter-
mined that the D6-desaturase enzyme also has D8-desaturase
activity [93]. Based on this finding the authors proposed an alter-
native pathway for DHA synthesis from ALA that functions in par-
allel with the classical pathway and involves an initial elongation
of ALA to 20:3n-3 followed by D8-desaturation to make 20:4n-3,
which is then desaturated and elongated to become DHA [93].
Another recent study questioned the D6-desaturation as the sole
rate-limiting step in the synthesis pathway. The authors found that
the elongation of DPA n-3 to 24:5n-3 may be another crucial con-
trol point in DHA synthesis [94]. This reaction is catalyzed by the
enzyme elovl2, and lack of expression of this enzyme in heart is
believed to be the reason why heart tissue has very low DHA syn-
thesis rates [96]. These novel insights into DHA synthesis merit
further investigation to determine how much they contribute to
DHA synthesis in vivo.
5. Estimates of DHA synthesis from ALA in humans

5.1. Evidence from ALA feeding

The simplest means of estimating DHA synthesis in humans is
measuring changes in DHA status in response to acute or chronic
increases in dietary ALA consumption, and these studies have been
previously reviewed in detail [10,11,97]. In general, these studies
increase subjects’ ALA consumption and measure DHA in the
blood. While most studies report that plasma and erythrocyte
EPA increase with ALA feeding, most do not detect an increase in
plasma or erythrocyte DHA [98–117]. Reviews of these studies
have pointed out two important points pertaining to the lack of
plasma DHA increases after ALA feeding. Firstly, in humans with
low DHA diets (vegans and vegetarians), ALA feeding increases
plasma DHA [97]. Additionally, plasma DHA tends to increase to
a greater extent when ALA consumption is increased in combina-
tion with decreased LNA consumption [10,11].

It should be recognized that these studies only measure DHA in
blood lipids (plasma, erythrocytes, or leukocytes) as opposed to tis-
sues. While plasma DHA may be a reliable marker for dietary DHA
intake, the applicability of this pool to the brain is not agreed upon.
This is because most of these studies measure percent composition
of DHA in the esterified blood lipid pools, which are not thought to
be available to the brain [62]. A recent rodent study performed in
our laboratory highlights this point [66]. We fed rats a diet that
was either low in n-3 PUFA (0.25% fatty acids as ALA) or contained
either ALA or DHA. After 15 weeks on these diets, levels of DHA in
the body and plasma were significantly higher in rats fed DHA
compared to rats fed the ALA and control diet (2.4 and 11-fold
higher, respectively, for the body and 2 and 5-fold higher, respec-
tively, for plasma). However, brain DHA levels were not different
between ALA- and DHA-fed rats, similar to previous studies in rats
[19] and non-human primates [20], suggesting that changes in
blood DHA concentration do not necessarily reflect the magnitude
of changes in brain DHA, with some exceptions [118,119].
Interestingly, graded ALA deprivation from 4.6% (considered ‘‘ade-
quate’’ to maintain brain function and DHA concentrations) to 0.2%
(considered ‘‘inadequate’’ based on decreased DHA concentration
and metabolism) of fatty acids in a diet lacking DHA results in
decreased brain DHA only when the ALA content of the diet is
decreased to 0.8% or lower [120]. This indicates that extreme cases
of ALA deprivation are required to affect brain DHA concentrations.
Accordingly, the only recorded case of n-3 PUFA deficiency in
humans resulted from total parenteral feeding of an emulsion con-
taining only 0.6% of fatty acids as ALA [28]. This supports the
hypothesis that extremely low ALA intakes are required to signifi-
cantly affect brain DHA levels and function, assuming however,
that the neurological impairments observed with ALA deficiency
are caused by decreases in brain DHA.

