
Theoretical Computer Science 307 (2003) 117–127
www.elsevier.com/locate/tcs

Semiretracts—a counterexample and some results
Wit Fory$sa ;∗ , Tomasz Krawczyka , James A. Andersonb

aInstitute of Computer Science, Jagiellonian University, Nawojki 11, 30-075 Krakow, Poland
bUniversity of South Carolina at Spartanburg, Spartanburg, SC 29303, USA

Abstract

In the paper (Theoret. Comput. Sci. 237 (2000)) Anderson present a theorem which char-
acterizes any semiretract S by means of two retracts R� and R!: The /rst part of the paper
contains a counterexample for this characterization. Then some results are presented which /-
nally lead to the theorem which determines for a given semiretract S the minimal number of
retracts R1; : : : ; Rm such that the equality S =

⋂m
i=1 Ri holds.

c© 2003 Elsevier B.V. All rights reserved.

MSC: 68Q

Keywords: Semiretract; Retract; Free monoid

1. Introduction

Retracts and semiretracts of free monoids were investigated by Head, Anderson
and Forys—see Refs. [1–8]. In paper [2], Anderson proved a theorem which gives a
characterization of any semiretract S by means of two retracts R� and R!: Namely,
the theorem states the equality S =R� ∩R!: Unfortunately, the result appears to be not
true. In the /rst part of the paper we present a counterexample. Then some results are
presented which /nally lead to the theorem which determines for a given semiretract
S the minimal number of retracts R1; : : : ; Rm such that the equality S =

⋂m
i=1 Ri holds.

2. Counterexample

De�nition 1. A retraction r :A∗ →A∗ is a homomorphism for which r ◦ r= r: A retract
of A∗ is the image of A∗by a retraction. A semiretract of A∗ is the intersection of a
family of retracts of A∗.

∗ Corresponding author.
E-mail addresses: forysw@ii.uj.edu.pl (W. Fory$s), tomasz.krawczyk.student@softlab.ii.uj.edu.pl

(T. Krawczyk), jim@gw.uscs.edu (J.A. Anderson).

0304-3975/03/$ - see front matter c© 2003 Elsevier B.V. All rights reserved.
doi:10.1016/S0304-3975(03)00096-3

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82607912?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:forysw@ii.uj.edu.pl
mailto:tomasz.krawczyk.student@softlab.ii.uj.edu.pl
mailto:jim@gw.uscs.edu

118 W. Fory0s et al. / Theoretical Computer Science 307 (2003) 117–127

De�nition 2. A word w∈A∗ is called a key-word if there is at least one letter in A
that occurs exactly once in w: A letter that occurs once in a key-word w is called a
key of w: A set C ⊂A∗ of key-words is called key-code if there exists an injection
i :C→A for which
(1) for any w∈C; i(w) is a key of w;
(2) the letter i(w) occurs in no word of C other than w itself.

Theorem 3. (Head [8]) R⊂A∗ is a retract of A∗i6 R=C∗ where C is a key-code.

In [2] Anderson proved the following.

Theorem 4. For any semiretract S there exist two retracts R� and R! such that
S =R� ∩R!:

The theorem appears to be incorrect according to the counterexample presented be-
low. We use the following notation. A= {a; b; c; d; e; f; g; h; i; s}—an alphabet used in
the counterexample, C1; C2; C3—key-codes of retracts C∗

1 ; C
∗
2 ; C

∗
3 , respectively, C—a

code of the submonoid C∗
1 ∩C∗

2 ∩C∗
3 , C�; C!—key-codes for retracts C∗

� ; C
∗
! such that

C∗
� ∩C∗

!=C∗
1 ∩C∗

2 ∩C∗
3 if exist, when words sas∈C1; as∈C2; sa∈C3 where s; a are

letters in the alphabet A, a is a key and Ci are key-codes for i=1; 2; 3 then we write
this fact in a matrix form (abbreviated three lines):

Aa =


 1 1
0 a 1
1 0


 :

Hence 1 stays for the letter s, 0 for the empty word. The above matrix is associated
with the key a: We denote in the sequel by col1(a) and col3(a), respectively, the /rst
and the third column of Aa, the matrix associated with a: Now let us consider the
following key-codes Ci given in the matrix form:

C1:
C2:
C3:

