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Abstract--Boundary value problems with operators that are not self-adjoint are a direct conse- 
quence of the use a nonassociated plasticity model. As a result, the material stiffness matrix, and 
therefore also, the ensuing structural stiffness matrix become nonsymmetric, and complex eigenvalues 
are possible. In practice, however, these are not encountered for the structural stiffness matrix. We 
present a mathematical analysis of the eigenvalues characterizing the elasto-plastic material stiffness 
matrix with a Drucker-Prager yield function, for orthotropic and isotropic materials. We confine our- 
selves to plane-strain and stress conditions. All possible stress distributions are considered showing 
possible complex eigenvalues in case of orthotropy but none for isotropy. Finally, a numerical analysis 
is performed to gain insight into the eigenvalues of the structural stiffness matrix. ~) 1999 Elsevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

While self-adjoint operators are predominant in boundary value problems in solid mechanics, 
there also exist some practically important cases where self-adjointness is lost. Indeed, almost 
any model in which frictional effects in the material play a role, eventually leads to a loss of 
self-adjointness. On the other hand, in the absence of frictional effects, with the simplest case 
being elasticity, the constitutive operator together with the equilibrium equations and the kine- 
matic relations leads to a set of differential equations that results in self-adjoint boundary value 
problems. 

Material models in which frictional effects become important normally result in constitutive 
models where the tangential stiffness tensor that sets the relation between the stress rate tensor 
and the strain rate tensor becomes nonsymmetric. This nonsymmetry in the constitutive rela- 
tion directly leads to a loss of self-adjointness of the boundary value problem. As a result, the 
structural tangential stiffness matrix that is obtained after discretization of the boundary value 
problem, becomes nonsymmetric. In principle, nonsymmetric matrices allow for complex eigen- 
values. However, on physical grounds it is hard to imagine that complex eigenvalues would arise. 

0898-1221/99/$ - see front matter. ~) 1999 Elsevier Science Ltd. All rights reserved. Typeset by ~4fldS-TEX 
PII: S0898-1221(99)00266-7 



108 H. VAN DER VEEN et al. 

Indeed, since the structural stiffness matrix is still filled by real numbers, the complex eigenval- 
ues, if they exist, must be complex conjugate. This in turn would require the eigenvectors to be 
complex conjugate and it is hard to attach any physical significance to a complex displacement 
vector under static loading conditions [1]. 

In this article, we shall adopt a particular constitutive model that  gives rise to a nonsymmet- 
ric constitutive operator, namely a nonassociated plasticity model. Such models typically arise 
when describing sand behavior. Pressure-dependent yield functions like those of Drucker-Prager 
or Mohr-Coulomb are needed to describe the basic features of the frictional character of the resis- 
tance in sands, while a so-called nonassociated flow rule is needed to capture the inelastic volume 
effects (dilatancy and contraction) properly. As we shall briefly recapitulate, this nonassociated 
flow rule causes nonsymmetry in the constitutive operator matrix. 

We shall examine a relatively simple model, namely a Drucker-Prager yield function with a 
nonassociated flow rule. Anisotropy is introduced in the elastic part of the elasto-plastic model. 
Then, it is demonstrated that, for this fairly simple case, complex eigenvalues arise for the 
(nonsymmetric) constitutive matrix. This is shown analytically for plane-stress conditions and 
numerically for plane-strain conditions. It is demonstrated that, for vanishing anisotropy, the 
complex eigenvalues disappear. Finally, it is shown that  after combination of the constitutive 
operator with the equilibrium and the kinematic relations, and after discretization of the set of 
equations which has thus arisen, the resulting (nonsymmetric) tangential stiffness matrix does not 
possess any complex eigenvalues, in spite of the fact that, for some stress states, the underlying 
material stiffness matrix does feature complex eigenvalues. 

2. Y I E L D  S U R F A C E  

We consider a standard elasto-plastic material under small deformations, so that  the strain 
can be split into an elastic and a plastic part. The elastic strains are related to the stresses by 
Hooke's law and the plastic strain rates obey a nonassociated flow rule. We assume that  the 
Drucker-Prager yield function signals the onset of plastic deformation [2,3] 

all 
fDP = (112 -- 3/2)1/~ + --3- _ k = O, (1) 

with 
6 sin ¢ 6c cos ¢ 

a = 3 - sin ¢ '  k 3 - sin ¢ (2) 

Parameter c denotes the cohesion and ¢ is the internal friction angle. The plastic flow direction m 

is described by ~ with 

~li /DP = (If 2 -  3/2)1/2+ -~- -k ,  6 sin ¢ 
= 3 - sin------~" (3) 

Normally, ¢ is smaller than ¢ and can be negative. 
Two material simplifications are considered, namely plane-stress and plane-strain conditions. 