It is possible that though plasma esterified DHA is unchanged
with chronic increases in ALA feeding, dietary ALA may be suffi-
cient to maintain brain DHA concentrations, possibly via the
plasma unesterified fatty acid pool. The plasma unesterified fatty
acid pool is 10–100-fold smaller than the esterified pools
[89,121,122] and is maintained largely via the adipose (fasting
state) and hydrolysis from plasma lipoproteins (post-prandial)
[123]. Also, the DHA concentration of the plasma unesterified
fatty acid pool decreases only when extreme n-3 PUFA depriva-
tion occurs [120]. Moreover, few studies have examined the effect
of increasing dietary DHA intake on unesterified DHA concentra-
tions in humans, with some studies reporting an increase and
others reporting no increase [76,121,124–127]. Adipose, the tis-
sue that maintains plasma unesterified fatty acid concentrations,
has been estimated to contain 1–4 and 20–50 g of DHA in the
infant [128,129] and adult [130], respectively. Using the previ-
ously measured brain DHA uptake rate of 3.8 mg/day in adult
humans, it can be calculated that adult human adipose contains
enough DHA to supply the brain for 14–36 years. It is important
to note that the estimate for how long adipose DHA can supply
the brain is an overestimate because DHA released from the adi-
pose is used by other tissues as well as the brain. Therefore, to
determine the actual amount of time that adipose DHA can sup-
ply the brain, the proportion of DHA that is released from the adi-
pose and taken up into the brain (brain-body partition coefficient)
must be determined.
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5.2. Evidence from stable isotope administration

DHA synthesis from ALA in humans has been examined by
administering an oral dose of stable isotope-labeled ALA and mea-
suring the appearance of labeled DHA in blood lipids over time.
Through repeated blood sampling, concentration–time plots of
the appearance of labeled n-3 PUFA are obtained, and the area
under the curve (AUC) for DHA is compared to either the AUC for
all labeled PUFA [131–136] or expressed relative to the adminis-
tered dose to calculate the fractional conversion of ALA to DHA
[137,138]. The fractional conversion of DHA from ALA is, therefore,
a measure of the percentage of labeled n-3 PUFA that appears in
the plasma as DHA or the percentage of a single oral dose of ALA
administered at one time that appears in the plasma as DHA.

Estimates of fractional conversion of an oral dose of ALA to DHA
using this technique have ranged from below the detection limit in
one study to 9.8%, however, the majority of studies using this tech-
nique report fractional DHA conversion of <1% (Table 1).
Alternatively, the relative conversion of each intermediate within
the pathway can be estimated by using compartmental modeling.
This approach is based on the assumption that the relative concen-
tration of pathway intermediates in plasma is representative of the
relative concentrations in liver, the primary site of DHA synthesis.
The amount of orally administered ALA utilized for DHA synthesis
using this technique has been estimated to be between 0.01 and
0.08% [135,136,139,140]. Taken together, these measures have
led to a general consensus that DHA synthesis in humans is insuf-
ficient to meet DHA demands; however, care must be taken in
interpreting these estimates of DHA synthesis in humans, espe-
cially in reference to the brain.