Aa =


 0 1
0 a 0
0 0


 ; Ab =


 0 1
1 b 0
1 1


 ; Ac =


 0 0
1 c 1
0 1


 ;

Ad =


 1 1
0 d 0
0 1


 ; Ae =


 0 1
1 e 0
0 0


 ; Af =


 0 1
1 f 0
1 1


 ;

Ag =


 0 1
1 g 0
0 0


 ; Ah =


 0 0
1 h 1
1 1


 ; Ai =


 1 0
0 i 0
0 0


 :

It is easy to observe that any word in the semiretract C∗
1 ∩C∗

2 ∩C∗
3 has to start in a

and /nish in i. Now we de/ne two equivalence relations on the set of keys, that is
on K = {a; b; c; d; e; f; g; h; i}: Key letters x; y are in relation xPy iG col1(x)= col1(y):
Key letters x; y are in relation xSy iG col3(x)= col3(y): The set K=P has the following

W. Fory0s et al. / Theoretical Computer Science 307 (2003) 117–127 119

blocks: P1 = {a}; P2 = {b; f; h}; P3 = {c; e; g}; P4 = {d; i}. The set K=S has the fol-
lowing blocks: S1 = {a; e; g}; S2 = {b; d; f}; S3 = {c; h}; S4 = {i}. Similarly as in the
above matrix form one can write codes C� and C!. In this case we have matrices
2× 2: These matrices will be denoted in the sequel by HAx: We de/ne a product of the
above introduced matrices in the following way:


 a11 a13
a21 x a23
a31 a33


⊗


 b11 b13
b21 y b23
b31 b33


 =


 a11 b13
a21 xy b23
a31 b33


 ;

if and only if

col3(x) + col1(y) =


 1
1
1


 :

Hence with the product Ax ⊗ Ay a word xy is associated.

Fact 5. The fact that w∈C∗ is equivalent to executing the product

Aa ⊗ · · · ⊗ Ai =


 0 0
0 k(w) 0
0 0


 ;

where k(w) denotes a word obtained by erasing all s in w: Note that the letter a is
the only one which starts words in C and the letter i is the only one which ends such
words.

Example 6. w= asbscsi∈C∗ is obtained by executing

Aa ⊗ Ab ⊗ Ac ⊗ Ai:

We will use in the sequel all above introduced notations also in the case of an individual
key-code Cn and retracts. In particular, for a key-word s1as2 we denote by coln1(a)
and coln3(a), respectively, the /rst and the third column of the matrix connected with
a − Aa= [s1 a s2] that is s1 and s2 in the considered case. In the code C there is no
word in which two keys occur because such case would imply that these two keys
appear always in the /xed order. It is easy to observe that if there is a possibility to
execute the product Aa ⊗ · · · ⊗ Ax ⊗ · · · ⊗ Ay ⊗ · · · ⊗ Ai then it is possible to execute
the product Aa⊗· · ·⊗Ay⊗· · ·⊗Ax⊗· · ·⊗Ai for all x; y∈{b; : : : ; h}. This observation
implies:

Fact 7. If there exist key-codes C� and C! such that C∗
� ∩C∗

!=C∗
1 ∩C∗

2 ∩C∗
3 then

for any w∈C� ∪C! is |w|63:

Fact 8. For any key x �= i the equality col�3(x)= col!3 (x) does not hold. Hence
col�3(x)= 1− col!3 (x):

120 W. Fory0s et al. / Theoretical Computer Science 307 (2003) 117–127

In the opposite situation one can /nd a word associated with Aa ⊗ · · · ⊗ Ax which
is in C∗

� ∩C∗
!: Arguing the same way we have:

Fact 9. For any key x �= a the equality col�1(x)col
!
1 (x) does not hold. Hence, col�1(x)

= 1− col!1 (x):

Any executable product of matrices Aa⊗· · ·⊗Ai should be executable as HAa⊗· · ·⊗ HAi.
Hence:

Fact 10. col�1 is constant on Si and col�3 is constant on Pi for i=1; : : : ; 4: The same
is true for col!:

Now let us consider the following product of matrices:

Aa ⊗ Ab ⊗ Ac ⊗ Ai:

For this product we have k(w)= abci and /nally the word asbscsi∈C: Hence, the
following product should be executable:

