Semiretracts - a counterexample and some results

Wit Foryśa,*, Tomasz Krawczyk ${ }^{\text {a }}$, James A. Anderson ${ }^{\text {b }}$
${ }^{\text {a }}$ Institute of Computer Science, Jagiellonian University, Nawojki 11, 30-075 Krakow, Poland
${ }^{\mathrm{b}}$ University of South Carolina at Spartanburg, Spartanburg, SC 29303, USA

Abstract

In the paper (Theoret. Comput. Sci. 237 (2000)) Anderson present a theorem which characterizes any semiretract S by means of two retracts R_{α} and R_{ω}. The first part of the paper contains a counterexample for this characterization. Then some results are presented which finally lead to the theorem which determines for a given semiretract S the minimal number of retracts R_{1}, \ldots, R_{m} such that the equality $S=\bigcap_{i=1}^{m} R_{i}$ holds. (C) 2003 Elsevier B.V. All rights reserved.

MSC: 68Q
Keywords: Semiretract; Retract; Free monoid

1. Introduction

Retracts and semiretracts of free monoids were investigated by Head, Anderson and Forys-see Refs. [1-8]. In paper [2], Anderson proved a theorem which gives a characterization of any semiretract S by means of two retracts R_{α} and R_{ω}. Namely, the theorem states the equality $S=R_{\alpha} \cap R_{\omega}$. Unfortunately, the result appears to be not true. In the first part of the paper we present a counterexample. Then some results are presented which finally lead to the theorem which determines for a given semiretract S the minimal number of retracts R_{1}, \ldots, R_{m} such that the equality $S=\bigcap_{i=1}^{m} R_{i}$ holds.

2. Counterexample

Definition 1. A retraction $r: A^{*} \rightarrow A^{*}$ is a homomorphism for which $r \circ r=r$. A retract of A^{*} is the image of A^{*} by a retraction. A semiretract of A^{*} is the intersection of a family of retracts of A^{*}.

[^0]Definition 2. A word $w \in A^{*}$ is called a key-word if there is at least one letter in A that occurs exactly once in w. A letter that occurs once in a key-word w is called a key of w. A set $C \subset A^{*}$ of key-words is called key-code if there exists an injection $i: C \rightarrow A$ for which
(1) for any $w \in C, i(w)$ is a key of w,
(2) the letter $i(w)$ occurs in no word of C other than w itself.

Theorem 3. (Head [8]) $R \subset A^{*}$ is a retract of $A^{*} i f f R=C^{*}$ where C is a key-code.
In [2] Anderson proved the following.
Theorem 4. For any semiretract S there exist two retracts R_{α} and R_{ω} such that $S=R_{\alpha} \cap R_{\omega}$.

The theorem appears to be incorrect according to the counterexample presented below. We use the following notation. $A=\{a, b, c, d, e, f, g, h, i, s\}$-an alphabet used in the counterexample, C_{1}, C_{2}, C_{3}-key-codes of retracts $C_{1}^{*}, C_{2}^{*}, C_{3}^{*}$, respectively, C - a code of the submonoid $C_{1}^{*} \cap C_{2}^{*} \cap C_{3}^{*}, C_{\alpha}, C_{\omega}$-key-codes for retracts $C_{\alpha}^{*}, C_{\omega}^{*}$ such that $C_{\alpha}^{*} \cap C_{\omega}^{*}=C_{1}^{*} \cap C_{2}^{*} \cap C_{3}^{*}$ if exist, when words sas $\in C_{1}$, as $\in C_{2}, s a \in C_{3}$ where s, a are letters in the alphabet A, a is a key and C_{i} are key-codes for $i=1,2,3$ then we write this fact in a matrix form (abbreviated three lines):

$$
A_{a}=\left[\begin{array}{ll}
1 & 1 \\
0 & a \\
1 \\
1 & 0
\end{array}\right]
$$

Hence 1 stays for the letter $s, 0$ for the empty word. The above matrix is associated with the key a. We denote in the sequel by $\operatorname{col}_{1}(a)$ and $\operatorname{col}_{3}(a)$, respectively, the first and the third column of A_{a}, the matrix associated with a. Now let us consider the following key-codes C_{i} given in the matrix form:

$$
\begin{aligned}
& C_{1}: \\
& C_{2}: \\
& C_{3}:
\end{aligned} A_{a}=\left[\begin{array}{ll}
0 & 1 \\
0 & a
\end{array} 0\right.
$$