In general, there are considerations regarding the oral admin-
istration of an ALA tracer to estimate DHA synthesis, as this type
of experiment represents DHA synthesis from postprandial ALA
only, rather than total DHA synthesis from ALA. For example,
the extent to which orally administered ALA is available for
DHA synthesis is not known. Fatty acids absorbed in the intestine
are packaged into lipoproteins, and the majority are transported
through lymphatic circulation and secreted into the blood
through the thoracic duct (Fig. 2). Fatty acids are taken up by tis-
sues following hydrolysis of lipids by endothelial lipase and
Fig. 2. When ALA is administered orally it is absorbed into the lymphatic system and th
that administer ALA orally and measure the appearance of labeled n-3 PUFA products i
adipose and not reach the liver for the duration of the study.
lipoprotein lipase or by endocytosis of the lipoprotein.
Approximately 72% and 64% of orally administered 13C-ALA is
b-oxidized 168 h after dosing in humans [138] and after 24 h in
rats [141], respectively. This value for b-oxidation of ALA in
humans is similar to that of oleic and elaidic acids, but slightly
higher than LA, at least between 9 and 24 h post dose [138].
Studies in rats demonstrate that the adipose AUC makes up 75%
of the whole-body AUC for orally gavaged 2H-ALA after 600 h
with progressive enrichment of adipose tissue with ALA [142].
Balance studies performed in rodents have also found that the
majority of dietary ALA that is not b-oxidized accumulates in
the adipose tissue [143]. Moreover, in adult females after one
week it has been estimated that upon an oral dose of labeled
ALA, up to 57% of the tracer is in the adipose [138]. The fate of
ALA that is deposited into adipose tissue is not clear, however,
the adipose fatty acid half-life is approximately 1 year [144,145]
indicating that long-term storage would make a large proportion
of oral ALA tracer unavailable for DHA synthesis measures. Taken
together, this indicates that the major fate of orally administered
ALA tracer, that is not b-oxidized, is adipose sequestration with a
long half-life. In fact, enrichment of plasma with gavaged ALA
peaks at only 5% of the whole-body tracer content and progres-
sively declines over time [142]. Moreover, in rats, less than 5%
of 2H-EPA, DPAn-3 and DHA derived from gavaged 2H-ALA is
found in plasma with the majority found in nervous system, liver,
and adipose with a progressive enrichment in nervous tissue
[142]. Thus, the amount of tracer that is found in plasma repre-
sents a very small proportion of the total tracer that is provided
orally, and is likely an underestimate of the total whole-body
DHA synthesized and accreted [142]. This suggests that DHA syn-
thesis measures from ingested ALA tracer likely represent only
DHA synthesized from postprandial ALA, but do not necessarily
reflect the total pool of ALA that is available for DHA synthesis.
As fractional conversion of DHA from ingested ALA represents
only the proportion of the dose that is found in the blood com-
partment, which is a very small portion of the DHA synthesized
from ALA, these estimates of fractional conversion are likely
underestimates of actual DHA synthesis in humans [142,146].
Estimates of DHA synthesis from ALA using this method range
from <0.01 to 1% of oral dose of ALA [137,138,140].
en deposited into systemic circulation. This is problematic for human tracer studies
n the plasma, as a large portion of the tracer will get taken up into the tissues and
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Fractional DHA synthesis has also been estimated by comparing
the plasma AUC for labeled n-3 PUFA to estimate the percentage of
plasma ALA that is converted into DHA. In these studies fractional
conversion is measured by determining what percentage of the
total labeled n-3 PUFA that appeared in the plasma was labeled
DHA. By adjusting for the appearance of labeled fatty acids, this
method is less likely to underestimate fractional DHA synthesis
rates by accounting for loss of label associated with adipose
sequestration. The fractional conversion of 13C- or 2H-ALA to
DHA in young men using this technique has been measured as
3.8% after 48 h [134] and below the detection limit after 504 h in
one study [132], and 9.2% after 504 h in young women [133].
However, the extent to which the fractional conversion quantifies
actual DHA synthesis is not clear, as it is only a relative measure
[147]. In addition, the AUC comparisons do not take into account
differences in the plasma half-lives of the different n-3 PUFA. It
has been estimated that the half-life for plasma esterified ALA is
1 h, while that of DHA is 20 h [136]. This difference in plasma
half-life would result in equal amounts of DHA and ALA eliciting
a much greater AUC for DHA than that of ALA. Therefore, these
methods are also susceptible to factors that affect plasma
half-life of DHA, such as diet [66,135].