HAa ⊗ HAb ⊗ HAc ⊗ HAi

to obtain asbscsi∈C∗
� ∩C∗

!: It is easy to observe that in the last case

(a) col1(b); col1(c); col1(i) ∈
{[

0
1

]
;
[
1
0

]}

and

(b) col3(a); col3(b); col3(c) ∈
{[

0
1

]
;
[
1
0

]}
:

Hence for example in (a) at least two of the columns are equal, say col1(c)= col1(i);
and the following product is executable:

HAa ⊗ HAb ⊗ HAi

which means that a word w such that k(w)= abc is in C∗
� ∩C∗

! but of course not in
C∗—a contradiction.

3. Semiretracts as the intersection of retracts

The following theorem of Anderson allows us to narrow down the research on
semiretracts to the case when all considered retracts have the same, common key-set
K .

Theorem 11 (Anderson [2]). Let S =
⋂m

j=1 Tj denote a semiretract where Tj are re-
tracts with the key-codes Dj and key-sets Kj, respectively. There exist retracts Ri

W. Fory0s et al. / Theoretical Computer Science 307 (2003) 117–127 121

for i=1; : : : ; n with key-codes Ci and the common key-set K such that

S =
m⋂
i=1

Ri

and #Kj¿#K for j=1; : : : ; m:

The common set of keys K is called in the sequel a set of keys of a semiretract S:
It is assumed that any k in K occurs in a word of the base of S. As a result of the
above theorem the research on semiretracts could be done under the assumption that
any semiretract S is given by the intersection of retracts with the same set of keys. We
modify a bit the notational convention used in the counterexample. Let S =

⋂n
i=1 Ri, K

a common set of keys. Let us /x the order of retracts—R1; : : : ; Rn: For any k ∈K there
exist words: w1 ∈C1; : : : ; wn ∈Cn all with the key k: We write this fact in a matrix
form (abbreviated n-lines):

Ak =




u1 v1
...

...
ui k vi
...

...
un vn



:

Hence, in the /rst column of Ak there are pre/xes ui of wi and in the third column there
are suLxes vi of wi such that wi = uikvi for i=1; : : : ; n: The matrix Ak is associated
with the key k. We denote in the sequel by colL(k) and colR(k), respectively, the /rst
(left) and the third (right) column of Ak having in mind that the middle column is
composed of n copies of the letter k. For any column word vectors de/ne their product
⊗ putting



u1
u2
...
un


⊗



v1
v2
...
vn


 =



u1v1
u2v2
...

unvn


 :

Now extend ultimately the product ⊗ to the above introduced matrices. Formally, the
de/nition of ⊗ should cover any n× 3 word matrices (with word entries). For Ak and
A Hk we put:




u1 v1
...

...
ui k vi
...

...
un vn



⊗




u1 v1
...

...
ui Hk vi
...

...
un vn



=




u1u1 v1v1
...

...
uiui k Hk vivi
...

...
unun vnvn




122 W. Fory0s et al. / Theoretical Computer Science 307 (2003) 117–127

if and only if

colR(k)⊗ colL(Hk) =



w
w
...
w




for some w∈A∗: Hence with the product Ak ⊗ A Hk the word k Hk composed of two keys
is associated and the result of the product is denoted Ak Hk . The word w in the above
de/nition as the word which occurs between the keys k and Hk is denoted as bk(k; Hk).

De�nition 12. Let k; Hk ∈K be any keys. We say that Hk follows k (k precedes Hk) iG
Ak ⊗ A Hk is de/ned. We say that a key k ∈K is initial if

colL(k) =



w
w
...
w




for some w∈A∗: We say that a key k ∈K is /nal if

colR(k) =



w
w
: : :
w




for some w∈A∗: For an initial (/nal) key k ∈K the word w is denoted as l(k) (r(k))
respectively.

Theorem 13. Let k1; : : : ; kp ∈K be a sequence of keys of the semiretract S such that
(1) k1 is a initial key, (2) kp is a ;nal key, (3) ki+1 follows ki for i=1; : : : ; p − 1
then the word

w = l(k1)k1bk(k1; k2)k2bk(k2; k3) : : : : : : kpr(kp)

is in the base (code) C of the semiretracts S.
Moreover, for any word w in C there exist keys k1; : : : ; kp ∈K such that the above is
true.