It is easy to observe that any word in the semiretract $C_{1}^{*} \cap C_{2}^{*} \cap C_{3}^{*}$ has to start in a and finish in i. Now we define two equivalence relations on the set of keys, that is on $K=\{a, b, c, d, e, f, g, h, i\}$. Key letters x, y are in relation $x P y$ iff $\operatorname{col}_{1}(x)=\operatorname{col}_{1}(y)$. Key letters x, y are in relation $x S y$ iff $\operatorname{col}_{3}(x)=\operatorname{col}_{3}(y)$. The set $K_{/ P}$ has the following
blocks: $P_{1}=\{a\}, P_{2}=\{b, f, h\}, P_{3}=\{c, e, g\}, P_{4}=\{d, i\}$. The set $K_{/ S}$ has the following blocks: $S_{1}=\{a, e, g\}, S_{2}=\{b, d, f\}, S_{3}=\{c, h\}, S_{4}=\{i\}$. Similarly as in the above matrix form one can write codes C_{α} and C_{ω}. In this case we have matrices 2×2. These matrices will be denoted in the sequel by \bar{A}_{x}. We define a product of the above introduced matrices in the following way:

$$
\left[\begin{array}{rr}
a_{11} & a_{13} \\
a_{21} & x
\end{array} a_{23}\left(a_{31} r a a_{33}\right]\left[\begin{array}{lr}
b_{11} & b_{13} \\
b_{21} & y \\
b_{23} \\
b_{31} & b_{33}
\end{array}\right]=\left[\begin{array}{ll}
a_{11} & b_{13} \\
a_{21} & x y \\
a_{23} & b_{33}
\end{array}\right],\right.
$$

if and only if

$$
\operatorname{col}_{3}(x)+\operatorname{col}_{1}(y)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

Hence with the product $A_{x} \otimes A_{y}$ a word $x y$ is associated.
Fact 5. The fact that $w \in C^{*}$ is equivalent to executing the product

$$
A_{a} \otimes \cdots \otimes A_{i}=\left[\begin{array}{ll}
0 & 0 \\
0 & k(w) \\
0 & 0
\end{array}\right],
$$

where $k(w)$ denotes a word obtained by erasing all s in w. Note that the letter a is the only one which starts words in C and the letter i is the only one which ends such words.

Example 6. $w=$ asbscsi $\in C^{*}$ is obtained by executing

$$
A_{a} \otimes A_{b} \otimes A_{c} \otimes A_{i}
$$

We will use in the sequel all above introduced notations also in the case of an individual key-code C_{n} and retracts. In particular, for a key-word $s_{1} a s_{2}$ we denote by $\operatorname{col}_{1}^{n}(a)$ and $\operatorname{col}_{3}^{n}(a)$, respectively, the first and the third column of the matrix connected with $a-A_{a}=\left[\begin{array}{lll}s_{1} & a & s_{2}\end{array}\right]$ that is s_{1} and s_{2} in the considered case. In the code C there is no word in which two keys occur because such case would imply that these two keys appear always in the fixed order. It is easy to observe that if there is a possibility to execute the product $A_{a} \otimes \cdots \otimes A_{x} \otimes \cdots \otimes A_{y} \otimes \cdots \otimes A_{i}$ then it is possible to execute the product $A_{a} \otimes \cdots \otimes A_{y} \otimes \cdots \otimes A_{x} \otimes \cdots \otimes A_{i}$ for all $x, y \in\{b, \ldots, h\}$. This observation implies:

Fact 7. If there exist key-codes C_{α} and C_{ω} such that $C_{\alpha}^{*} \cap C_{\omega}^{*}=C_{1}^{*} \cap C_{2}^{*} \cap C_{3}^{*}$ then for any $w \in C_{\alpha} \cup C_{\omega}$ is $|w| \leqslant 3$.