Compartmentalized modeling procedures are another method
to determine DHA synthesis from orally administered ALA and also
provide measures of rate of flow of labeled fatty acids between
compartments, half-lives, loss rates, as well as conversion rates
from one fatty acid to another. Compartmentalized modeling
describes the flow of materials, in this case n-3 PUFA, from one
compartment to another. For modeling n-3 PUFA metabolism,
stable isotope-labeled ALA is provided orally and the appearance
of ALA and its longer-chain derivatives, including DHA, is measured
over time. Each fatty acid between ALA and DHA is considered a
‘‘compartment’’ in the model, and when the data is corrected for
unlabeled n-3 PUFA concentrations the transfer of label from one
compartment to another describes the rate constants for conver-
sions between fatty acids within the DHA synthesis pathway. A
major advantage of this type of modeling is that it can potentially
yield conversion rates in lg/h rather than relative data such as per-
cent conversion. However, numerous assumptions are required for
this type of modeling that likely affect conclusions rendered from
the data. For example, the kinetics that are modeled in this analysis
are based on oral consumption of an ALA tracer, and as such may
not represent the kinetics of all sources of ALA that compose
steady-state serum ALA concentration, such as ALA secreted from
adipose or liver stores. Also, the majority of the tracer is lost to
uptake by adipose or other tissues and/or b-oxidation based on
very low appearance of the ALA tracer in plasma after ingestion
[136]. This type of modeling is an approximation of hepatic conver-
sion of ALA into longer-chain n-3 PUFA based on appearance of
label in plasma [136], however, important differences in plasma
and hepatic n-3 PUFA composition (eg. ratio of DHA to ALA is
2-fold higher in liver than in plasma total lipids [148,149]) suggest
this approximation is limited. The rate constants that are calcu-
lated, therefore, represent the cumulative process involved in con-
version of one plasma tracer to another, including uptake by the
liver, conversion, and secretion back into the plasma [136]. This
will also lead to an underestimation of DHA synthesis as it has
been reported that after the consumption of a labeled ALA tracer,
approximately 15% of DHA is synthesized fully in the liver before
appearing in the plasma based on comparison of compartmental
DHA metabolism [139]. Interestingly, in one study the compart-
mental model predicted that the amount of dietary DHA required
to maintain serum DHA concentration was 2.2-fold higher than
what was directly measured by food duplicate, and the authors
concluded that maintenance of DHA status requires greater DHA
output from body store utilization or ALA synthesis than was
measured in this study [136]. Estimates of fractional DHA synthesis
from ALA using this method range from 0.01 to 0.08%
[135,136,139,140].
5.2.1. Considerations for oral stable isotope studies
A factor that contributes to the significant variation in estimates

of DHA synthesis in humans, and therefore, adds significant uncer-
tainty to conclusions regarding DHA synthesis, is heterogeneity
between studies in background fatty acid intake. Dietary fatty acid
composition has significant effects on the DHA synthesis rate
[81,89,134,135]. Specifically, DHA is known to down regulate
enzymes involved in its own synthesis [79,81,150,151]. In addition,
n-6 PUFA may compete with n-3 PUFA for the enzymes involved in
DHA synthesis [134,152–154]. For example, higher fractional con-
version of ALA into DHA has been shown in response to increased
ALA:LNA ratio in the diet using compartmentalized modeling in
humans [114].

Although methods utilizing oral administration of
stable-isotope-labeled ALA to estimate DHA synthesis in humans
may not directly measure a DHA synthesis rate, these measures
do have utility in comparing DHA synthesis between individuals
or groups in the same study [137,147,155]. In general, conclusions
can be drawn about the relative differences in DHA synthesis
between groups, such as the finding that women utilize a greater
proportion of n-3 DPA for DHA synthesis as compared with men
[156]. However, based on factors discussed previously, absolute
DHA synthesis rates cannot be quantified with this method.

Ingested fatty acid tracers also appear to poorly model the phar-
macokinetics of in situ PUFA metabolism, in addition to having only
a fraction of the tracer appear in the blood. For example, compart-
mental analysis revealed that stable isotope-labeled EPA is 40% less
effectively utilized for DHA synthesis when ingested as compared
with EPA that has been synthesized from ALA [157]. This may also
be true for ALA, in that ingested labeled ALA may poorly represent
unlabeled ALA derived from body stores, although this has not
been examined.

The use of stable isotope tracers to measure DHA synthesis has
another general consideration, as one must by definition change
the substrate concentration in the form of an administered tracer.
This may increase flux through a pathway, result in substrate inhi-
bition, or result in additional effects that might otherwise not
occur under normal circumstances. Therefore, one must use the
smallest amount of tracer that allow for reliable quantitation of
the measure of interest so as not to influence the physiological pro-
cess being measured. There is also some concern regarding deu-
terium exchange while using deuterium-labeled stable isotopes,
in which deuterium atoms are exchanged with unlabeled hydrogen
atoms. Though this exchange rate has not been quantified in DHA
synthesis studies, hydrogen exchange between water and fatty
acids has been found to be negligible under typical experimental
conditions [158], suggesting that deuterium exchange is a quanti-
tatively minor process. Also, deuterium exchange would most
likely affect tracer/tracee ratio of both products and substrates in
DHA synthesis (assuming all fatty acids have equal deuterium
exchange rates). Therefore, studies calculating DHA synthesis as
‘‘percent of oral dose’’ are susceptible to underestimation if using
2H-ALA, while studies calculating percent conversion based on
comparisons between AUCs of 2H-ALA and 2H-DHA would likely
be unaffected.
6. Evidence that DHA synthesis affects blood DHA levels