The statement of the theorem is obvious.
Any sequence of keys k1; : : : ; kp ∈K ful/lling assumptions (1)–(3) is called a gen-

erating key sequence.

Corollary 14. Finding a word from the base (code) of the semiretract is equivalent
to ;nding a sequence of keys which ful;ls the conditions from the above theorem.

Now we de/ne two relations %; & on the set of keys K:

W. Fory0s et al. / Theoretical Computer Science 307 (2003) 117–127 123

De�nition 15. Key letters k1; k2 ∈K are in relation % iG there exist k ∈K such that
Ak ⊗Ak1 and Ak ⊗Ak2 are de/ned. Key letters k1; k2 ∈K are in relation & iG there exist
k ∈K such that Ak1 ⊗ Ak and Ak2 ⊗ Ak are de/ned.

The following lemma whose proof is straightforward and so omitted is essential for
our considerations.

Lemma 16. Relations % and & are equivalence on K: In K=% there exists an equivalence
class that contains exactly all initial keys. In K=& there exists an equivalence class
that contains exactly all ;nal keys.

For any block Li ∈K=% diGerent than the block of /nal keys, there exists a block
Pj ∈K=& such that for any k ∈Li and Hk ∈Pj the product Ak ⊗ A Hk is de/ned. In other
words the key Hk follows the key k. In this case we say that Li is attached to Pj.
Now we are ready to describe the procedure that produces generating key sequences
k1; : : : ; kp ∈K for a semiretract S:
(1) choose a key k1 from the block of initial keys of %,
(2) /nd a block Pi of & that contains k1,
(3) if k1 is not a /nal key then /nd a block Lj of % that is attached to Pi,
(4) choose a key k2 from the block Lj,
(5) repeat steps 2–4 until the chosen key is /nal,
(6) write down all the obtained keys in the order that they were produced.

Theorem 17. Any sequence of keys obtained by the above procedure is a generating
key sequences for a semiretract S:

Theorem 18. Let S be a semiretract with key set K: Denote L1; : : : ; Lk blocks of the
relation % and P1; : : : ; Pk blocks of the relation &: If #Li¿2 and]Pi¿2 for i=1; : : : ; k
then for any retract R with the key set HK such that S ⊂R it holds # HK¿#K:

Proof. Suppose that # HK¡#K . There exists a key Hk ∈ HK such that in the key word
w= u Hkv for u; v∈A∗ some semiretract keys ki; kj ∈K occur. Let us consider the case
w= : : : Hk : : : ki : : : kj : : : : The form of w implies that in any word in S in which occur
letters Hk; ki; kj the order of these letters is preserved and there is no possibility to obtain
other keys diGerent from ki; kj after Hk. This is a contradiction to the assumptions #Pi¿2
and Si¿2. Remaining cases can be proven analogically.

Theorem 19. Let S =
⋂n

j=1 Tj denote a semiretract where Tj are retracts with the
(common) key-set K . Let % and & are equivalence relations introduced above. If
there exists a class Li (Pi) of the relation % (&) such that Li = {k} (Pi = {k}) then
there exist retracts Ri for i=1; : : : ; n with the (common) key-set K\{k}
such that

S =
n⋂
i=1

Ri:

124 W. Fory0s et al. / Theoretical Computer Science 307 (2003) 117–127

Proof. Consider the case k is not an initial key and assume the block Li = {k} is
attached to the block Pi. We claim that k =∈Pi. Assuming the contrary we come to the
following conclusions:
• the key k follows only k, and
• k is not the /nal key.
If k would be a /nal key and it would be possible to continue the product ⊗ by Ak
then k should also be an initial key, a contradiction. Hence, it is possible to concatenate
words de/ned by keys in Pi with the word de/ned by the key k to obtain new key
words with keys as in Pi. Respectively, we modify retracts Ti with the key-set K to Ri
with the key-set K\{k} without any inMuence on the equality S =

⋂n
i=1 Ri. The same

works if k is an initial key.

Note 1. It is worth observing that after gluing the words from blocks Pi and Li, as
described above, the number of blocks of the relations % and & diminish to 1.