Fact 8. For any key $x \neq i$ the equality $\operatorname{col}_{3}^{\alpha}(x)=\operatorname{col}_{3}^{\omega}(x)$ does not hold. Hence $\operatorname{col}_{3}^{\alpha}(x)=1-\operatorname{col}_{3}^{\omega}(x)$.

In the opposite situation one can find a word associated with $A_{a} \otimes \cdots \otimes A_{x}$ which is in $C_{\alpha}^{*} \cap C_{\omega}^{*}$. Arguing the same way we have:

Fact 9. For any key $x \neq a$ the equality $\operatorname{col}_{1}^{\alpha}(x) \operatorname{col}_{1}^{\omega}(x)$ does not hold. Hence, $\operatorname{col}_{1}^{\alpha}(x)$ $=1-\operatorname{col}_{1}^{\omega}(x)$.

Any executable product of matrices $A_{a} \otimes \cdots \otimes A_{i}$ should be executable as $\bar{A}_{a} \otimes \cdots \otimes \bar{A}_{i}$. Hence:

Fact 10. col l_{1}^{α} is constant on S_{i} and col $_{3}^{\alpha}$ is constant on P_{i} for $i=1, \ldots, 4$. The same is true for col ${ }^{\omega}$.

Now let us consider the following product of matrices:

$$
A_{a} \otimes A_{b} \otimes A_{c} \otimes A_{i}
$$

For this product we have $k(w)=a b c i$ and finally the word asbscsi $\in C$. Hence, the following product should be executable:

$$
\bar{A}_{a} \otimes \bar{A}_{b} \otimes \bar{A}_{c} \otimes \bar{A}_{i}
$$

to obtain asbscsi $\in C_{\alpha}^{*} \cap C_{\omega}^{*}$. It is easy to observe that in the last case

$$
\text { (a) } \operatorname{col}_{1}(b), \operatorname{col}_{1}(c), \operatorname{col}_{1}(i) \in\left\{\left[\begin{array}{l}
0 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right\}
$$

and
(b) $\operatorname{col}_{3}(a), \operatorname{col}_{3}(b), \operatorname{col}_{3}(c) \in\left\{\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$.

Hence for example in (a) at least two of the columns are equal, say $\operatorname{col}_{1}(c)=\operatorname{col}_{1}(i)$, and the following product is executable:

$$
\bar{A}_{a} \otimes \bar{A}_{b} \otimes \bar{A}_{i}
$$

which means that a word w such that $k(w)=a b c$ is in $C_{\alpha}^{*} \cap C_{\omega}^{*}$ but of course not in C^{*}-a contradiction.

3. Semiretracts as the intersection of retracts

The following theorem of Anderson allows us to narrow down the research on semiretracts to the case when all considered retracts have the same, common key-set K.

Theorem 11 (Anderson [2]). Let $S=\bigcap_{j=1}^{m} T_{j}$ denote a semiretract where T_{j} are retracts with the key-codes D_{j} and key-sets K_{j}, respectively. There exist retracts R_{i}
for $i=1, \ldots, n$ with key-codes C_{i} and the common key-set K such that

$$
S=\bigcap_{i=1}^{m} R_{i}
$$

and $\# K_{j} \geqslant \# K$ for $j=1, \ldots, m$.
The common set of keys K is called in the sequel a set of keys of a semiretract S. It is assumed that any k in K occurs in a word of the base of S. As a result of the above theorem the research on semiretracts could be done under the assumption that any semiretract S is given by the intersection of retracts with the same set of keys. We modify a bit the notational convention used in the counterexample. Let $S=\bigcap_{i=1}^{n} R_{i}, K$ a common set of keys. Let us fix the order of retracts- R_{1}, \ldots, R_{n}. For any $k \in K$ there exist words: $w_{1} \in C_{1}, \ldots, w_{n} \in C_{n}$ all with the key k. We write this fact in a matrix form (abbreviated n-lines):

$$
A_{k}=\left[\begin{array}{cc}
u_{1} & v_{1} \\
\vdots & \vdots \\
u_{i} & k \\
v_{i} \\
\vdots & \vdots \\
u_{n} & v_{n}
\end{array}\right]
$$