In addition, there is evidence that significant changes in DHA
status can occur independent of changes in n-3 PUFA intake, likely
through increased synthesis of DHA from ALA. For example,
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women have higher DHA in plasma phospholipids and erythro-
cytes compared with men [159], which is associated with much
higher rates of DHA synthesis in women [132,133,156]. The higher
DHA synthesis in women corresponds to higher hepatic expression
of the D5- and D6-desaturase enzymes in female compared with
male rodents [148,160]. Female rats also have higher expression
of fatty acid binding protein in hepatocytes [161], suggesting that
binding and trafficking of ALA towards DHA synthesis may be
higher in females as compared with males, and it is also possible
that the half-life of DHA in the plasma is longer in women.
Another example of DHA status being affected independent of
changes in n-3 PUFA intake is altered fatty acid profiles associated
with single nucleotide polymorphisms (SNP) in the human Fatty
Acid Desaturase 2 gene (FADS2), the gene that encodes the
D6-desaturase enzyme. The majority of these polymorphisms
affect EPA concentrations, but not DHA concentrations, in phos-
pholipids of plasma [162], serum [163], and erythrocytes [164];
while analysis of a particular haplotype (with 28 SNP) has shown
increased levels of DHA in plasma total lipids in the Northern
Swedish Population Health Study [165]. Also, a D6-desaturase
SNP associated with increased D6-desaturase product:precursor
ratios is associated with increased DHA percent composition in
maternal erythrocytes during pregnancy [166] and colostrum
[167] and a SNP with lower D6-desaturase activity is associated
with lower levels of DHA in erythrocytes in pregnancy and breast
milk [168]. A recent study using orally administered ALA tracer
found that some minor allele variants were associated with lower
labeled EPA enrichment in the plasma as well as lower concentra-
tions of ARA and EPA [137]. These studies provide some evidence
that DHA levels can be altered with no change in n-3 PUFA intake,
with evidence that these changes are due, at least in part, from dif-
ferences in DHA synthesis.
7. Estimates of DHA synthesis rates in rodents

Examination of DHA synthesis in rodent models allows for more
invasive analytical methods which can assist in validation of less
invasive methods that can be applied to human subjects.
Estimates of DHA synthesis from ALA based on isotope administra-
tion can be compared with whole-body DHA synthesis-accretion
rates in ALA-fed animals to validate the isotope method. For exam-
ple, rates of DHA synthesis in rats achieved using the balance
method (described below) and steady-state 2H-ALA infusion
(which can be applied to humans and is also described below) pro-
vide estimates of 4.4 lmol/d and 1.5 lmol/d, respectively. In this
way, the balance method validates the steady-state infusion
method and suggests that the infusion method can provide an
accurate measure of DHA synthesis in humans.

There is concern that the rat is a more rapid converter of ALA to
DHA as compared with humans [169], resulting in concern regard-
ing the generalizability of DHA synthesis measures in rats to
humans. This notion stems largely from the comparison of micro-
somal desaturase enzyme activities measured in rats and humans
[169,170]. However, no study has directly compared human and
rat desaturase activities or DHA synthesis rates. Moreover, the
Table 2
Summary of fractional conversion estimates in rats applying calculations used in human s

Method Description

McCloy et al. [138] % oral dose of ALA appearing as AUC DHA*

Emken et al. [134] % of total n-3 AUC as DHA AUC
Gillingham et al. [137] % recovery of oral ALA tracer in blood sample at co