In case of plane-strain, the gradient vector n to the yield surface fDP becomes 

[i] - - / + -3  ' ( 4 )  

L 6o'zy 

- a ] ' D e  " 

~xx 
Of DP 
C~O'yy 

Of De 
O0"zz 
Of  Dp 

. c O o ' x y  . 

2 - 3 x 2 )  



An Eigenvalue Analysis 109 

while the flow direction is given by 

(fl - o~) [1, 1, 1, O] t. (5) m--n+~ 
As we will see later, the only variables that influence the eigenvalues are the elements of n and m. 

The simplification for plane-stress implies that the stress tensor has three different elements 
and only two eigenvalues (principal stresses). Vectors n and m now become 

"OfDe" 
C~O'xx 

Of Dp = 1 [ 2ayzj - a = =  [ + a 
n = Oavv 2( 12 --313)1/2 ~ , (6) 

L 6axv J 
(9fDp 

. C~O'xy . 

and 
m = n + (/3 - a__.___J)[1, 1, O] t, (7) 

3 
respectively. The yield surface is now an ellipsoid, Figure 1. Next, we will analyze the eigenvalues 
on the positive axv part of the ellipsoid. 
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Figure 1. Drucker-Prager yield surface for plane-stress conditions. 

3. E L A S T O - P L A S T I C  T A N G E N T  S T I F F N E S S  M A T R I X  

Standard elasto-plasticity leads to a linear relation between the stress rate ~ and the strain 
rate ~ : d -- Dep~ with Dep the elasto-plastic tangent stiffness matrix. This matrix consists of an 
elastic and a plastic part: Dep = De - Dp. We will denote the elastic part by De (symmetric) 
and the plastic part by Dp. Matrix De is defined through Hooke's law while matrix Dp is of the 
form 

DemntDe 
D p =  mtDe n (8) 

Accordingly, Dep reads 
DemntDe 

Dep = De mtDe n (9) 



110 H.  VAN DER VEEN et  al. 

If m differs from n, the plasticity is nonassociated and Dep will be nonsymmetric. As was 
observed by Wedderburn [4] as early as in 1934 (see [5]), this matrix has a rank that  is one less 
than the rank of De. More specifically: vector m is a right eigenvector, and n a left one, belonging 
to a zero eigenvalue. This means that  for plane-strain conditions, the nonzero eigenvalues are the 
roots of a polynomial of degree three and for plane-stress conditions of degree two. For plane- 
stress conditions, the eigenvalues of the elasto-plastic matrix will thus be real if the discriminant 
is positive 

AA 2 + BA + C, A real ¢~ B 2 - 4AC > 0. (10) 

For plane-strain conditions, we have a third degree polynomial A 3 + AA 2 + BA + C. Now let 

B A 2 A B  C A 3 
q =  3 9 '  r =  6 2 27'  (11) 

then all roots will be real if q3 + r 2 < 0 [6]. 

4 .  O R T H O T R O P I C  M A T E R I A L S  

In orthotropic materials, the stiffness is different in orthogonal directions. To not over compli- 
cate matters, we assume no contraction effects. The elasticity matrix De is diagonal. Consider 
now the following lemma. 

LEMMA 1. Let A be an n x n diagonal matrix. The nonsymmetric rank-1 update A + kuv  t is 
similar to a symmetric matrix, i f  the products uivi are ali positive. 

PROOF. We wish to prove that  the characteristic polynomial of A + k u v  t consists of terms in 
which either both ui and vi are present as a product for some i, or neither one is. Because then, 
if all uivi > O, A + kuv  t would be similar to A + kzz t with 

Z = U l V l  1/ U n V n  * ' ,  

for z i z~  = l u i v i l i / 2 1 u ~ v i l l / 2  = u i v~ .  

The characteristic polynomial of A + kuv  t is equal to the determinant of B = A + kuv  t - AI. 
For the computation of a determinant, we can use the following formula [7]: 

n 

det(B) = Z H b~, det(P~).  (12) 
Ir i----1 

The columns of P~ are a permutation of the columns of the identity matrix with the ordering 
according to the permutation ~r = (Trl , . . . ,  ~rn) of the numbers ( 1 , . . . ,  n). The sum is taken over 
all n! permutations lr. 