Hence, in the first column of A_{k} there are prefixes u_{i} of w_{i} and in the third column there are suffixes v_{i} of w_{i} such that $w_{i}=u_{i} k v_{i}$ for $i=1, \ldots, n$. The matrix A_{k} is associated with the key k. We denote in the sequel by $\operatorname{col}_{\mathrm{L}}(k)$ and $\operatorname{col}_{\mathrm{R}}(k)$, respectively, the first (left) and the third (right) column of A_{k} having in mind that the middle column is composed of n copies of the letter k. For any column word vectors define their product \otimes putting

$$
\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right] \otimes\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=\left[\begin{array}{c}
u_{1} v_{1} \\
u_{2} v_{2} \\
\vdots \\
u_{n} v_{n}
\end{array}\right]
$$

Now extend ultimately the product \otimes to the above introduced matrices. Formally, the definition of \otimes should cover any $n \times 3$ word matrices (with word entries). For A_{k} and $A_{\bar{k}}$ we put:

$$
\left[\begin{array}{cc}
u_{1} & v_{1} \\
\vdots & \vdots \\
u_{i} & k \\
v_{i} \\
\vdots & \vdots \\
u_{n} & v_{n}
\end{array}\right] \otimes\left[\begin{array}{cc}
\overline{u_{1}} & \overline{v_{1}} \\
\vdots & \vdots \\
\overline{u_{i}} & \bar{k} \\
\overline{v_{i}} \\
\vdots & \vdots \\
\overline{u_{n}} & \overline{v_{n}}
\end{array}\right]=\left[\begin{array}{cc}
u_{1} \overline{u_{1}} & v_{1} \overline{v_{1}} \\
\vdots & \vdots \\
u_{i} \overline{u_{i}} & k \bar{k} \\
\vdots & v_{i} \overline{v_{i}} \\
\vdots & \vdots \\
u_{n} \overline{u_{n}} & v_{n} \overline{v_{n}}
\end{array}\right]
$$

if and only if

$$
\operatorname{col}_{\mathrm{R}}(k) \otimes \operatorname{col}_{\mathrm{L}}(\bar{k})=\left[\begin{array}{c}
w \\
w \\
\vdots \\
w
\end{array}\right]
$$

for some $w \in A^{*}$. Hence with the product $A_{k} \otimes A_{\bar{k}}$ the word $k \bar{k}$ composed of two keys is associated and the result of the product is denoted $A_{k \bar{k}}$. The word w in the above definition as the word which occurs between the keys k and \bar{k} is denoted as $b k(k, \bar{k})$.

Definition 12. Let $k, \bar{k} \in K$ be any keys. We say that \bar{k} follows k (k precedes \bar{k}) iff $A_{k} \otimes A_{\bar{k}}$ is defined. We say that a key $k \in K$ is initial if

$$
\operatorname{col}_{\mathrm{L}}(k)=\left[\begin{array}{c}
w \\
w \\
\vdots \\
w
\end{array}\right]
$$

for some $w \in A^{*}$. We say that a key $k \in K$ is final if

$$
\operatorname{col}_{\mathrm{R}}(k)=\left[\begin{array}{l}
w \\
w \\
\ldots \\
w
\end{array}\right]
$$

for some $w \in A^{*}$. For an initial (final) key $k \in K$ the word w is denoted as $l(k)(r(k))$ respectively.

Theorem 13. Let $k_{1}, \ldots, k_{p} \in K$ be a sequence of keys of the semiretract S such that (1) k_{1} is a initial key, (2) k_{p} is a final key, (3) k_{i+1} follows k_{i} for $i=1, \ldots, p-1$ then the word

$$
w=l\left(k_{1}\right) k_{1} b k\left(k_{1}, k_{2}\right) k_{2} b k\left(k_{2}, k_{3}\right) \ldots \ldots k_{p} r\left(k_{p}\right)
$$

is in the base (code) C of the semiretracts S.
Moreover, for any word w in C there exist keys $k_{1}, \ldots, k_{p} \in K$ such that the above is true.

The statement of the theorem is obvious.
Any sequence of keys $k_{1}, \ldots, k_{p} \in K$ fulfilling assumptions (1)-(3) is called a generating key sequence.

Corollary 14. Finding a word from the base (code) of the semiretract is equivalent to finding a sequence of keys which fulfils the conditions from the above theorem.