* corrected for plasma volume.
methods used to estimate DHA synthesis rates from ALA in the
rat differ from those in the human, and the method used to mea-
sure DHA synthesis rates in the human have not been validated
in the rat. To examine this, our laboratory orally administered
2H5-ALA to rats and sampled blood over a 6-h experiment to mea-
sure 2H5-DHA and apply calculations used previously in studies
providing a single oral bolus of labeled ALA in humans [66].
Depending on the calculation used, the percentage of ALA dose
converted to DHA ranged from 0.12% to 0.64%, which are not
higher than previous estimates of DHA synthesis in humans using
the same calculations (Table 2) [134,137,138], suggesting that DHA
synthesis estimated by oral dose methodology is similar between
rats and humans and that the rat may be a suitable model for val-
idation of human DHA synthesis methods.
7.1. Measurements of DHA synthesis from balance studies

The balance method, developed by Cunnane et al. for use in
examination of essential fatty acid accretion and metabolism,
requires feeding rats a diet with ALA as the only n-3 PUFA then
measuring the accretion of DHA in the rat whole body
[128,143,171]. Previously published balance studies have reported
that the DHA synthesis rate in rats to be between 4.4 and
15 lmol/day [66,143,172]. The balance method does provide an
estimate of the net DHA synthesis and accretion; however, it can-
not account for DHA that has been synthesized and then metabol-
ically consumed. Even so, this potential limitation to the balance
study would, at most, result in an underestimate in the actual
DHA synthesis rate.

Interestingly, balance studies also provide more evidence that
the major fate of orally ingested ALA and DHA is apparent
b-oxidation. By feeding rats only either ALA or DHA, it has been
shown that b-oxidation of these fatty acids is between approxi-
mately 60% after 8 weeks of feeding [172] and 90% after 15 weeks
[66], with no differences between ALA and DHA loss rates.
7.2. Measurements of DHA synthesis from steady-state ALA infusion
studies

The steady-state infusion model, developed by Rapoport et al.
[173] and recently applied with modifications by our laboratory
[66], involves infusing isotope-labeled unesterified ALA, such that
plasma concentration of the tracer achieves steady-state, and mea-
suring the appearance of labeled DHA in the plasma [173]. The
major strength of this method is that it provides a whole-body
DHA synthesis rate (lmol or mg synthesized per unit time) as
opposed to many methods using ingestion of an oral bolus which
provide relative estimates of DHA synthesis from ingested ALA
only (the exception being some applications of compartmental
modeling [136], but these are still based on ingested ALA tracers).
Another advantage of the steady-state infusion method is that it
measures DHA derived from serum ALA, rather than only postpran-
dial ALA, and as such likely represents the entirety of ALA that is
available to the liver for DHA synthesis. By more closely represent-
ing the substrate pool available for DHA synthesis (serum ALA from
tudies (adapted from Domenichiello et al. [66]).

Human Rat
Conversion to DHA Conversion to DHA

0.99% 0.31%
3.8% 0.64%

nclusion of study 0.10–0.25% 0.12%



Fig. 3. Quantitation of DHA synthesis rate using the steady-state infusion method.
Upon infusion of labeled ALA at steady-state, appearance of labeled DHA in the
plasma is sigmoidal (top panel). The first derivative of this curve can be determined
and is equal to the rate of appearance of labeled DHA in the plasma at every time
point during the infusion (bottom panel). The maximal first derivative (circled in
the top and bottom panel) is taken to be the maximal rate of DHA appearance in the
plasma (Smax). Smax is assumed to be the point where tissue uptake of labeled DHA is
negligible meaning that the appearance of labeled DHA at this point is due solely to
DHA synthesis from ALA. By correcting Smax for the tracee to tracer ratio the DHA
synthesis rate can be determined.
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all sources, not just post-prandial, gut-derived ALA), the
steady-state infusion method may be a more representative esti-
mate of DHA synthesis relative to oral dosing methodology.

The steady-state infusion model involves infusing unesterified
albumin-bound labeled ALA intravenously at a constant rate to
achieve a steady state concentration in the blood, and through
repeated blood sampling the appearance of labeled DHA in esteri-
fied lipids is measured. The appearance of labeled DHA using this
method can be fit to a sigmoidal curve (Fig. 3). Generally, the first
derivative at any point of a curve represents the rate-of-change of
the measured variable at that point, and as such the derivative of
the sigmoidal DHA appearance curve represents the
rate-of-change of labeled DHA (i.e. the rate of change of the con-
centration of labeled DHA in plasma) at that point. By determining
the maximal first derivative of the sigmoidal labeled-DHA curve,
the maximum rate-of-change of labeled DHA is obtained. This
maximal rate-of-change is taken as the labeled DHA synthesis rate
from labeled ALA, and by correcting this rate by the unlabeled ALA
concentration the whole-body DHA synthesis rate is obtained (see
description of calculations, Fig. 3).