A term bi~ is either a diagonal element of the form a,i - A + ku,vi if i = 7ri, or an off-diagonal 
element of the form kuiv~r~, i ~ ri. Therefore, we can rewrite equation (12) as 

dee(B) = ~ l( ie~l H (~) ( a , i - A + k u i v i ) j  ew2 HOt) ku j v ,~}de t (P~) .  (13) 

In this expression, zrj ~ j .  The set wl(zr) consists of those i E {1 . . . .  , n)  for which i = r , .  The 
numbers j in {1 , . . . ,  n} for which j # 7rj are gathered in w2(r). Therefore, Wl and w2 are two 
complementary sets. 

The  first product of (13) already consists of products uiv~. To show that  this holds also for 
the second product, we will make use of the fact that  every first and second index of b in (12) 
appears exactly once. Suppose 1 E w2. Then 1 • Wl because wl and w2 are disjoint. But then, 1 
must be supplied as a second index by ~rj because Wl and w2 are complementary. Thus, both ul 
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and Vl will be present in the second product of equation (13). Naturally, this reasoning holds for 
any j E w2. Consequently, after rearranging the second product of equation (13), we obtain 

(14)| 

This lemma is helpful because it relates directly to the elasto-plastic matrix Dep. Matrix Dep 
is a rank-1 update of the elasticity matrix De, that is diagonal in case of orthotropy. So, A -- De 
and kuv t = -DemntDe /mtDen .  Because all elements of De are positive, the condition on the 
products u iv i  implies similarity of Dep to a symmetric matrix in case of positive products m i n i .  

Note, that the mi and ni appear only in pairs. It holds, therefore, that since the last element 
of m and n are identical, their product will always be positive. 

4.1. Or tho t rop ic  Plane-Stress  Condi t ions  

The stresses are now axz, aye, and axy. Therefore, m and n both have three elements. 
We denote the three diagonal elements of De by a, b, c, and we set out to determine whether 
the eigenvalues are real for any admissible stress distribution. We must, therefore, look at the 
discriminant of the characteristic polynomial of Dep.  After some elaboration of the appropriate 
formulae, we can distinguish three different notations consisting of a square and an additional 
term 

• mln l r r~3n3  
{ . . .  }2 + 4ac(b - a)(b - c) ~-~ , 

{ . . .  }2 + 4ac(b - a)(b  - c)" mlnlman3~ , 

\ m l I t l m 3 n 3  {... }2 + 4ac(b - a)(b - c) ~-~ , 

(15) 

(16) 

with 6 = mtDen. These formulations provide the following sufficient conditions: 

b < a < c }  
or c < a < b ~ m l n l  > 0 or m 2 n 2  ~ O, 

a < b < c ~ ~ m l n l  <= 0 or m2n2  > O. or c < b < a  J 

(18) 

If the conditions are not fulfilled, complex eigenvalues may appear. Because of Lemma 1, possible 
complex eigenvalues are expected only when one of the components of n changes sign. The 
direction of the plastic flow m differs from n so that the situation may arise that ni changes sign, 
but m~ not, and consequently m i n i  < O. 

For orthotropic plane-stress conditions, the yield surface has the form of an ellipsoid (Figure 1). 
Since m3 and n3 are equal and always appear together, and since they are the only mi, ni 
depending on azy (see equation (6)), the shear stress ax~ is present only in squared form in 
the characteristic polynomial. Therefore, the eigenvalues of the upper and lower part of the 
ellipsoid are the same and only those on the upper part are computed. Figure 2 is a view of 
these eigenvalues. There are two nonzero eigenvalues, and the range of each is printed above the 
plots, where the lowest value corresponds to the darkest shade of grey, and the highest to the 
lightest. For the choice of a, b, and c denoted in the figure, complex eigenvalues may only arise, 
according to conditions (18), in the areas where m i n x  < 0 and m 2 n 2  > 0. This is where the first 
component of the normal to the oval mesh lines (nt) changes sign, or put differently, where the 
tangent to the oval is horizontal. Some complex eigenvalues indeed appear. They are denoted by 
holes. 
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Figure  3. Complex  eigenvalues for or thot ropic  p lane-s t ra in  condi t ions .  