Now we define two relations λ, ρ on the set of keys K.

Definition 15. Key letters $k_{1}, k_{2} \in K$ are in relation λ iff there exist $k \in K$ such that $A_{k} \otimes A_{k_{1}}$ and $A_{k} \otimes A_{k_{2}}$ are defined. Key letters $k_{1}, k_{2} \in K$ are in relation ρ iff there exist $k \in K$ such that $A_{k_{1}} \otimes A_{k}$ and $A_{k_{2}} \otimes A_{k}$ are defined.

The following lemma whose proof is straightforward and so omitted is essential for our considerations.

Lemma 16. Relations λ and ρ are equivalence on K. In $K_{/ \lambda}$ there exists an equivalence class that contains exactly all initial keys. In $K_{/ \rho}$ there exists an equivalence class that contains exactly all final keys.

For any block $L_{i} \in K_{/ \lambda}$ different than the block of final keys, there exists a block $P_{j} \in K_{/ \rho}$ such that for any $k \in L_{i}$ and $\bar{k} \in P_{j}$ the product $A_{k} \otimes A_{\bar{k}}$ is defined. In other words the key \bar{k} follows the key k. In this case we say that L_{i} is attached to P_{j}. Now we are ready to describe the procedure that produces generating key sequences $k_{1}, \ldots, k_{p} \in K$ for a semiretract S :
(1) choose a key k_{1} from the block of initial keys of λ,
(2) find a block P_{i} of ρ that contains k_{1},
(3) if k_{1} is not a final key then find a block L_{j} of λ that is attached to P_{i},
(4) choose a key k_{2} from the block L_{j},
(5) repeat steps $2-4$ until the chosen key is final,
(6) write down all the obtained keys in the order that they were produced.

Theorem 17. Any sequence of keys obtained by the above procedure is a generating key sequences for a semiretract S.

Theorem 18. Let S be a semiretract with key set K. Denote L_{1}, \ldots, L_{k} blocks of the relation λ and P_{1}, \ldots, P_{k} blocks of the relation ρ. If $\# L_{i} \geqslant 2$ and $\# P_{i} \geqslant 2$ for $i=1, \ldots, k$ then for any retract R with the key set \bar{K} such that $S \subset R$ it holds $\# \bar{K} \geqslant \# K$.

Proof. Suppose that $\# \bar{K}<\# K$. There exists a key $\bar{k} \in \bar{K}$ such that in the key word $w=u \bar{k} v$ for $u, v \in A^{*}$ some semiretract keys $k_{i}, k_{j} \in K$ occur. Let us consider the case $w=\ldots \bar{k} \ldots k_{i} \ldots k_{j} \ldots$. The form of w implies that in any word in S in which occur letters \bar{k}, k_{i}, k_{j} the order of these letters is preserved and there is no possibility to obtain other keys different from k_{i}, k_{j} after \bar{k}. This is a contradiction to the assumptions $\# P_{i} \geqslant 2$ and $S_{i} \geqslant 2$. Remaining cases can be proven analogically.

Theorem 19. Let $S=\bigcap_{j=1}^{n} T_{j}$ denote a semiretract where T_{j} are retracts with the (common) key-set K. Let λ and ρ are equivalence relations introduced above. If there exists a class $L_{i}\left(P_{i}\right)$ of the relation $\lambda(\rho)$ such that $L_{i}=\{k\}\left(P_{i}=\{k\}\right)$ then there exist retracts R_{i} for $i=1, \ldots, n$ with the (common) key-set $K \backslash\{k\}$ such that

$$
S=\bigcap_{i=1}^{n} R_{i} .
$$

Proof. Consider the case k is not an initial key and assume the block $L_{i}=\{k\}$ is attached to the block P_{i}. We claim that $k \notin P_{i}$. Assuming the contrary we come to the following conclusions:

- the key k follows only k, and
- k is not the final key.

If k would be a final key and it would be possible to continue the product \otimes by A_{k} then k should also be an initial key, a contradiction. Hence, it is possible to concatenate words defined by keys in P_{i} with the word defined by the key k to obtain new key words with keys as in P_{i}. Respectively, we modify retracts T_{i} with the key-set K to R_{i} with the key-set $K \backslash\{k\}$ without any influence on the equality $S=\bigcap_{i=1}^{n} R_{i}$. The same works if k is an initial key.