There are several important limitations of this method, includ-
ing that the serum concentration of labeled DHA represents the
equilibrium between synthesis-secretion and tissue uptake.
While the contribution of tissue uptake to labeled DHA concentra-
tion is lowest relative to synthesis-secretion at the maximal first
derivative, it is necessarily defined as zero in the calculations.
The half-life of serum DHA is approximately 20 h [136] suggesting
that tissue uptake DHA would not be a major contributor to
changes in labeled DHA over the time-course of most experiments
(infusions are typically 3 h, with the maximal derivative obtained
within 2 h). Despite this, the assumption of zero tissue uptake at
the maximal first derivative means that the steady-state infusion
yields only a lower bound estimate on whole-body DHA synthesis
measures. There is also potential for dilution of the ALA tracer in
the liver acyl-CoA pool (the pool that is primarily utilized for
DHA synthesis), such that measured tracer-tracee ratios in the
plasma may not represent the ratio in the liver, the primary site
of DHA synthesis–secretion. This dilution has been estimated in
the rat where after a 5 min infusion of radiolabeled ALA the tracer:-
tracee ratio was 60–80% lower in liver acyl-CoA compared with
plasma unesterified ALA [81,89]. While the dilution factor is unli-
kely to be measurable in the human, it should be noted that this
limitation will also result in an underestimation of the actual
DHA synthesis rate (for more details refer to [66]). Additionally,
it should also be pointed out that due to the small pool size of
unesterified ALA in the plasma, minimal amounts of labeled unes-
terified ALA should be infused during these studies to avoid alter-
ing the pathway that is being studied (as previously discussed).
Finally, synthesis is measured only over a short period of time
(i.e. 2–3 h) in the rat and may miss any diurnal variation that
occurs in the synthesis rate.

The achievement of a steady-state of ALA tracer concentration is
essential for calculating a DHA synthesis rate as the rate of DHA
synthesis is not influenced by changes in plasma ALA tracer. This
is in contrast to the single oral dosing method used in humans,
in which labeled ALA concentrations in the plasma do not reach
steady state, therefore, limiting the possibility of estimating DHA
synthesis rates as discussed previously [155]. The steady-state
infusion method bypasses ingestion, digestion, and absorption of
the labeled ALA, and therefore, measures the whole-body DHA syn-
thesis rate from circulating unesterified ALA, whereas estimates of
DHA synthesis from orally provided ALA model only post-prandial
ALA. The method provides a measure of whole-body DHA synthe-
sis, and would account for synthesized DHA that occurs when
other secretory tissues, such as adipose or gut, take up the labeled
ALA and secrete labeled DHA back into circulation. The
steady-state infusion method has been used to estimate DHA syn-
thesis rates in rats, and found DHA synthesis rate to be approxi-
mately 1.5 lmol/day [66], which is lower, but in broad
agreement with the rates determined by the balance method in
rats fed the same diet (4.4 lmol/day) [66] and growing rats fed a
similar diet (11–14 lmol/day [143,172]). Using the steady-state
method, the DHA synthesis rate is at least 3-fold higher than the
daily brain DHA uptake rate in rats [66], suggesting that DHA syn-
thesis may be sufficient to provide the brain with DHA.
Importantly, the steady-state infusion method can be performed
in humans, and is currently being applied as part of a larger clinical
study (ClinicalTrials.gov Identifier: NCT01251887).
8. Concluding remarks