The above theorem allows us to construct an algorithm which generates retracts with
the minimal common key sets for a semiretracts S. The algorithm is applied until
every block of the relations % and & has at least 2 elements (excluding initial and /nal
blocks). The preceding theorem guarantees that the obtained retracts have minimal
common key-set.

Theorem 20. Let S =
⋂n

i=1 Ri be a semiretracts and K the minimal key-set for re-
tracts Ri. S is a retract if and only if K=% consists of exactly one block of initial keys
and K=& consists of exactly one block of ;nal keys.

Proof. If S is a retracts the conclusion is obvious. If any key is initial and /nal then
C = {l(ki)kir(ki) : ki ∈K} is the base of S. Because C is a key code it follows that S
is a retract.

Theorem 21. If #A=3 then any semiretract S is a retract.

Proof. Let K denote the minimal key set of the semiretract S. If #K =3 then S =A∗

and the conclusion is true. If #K =2 then relations % and & de/ne in K exactly one
block of initial keys and /nal keys. And both these blocks are equal K because of the
minimality of K . From the previous theorem it follows that S is a retract.

4. Minimal number of retracts

De�nition 22. Any k factorizations of w of the form w= uivi for i=1; : : : ; k where
ui; vi ∈A∗ and such that ui �= uj for some i; j are called a k-factorization of a word
w∈A∗.

A k-factorization of a word w∈A∗ is denoted in matrix form

L(w) =



u1
u2
...
uk


 ; R(w) =



v1
v2
...
vk




W. Fory0s et al. / Theoretical Computer Science 307 (2003) 117–127 125

and of course

L(w)⊗ R(w) =



w
w
...
w


 :

De�nition 23. Let F = {(w1; : : : ; wn) : n∈N; wi ∈A∗} denote the set of all /nite word
sequences. We de/ne the function + :F→N putting +(w1; : : : ; wn)= k if and only if
(1) there exist a k-factorizations of the words w1; : : : ; wn such that L(wi) ⊗ R(wj) is

de/ned if and only if i= j.
(2) k is the minimal number for which there exist k-factorizations ful/lling the above

property 1.
Below some properties of the introduced function + are listed:
(1) +(w1; : : : ; wn)=+(w,(1); : : : ; w,(n)) where , is any permutation.
(2) +(w1; : : : ; wn)¿+(u1; : : : ; un) where ui is a subword of wi for i=1; : : : ; n.
(3) +(w1; : : : ; wn)¿+(w1; : : : wi−1; wi+1; wn) for any i∈{1; : : : ; n}.
(4) +(w1; : : : ; wn)= 2 if words w1; : : : ; wn are mutually diGerent.
Let S be a semiretract with key set K and K=% = {L0; : : : ; Lk}, K=&= {P1; : : : ; Pk+1}
denote sets of blocks (equivalence classes) of relations % and &, respectively. Assume
additionally that L0 contains all initial keys, Pk+1 all /nal keys and that the block Li
is attached to Pi for i=1; : : : ; k. For Pi and Li attached let k1 ∈Pi; k2 ∈Li and

colR(k1) =



u1
u2
...
un


 ; colL(k2) =



w1

w2
...
wn


 :

Let ui be the shortest word and uj the longest one in the column colR(k1). Then
uj = uiv and similarly vwj =wi for some v∈A∗: We call the word v the source for the
pair Pi and Li (it is easy to observe, that the de/nition is correct—the de/ned source
word v does not depend on the choice of the keys k1 and k2).

De�nition 24. Let Pi and Li be attached blocks. We say that w separates blocks Pi and
Li if w is a word of the maximal length containing the source of the pair Pi and Li and
w is a subword of bk(k1; k2) for any keys k1 ∈Pi; k2 ∈Li. The separating word w is
de/ned properly. We denote respectively right(k1) and left(k2) the words that satisfy
the following equality bk(k1; k2)= right(k1)w left(k2).