Note 1. It is worth observing that after gluing the words from blocks P_{i} and L_{i}, as described above, the number of blocks of the relations λ and ρ diminish to 1 .

The above theorem allows us to construct an algorithm which generates retracts with the minimal common key sets for a semiretracts S. The algorithm is applied until every block of the relations λ and ρ has at least 2 elements (excluding initial and final blocks). The preceding theorem guarantees that the obtained retracts have minimal common key-set.

Theorem 20. Let $S=\bigcap_{i=1}^{n} R_{i}$ be a semiretracts and K the minimal key-set for retracts $R_{i} . S$ is a retract if and only if $K_{/ \lambda}$ consists of exactly one block of initial keys and $K_{/ \rho}$ consists of exactly one block of final keys.

Proof. If S is a retracts the conclusion is obvious. If any key is initial and final then $C=\left\{l\left(k_{i}\right) k_{i} r\left(k_{i}\right): k_{i} \in K\right\}$ is the base of S. Because C is a key code it follows that S is a retract.

Theorem 21. If $\# A=3$ then any semiretract S is a retract.
Proof. Let K denote the minimal key set of the semiretract S. If $\# K=3$ then $S=A^{*}$ and the conclusion is true. If $\# K=2$ then relations λ and ρ define in K exactly one block of initial keys and final keys. And both these blocks are equal K because of the minimality of K. From the previous theorem it follows that S is a retract.

4. Minimal number of retracts

Definition 22. Any k factorizations of w of the form $w=u_{i} v_{i}$ for $i=1, \ldots, k$ where $u_{i}, v_{i} \in A^{*}$ and such that $u_{i} \neq u_{j}$ for some i, j are called a k-factorization of a word $w \in A^{*}$.

A k-factorization of a word $w \in A^{*}$ is denoted in matrix form

$$
L(w)=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{k}
\end{array}\right], \quad R(w)=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{k}
\end{array}\right]
$$

and of course

$$
L(w) \otimes R(w)=\left[\begin{array}{c}
w \\
w \\
\vdots \\
w
\end{array}\right] .
$$

Definition 23. Let $F=\left\{\left(w_{1}, \ldots, w_{n}\right): n \in \mathbb{N}, w_{i} \in A^{*}\right\}$ denote the set of all finite word sequences. We define the function $\Phi: F \rightarrow \mathbb{N}$ putting $\Phi\left(w_{1}, \ldots, w_{n}\right)=k$ if and only if
(1) there exist a k-factorizations of the words w_{1}, \ldots, w_{n} such that $L\left(w_{i}\right) \otimes R\left(w_{j}\right)$ is defined if and only if $i=j$.
(2) k is the minimal number for which there exist k-factorizations fulfilling the above property 1.
Below some properties of the introduced function Φ are listed:
(1) $\Phi\left(w_{1}, \ldots, w_{n}\right)=\Phi\left(w_{\delta(1)}, \ldots, w_{\delta(n)}\right)$ where δ is any permutation.
(2) $\Phi\left(w_{1}, \ldots, w_{n}\right) \geqslant \Phi\left(u_{1}, \ldots, u_{n}\right)$ where u_{i} is a subword of w_{i} for $i=1, \ldots, n$.
(3) $\Phi\left(w_{1}, \ldots, w_{n}\right) \geqslant \Phi\left(w_{1}, \ldots w_{i-1}, w_{i+1}, w_{n}\right)$ for any $i \in\{1, \ldots, n\}$.
(4) $\Phi\left(w_{1}, \ldots, w_{n}\right)=2$ if words w_{1}, \ldots, w_{n} are mutually different.