There is considerable debate as to whether the human capacity
to synthesize DHA from ALA is sufficient to meet brain DHA
requirements. This debate has been further complicated by lack
of agreement regarding the brain DHA requirement, and method-
ological inconsistencies in attempts to quantify the rate of DHA
synthesis from ALA. The IOM did not assign a dietary reference
intake for DHA, and other recommendations for DHA and EPA
intake pertain to cardiovascular disease prevention
[27,29,174,175] and not specifically to support the brain, in part
reflecting uncertainty in the role of dietary DHA in maintaining
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brain DHA. Fortunately, an estimate of human brain DHA uptake is
now available (2.4–3.8 mg/day [63,64]), and novel approaches to
measure whole-body DHA synthesis from serum ALA using
steady-state isotope infusion will allow for quantitative compar-
ison of DHA synthesis rates to brain DHA uptake rates, as done pre-
viously in rats [66]. This approach will supplement previous
measurements of DHA synthesis from ingested stable isotope
ALA, which provide estimates of DHA synthesis from postprandial
ALA, and produce a more complete understanding of DHA home-
ostasis in humans.

Despite limitations in comparing rates of DHA synthesis and
brain DHA uptake rates in humans to date, there is considerable
evidence from animals showing that brain DHA levels are similar
when fed ALA as the only n-3 PUFA as opposed to DHA or
ALA+DHA, as reviewed extensively by [65], although there are
some exceptions [119] possibly related to dose-, duration-, and
species-specific effects. The brain has mechanisms whereby it
can conserve DHA that may explain similar brain DHA between
DHA- and ALA-fed rats [176]. For example, the expression of
DHA-catabolizing enzymes, such as group VIB calcium-
independent phospholipase A2, can be reduced, resulting in
decreased catabolism of DHA and a longer brain DHA half-life
[120,176,177]. The effect of altering brain DHA turnover on brain
function is not clear. Also, n-3 PUFA deficiency increases aspects
of ARA turnover and decreases DHA turnover [120,176–180],
suggesting that the brain may metabolize ARA to spare DHA. The
effect of increased utilization of ARA relative to DHA by the brain,
on brain function in health or disease is not currently known.
However, vegans and vegetarians have similar prevalence of neu-
rological diseases as compared with omnivores suggesting that
any altered brain DHA metabolism in these individuals does not
manifest neurologically [15–18,181–184].

Studies that have used ingested stable-isotope ALA to measure
DHA synthesis in humans have for the most part reported that DHA
synthesis from ALA is thought to be an inefficient process (gener-
ally <1% conversion). The calculations used in these studies are
inconsistent [147], and we have shown that they yield different
values for percent conversion depending on the calculation used
[66]. In addition, these methods may only provide relative as
opposed to absolute quantifications of DHA synthesis rates
[97,147] and only represent the DHA synthesized from postpran-
dial ALA. However, if the brain DHA uptake rate is an accurate mea-
sure of the brain DHA requirement than a low fractional
conversion may still be sufficient to supply DHA to the brain.

It must be stressed that the focus of this review is the capacity
of DHA synthesis from ALA to supply the brain in healthy adults.
Situations that may affect DHA synthesis rates and/or brain DHA
uptake rates (such as diet, development, genetics, brain injury, dis-
ease or aging) must be examined to determine if ALA-derived DHA
can meet brain DHA requirements in these cases. For example, dur-
ing infancy the brain accretes a large amount of DHA as it grows
and post-mortem studies have found that breast-fed infants have
significantly higher brain DHA concentrations than infants fed for-
mula that contains ALA but not DHA [185]. Therefore, this may be
an instance where DHA synthesis from ALA is not sufficient to sup-
ply the brain, and preformed DHA is required. However, methods
are now available that can be applied to both rodents and humans
to measure brain DHA uptake and DHA synthesis rates, allowing
for estimation of sufficiency of DHA synthesis and recommenda-
tions for DHA intake.

In 2009, Rapoport and colleagues developed an in vivo
steady-state, stable-isotope infusion method to measure the DHA
synthesis rate from serum ALA in rats [173]. By infusing the tracer
intravenously this method avoids some of the considerations of
oral tracer administration. The steady-state infusion method
allows for the direct quantification of the DHA synthesis rate,
rather than a relative conversion measure. Importantly, the syn-
thesis rates measured using this method [66] are in line with rates
that were measured using balance studies [143,173]. Application
of this method to humans would represent the first quantification
of the DHA synthesis rate from blood ALA in humans, which could
be compared to the brain DHA uptake rate. It is of importance to
know how much DHA can be synthesized by humans, in order to
properly set guidelines for ALA and DHA consumption
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