Example 25. Let Pi = {k1; k2} and Li = {k3; k4} and

Ak1 =


 s abb
s k1 ab
0 ab


 ; Ak3 =


 ca s
bca k3 s
bca 0


 ;

126 W. Fory0s et al. / Theoretical Computer Science 307 (2003) 117–127

Ak2 =



s cb

s k2 c

0 c


 ; Ak4 =




cb 0

bcb k4 s

bcb 0


 :

The word b is the source and we have bk(k1; k3)= abbca, bk(k1; k4)= abbcb,
bk(k2; k3)= cbca, bk(k2; k4)= cbcb. The separating word is equal b0c1—the maximal
extension of the source. right(k1)= ab; left(k3)= a and right(k2)= c; left(k4)= b. Be-
fore formulating the main result of our paper let us come back to the semiretract
from the counterexample. We have the following blocks (blocks Pi and Li are
associated):
L0 = {a}—block of initial keys
P1 = {a; e; g}; L1 = {b; f; h}
P2 = {b; d; f}; L2 = {c; e; g}
P3 = {c; h}; L3 = {d; i}
P4 = {i}—block of /nal keys. The separating word is just s for any pair of associated
blocks. We have +(a; a; a)= 3, so

r1 =



a

0

0


 ; l1 =



0

a

a


 ; r2 =



a

0

a


 ; l2 =



0

a

0


 ;

r3 =



0

a

a


 ; l3 =



a

0

0




is a 3-factorization for words (a; a; a). It is easy to observe that there is no 2-factori-
zation for (a; a; a). Let us de/ne the family of retracts in the following way. If
k ∈Pi then de/ne colR(k)= ri and colL(k)= li. The resulting semiretract (the in-
tersection of the de/ned family of retracts) is the same as in the counter-
example.

Theorem 26. For any semiretract S =
⋂n

i=1 Pi where P1; : : : ; Pn are retracts of A∗ there
exist

m = min{+(w1; : : : ; wr) : wi separates Li and Pi i = 1; : : : ; r}

retracts R1; : : : ; Rm of A∗ such that S =
⋂m

i=1 Ri and m6n. All considered retracts have
the key set K . m is the minimal number of retracts satisfying the equality de;ning
semiretract S.

Proof. Consider a sequence (w1; : : : wr) such that +(w1; : : : wr)=m. Let k denote a key
which is an element of the blocks Pi and Lj. Hence wi is a separating word of Pi and
Li and wj is a separating word of Pj and Lj. Now let us de/ne m key words with the

W. Fory0s et al. / Theoretical Computer Science 307 (2003) 117–127 127

key k:



R1(wj)left(k) k right(k)L1(wj)
...

...
...

Ri(wj)left(k) k right(k)Li(wj)
...

...
...

Rm(wj)left(k) k right(k)Lm(wj)



;

where Ri(w) (Li(w)) denotes the value in the i—the line of R(w) (L(w)) and L(w)
and R(w) are given by m-factorization of the word w. Finally, we obtain m retracts
R1; : : : ; Rm of A∗ with the key set K . Just from the de/nition of the m-factorization
it follows that the sets of blocks of % and & for the obtained retracts R1; : : : ; Rm are
the same as for P1; : : : ; Pn. Therefore, the order of the keys is the same. The way of
selection of right(k) and left(k) ensures the equalities of the words generated by a
key sequence. Conversely, the existence of m retracts implicates that there exists the
sequence (w1; : : : wr) for which +(w1; : : : wr)6m. Hence the theorem is proved.

References

[1] J.A. Anderson, Semiretracts of a free monoid, Theoret. Comput. Sci. 134 (1994) 3–11.
[2] J.A. Anderson, The intersection of retracts of A∗, Theoret. Comput. Sci. 237 (2000) 439–445.
[3] J.A. Anderson, W. Forys, Regular languages and semiretracts, International Conference on Words, Kyoto,

2000.
[4] J.A. Anderson, W. Forys, T. Head, Retracts and semiretracts of free monoids, AMS Meeting,

San Francisco, 1991.
[5] W. Forys, On the family of retracts of free monoids, Internat. J. Comput. Math. 33 (1990) 95–97.
[6] W. Forys, T. Head, The poset of retracts of a free monoid, Internat. J. Comput. Math. 37 (1990) 45–48.
[7] W. Forys, T. Head, Retracts of free monoids are nowhere dense with respect to /nite group and p-adic

topologies, Semigroup Forum, 1990, pp. 117–119.
[8] T. Head, Expanded subalphabets in the theories of languages and semigroups, Internat. J. Comput. Math.

12 (1982) 113–123.

	Semiretracts---a counterexample and some results
	Introduction
	Counterexample
	Semiretracts as the intersection of retracts
	Minimal number of retracts
	References