Let S be a semiretract with key set K and $K_{/ \lambda}=\left\{L_{0}, \ldots, L_{k}\right\}, K_{/ \rho}=\left\{P_{1}, \ldots, P_{k+1}\right\}$ denote sets of blocks (equivalence classes) of relations λ and ρ, respectively. Assume additionally that L_{0} contains all initial keys, P_{k+1} all final keys and that the block L_{i} is attached to P_{i} for $i=1, \ldots, k$. For P_{i} and L_{i} attached let $k_{1} \in P_{i}, k_{2} \in L_{i}$ and

$$
\operatorname{col}_{\mathrm{R}}\left(k_{1}\right)=\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{n}
\end{array}\right], \quad \operatorname{col}_{\mathrm{L}}\left(k_{2}\right)=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{n}
\end{array}\right] .
$$

Let u_{i} be the shortest word and u_{j} the longest one in the column $\operatorname{col}_{\mathrm{R}}\left(k_{1}\right)$. Then $u_{j}=u_{i} v$ and similarly $v w_{j}=w_{i}$ for some $v \in A^{*}$. We call the word v the source for the pair P_{i} and L_{i} (it is easy to observe, that the definition is correct-the defined source word v does not depend on the choice of the keys k_{1} and k_{2}).

Definition 24. Let P_{i} and L_{i} be attached blocks. We say that w separates blocks P_{i} and L_{i} if w is a word of the maximal length containing the source of the pair P_{i} and L_{i} and w is a subword of $b k\left(k_{1}, k_{2}\right)$ for any keys $k_{1} \in P_{i}, k_{2} \in L_{i}$. The separating word w is defined properly. We denote respectively $\operatorname{right}\left(k_{1}\right)$ and left $\left(k_{2}\right)$ the words that satisfy the following equality $b k\left(k_{1}, k_{2}\right)=\operatorname{right}\left(k_{1}\right) w \operatorname{left}\left(k_{2}\right)$.

Example 25. Let $P_{i}=\left\{k_{1}, k_{2}\right\}$ and $L_{i}=\left\{k_{3}, k_{4}\right\}$ and

$$
A_{k_{1}}=\left[\begin{array}{ll}
s & a b b \\
s & k_{1}
\end{array} a b, \quad A_{k_{3}}=\left[\begin{array}{lr}
c a & s \\
0 c a & k_{3} \\
0 & a b \\
b c a & 0
\end{array}\right],\right.
$$

$$
A_{k_{2}}=\left[\begin{array}{lr}
s & c b \\
s & k_{2} \\
0 & c \\
0 & c
\end{array}\right], \quad A_{k_{4}}=\left[\begin{array}{lr}
c b & 0 \\
b c b & k_{4} s \\
b c b & 0
\end{array}\right] .
$$

The word b is the source and we have $b k\left(k_{1}, k_{3}\right)=a b b c a, b k\left(k_{1}, k_{4}\right)=a b b c b$, $b k\left(k_{2}, k_{3}\right)=c b c a, b k\left(k_{2}, k_{4}\right)=c b c b$. The separating word is equal $b_{0} c_{1}$-the maximal extension of the source. $\operatorname{right}\left(k_{1}\right)=a b, \operatorname{left}\left(k_{3}\right)=a$ and $\operatorname{right}\left(k_{2}\right)=c$, $\operatorname{left}\left(k_{4}\right)=b$. Before formulating the main result of our paper let us come back to the semiretract from the counterexample. We have the following blocks (blocks P_{i} and L_{i} are associated):
$L_{0}=\{a\}$-block of initial keys
$P_{1}=\{a, e, g\}, L_{1}=\{b, f, h\}$
$P_{2}=\{b, d, f\}, L_{2}=\{c, e, g\}$
$P_{3}=\{c, h\}, L_{3}=\{d, i\}$
$P_{4}=\{i\}$ —block of final keys. The separating word is just s for any pair of associated blocks. We have $\Phi(a, a, a)=3$, so

$$
\begin{aligned}
& r_{1}=\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right], \quad l_{1}=\left[\begin{array}{l}
0 \\
a \\
a
\end{array}\right], \quad r_{2}=\left[\begin{array}{l}
a \\
0 \\
a
\end{array}\right], \quad l_{2}=\left[\begin{array}{l}
0 \\
a \\
0
\end{array}\right], \\
& r_{3}=\left[\begin{array}{l}
0 \\
a \\
a
\end{array}\right], \quad l_{3}=\left[\begin{array}{l}
a \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

is a 3 -factorization for words (a, a, a). It is easy to observe that there is no 2 -factorization for (a, a, a). Let us define the family of retracts in the following way. If $k \in P_{i}$ then define $\operatorname{col}_{\mathrm{R}}(k)=r_{i}$ and $\operatorname{col}_{\mathrm{L}}(k)=l_{i}$. The resulting semiretract (the intersection of the defined family of retracts) is the same as in the counterexample.

Theorem 26. For any semiretract $S=\bigcap_{i=1}^{n} P_{i}$ where P_{1}, \ldots, P_{n} are retracts of A^{*} there exist

$$
m=\min \left\{\Phi\left(w_{1}, \ldots, w_{r}\right): w_{i} \text { se parates } L_{i} \text { and } P_{i} i=1, \ldots, r\right\}
$$

retracts R_{1}, \ldots, R_{m} of A^{*} such that $S=\bigcap_{i=1}^{m} R_{i}$ and $m \leqslant n$. All considered retracts have the key set $K . m$ is the minimal number of retracts satisfying the equality defining semiretract S.

Proof. Consider a sequence $\left(w_{1}, \ldots w_{r}\right)$ such that $\Phi\left(w_{1}, \ldots w_{r}\right)=m$. Let k denote a key which is an element of the blocks P_{i} and L_{j}. Hence w_{i} is a separating word of P_{i} and L_{i} and w_{j} is a separating word of P_{j} and L_{j}. Now let us define m key words with the
key k :

$$
\left[\begin{array}{ccc}
R_{1}\left(w_{j}\right) \operatorname{left}(k) & k & \operatorname{right}(k) L_{1}\left(w_{j}\right) \\
\vdots & \vdots & \vdots \\
R_{i}\left(w_{j}\right) \operatorname{left}(k) & k & \operatorname{right}(k) L_{i}\left(w_{j}\right) \\
\vdots & \vdots & \vdots \\
R_{m}\left(w_{j}\right) \operatorname{left}(k) & k & \operatorname{right}(k) L_{m}\left(w_{j}\right)
\end{array}\right],
$$

where $R_{i}(w)\left(L_{i}(w)\right)$ denotes the value in the i-the line of $R(w)(L(w))$ and $L(w)$ and $R(w)$ are given by m-factorization of the word w. Finally, we obtain m retracts R_{1}, \ldots, R_{m} of A^{*} with the key set K. Just from the definition of the m-factorization it follows that the sets of blocks of λ and ρ for the obtained retracts R_{1}, \ldots, R_{m} are the same as for P_{1}, \ldots, P_{n}. Therefore, the order of the keys is the same. The way of selection of $\operatorname{right}(k)$ and left (k) ensures the equalities of the words generated by a key sequence. Conversely, the existence of m retracts implicates that there exists the sequence $\left(w_{1}, \ldots w_{r}\right)$ for which $\Phi\left(w_{1}, \ldots w_{r}\right) \leqslant m$. Hence the theorem is proved.

References

[1] J.A. Anderson, Semiretracts of a free monoid, Theoret. Comput. Sci. 134 (1994) 3-11.
[2] J.A. Anderson, The intersection of retracts of A^{*}, Theoret. Comput. Sci. 237 (2000) 439-445.
[3] J.A. Anderson, W. Forys, Regular languages and semiretracts, International Conference on Words, Kyoto, 2000.
[4] J.A. Anderson, W. Forys, T. Head, Retracts and semiretracts of free monoids, AMS Meeting, San Francisco, 1991.
[5] W. Forys, On the family of retracts of free monoids, Internat. J. Comput. Math. 33 (1990) 95-97.
[6] W. Forys, T. Head, The poset of retracts of a free monoid, Internat. J. Comput. Math. 37 (1990) 45-48.
[7] W. Forys, T. Head, Retracts of free monoids are nowhere dense with respect to finite group and p-adic topologies, Semigroup Forum, 1990, pp. 117-119.
[8] T. Head, Expanded subalphabets in the theories of languages and semigroups, Internat. J. Comput. Math. 12 (1982) 113-123.

[^0]: * Corresponding author.

 E-mail addresses: forysw@ii.uj.edu.pl (W. Foryś), tomasz.krawczyk.student@softlab.ii.uj.edu.pl (T. Krawczyk), jim@gw.uscs.edu (J.A. Anderson).