4.2. O r t h o t r o p i c  P l a n e - S t r a i n  C o n d i t i o n s  

There is one more stress component involved in this case: azz .  The elasticity matrix has, 
therefore, four columns and rows. The appropriate characteristic polynomial of the elasto-plastic 
polynomial is thus of degree four, with one zero root. This makes the analysis more difficult, 
and unfortunately to such an extent, that  so far it has appeared impossible to obtain sufficient 
conditions such as discussed in the previous section. A numerical analysis of the eigenvalue is 
visualized in Figure 3. For a specific circular mesh line of the Drucker-Prager cone, the appropriate 
ranges of local stresses were calculated. For all these combinations of stresses, eigenvalues were 
computed. We have only plotted the complex eigenvalues. They appear exactly there, where 
Lemma 1 does not hold (products m i n i  are not positive). This is in the areas where the tangent 
to the mesh line is horizontal. 
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5. I S O T R O P I C  M A T E R I A L S  

In an isotropic materials, two parameters play a crucial role: Young's modulus E and Poisson's 
ratio v. The elasticity matrix is composed of three different combinations of these two parameters 

(1 - 2v)~ 
a = (1 - v)~, d -- v~, c = 2 ' (19) 

where we have introduced 
E 

= (1 + v ) (1  - 2v ) "  (20) 

5.1. I s o t r o p i c  P l a n e - S t r e s s  C o n d i t i o n s  

The elasticity matrix is of size 3 x 3 

De = a . (21) 
0 

For further simplification we define the following: 

u = m l n l  + m2n2, v = m l n 2  + m2n l ,  w = m3n3. (22) 

Again we consider the discriminant of the characteristic polynomial of the elasto-plastic ma- 
tr ix Dep.  After some manipulations of the standard formulations, we obtain for the discriminant 
the following expression: 

(1 -- 2V)2~ 4 {V2V2/4 -- (1 Jr V)V(W -}" U/2)U Jr- (1 -{- V)2U2/4 -~- V2W 2 "1- V2UW} 

if2 

-- (1 - 2~)2~ 4 f (u~v ,  w) ,  (23) 

where 5 -- m tDen .  Function f ( u ,  v, w),  as it appears in equation (23), can be rewritten as follows: 

u(u - v)(1 + v)(u + 2w) u2(u + 2w) 2 v2v 2 (1 + 2u)u 2 
+ + - -  + (24) 

2 4 4 4 

Elaboration of equations (6) and (7) shows that  u + w > 0. By definition, w > 0 (m3 = n3). 

5 .2 .  I s o t r o p i c  P l a n e - S t r a i n  C o n d i t i o n s  

Taking into account azz, the elasticity matrix has one column and row more than that  for 

De= a d (25) 
d a 
0 0 

plane-stress conditions 

For further simplification, the following substitutions are made: 

U ~ m l n l  -I- m2n2  -~- m3~3 ,  ~v : ~4n4~  

--~ ~ I ~ 2  '~ ~ I n 3  J¢- m 2 n l  "4- m 2 n 3  + m 3 n l  "~- m z n 2 .  

Elaboration of the characteristic polynomial of Dep supplies the ingredients for computat ion 
of q3 + r 2 (see Section 3) 

_~lO/j2 
q3 + r 2 __ 17__~_~_~ ( 1 _ 2v)6(2u _ v)2 

(26) 
× { ( v v  - 2 v u  - u - v w )  2 + 8v2w(u + w - v )  - 4 v v w } ,  

which needs to be negative to guarantee real eigenvalues. In fact, elaboration of  equations (4) 
and (5) shows that  the second part  of equation (26) is always positive. 
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Figure 4. Smallest eigenvalue of the structural stiffness matrix for orthotropic plane- 
stress conditions. 
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Figure 5. Smallest eigenvalue of the structural stiffness matrix for orthotropic plane- 
strain conditions. 

6. S P A T I A L  D I S C R E T I Z A T I O N  

To examine whether the complex eigenvalues tha t  were computed for the Drucker-Prager plas- 
ticity model with orthotropic elastic are also found in a boundary value problem, finite element 
analyses were carried out. A simple rectangular domain was considered, which was discretized 
using ten linear elements. We recall that  it was assumed tha t  even though the material  operator  
contains complex eigenvalues due to its nonsymmetry,  the complete operator  consisting also of 
the equilibrium conditions and the kinematic relations, would not display any complex eigenval- 
ues. Indeed, when applying all the stress combinations on this simple (homogeneous) boundary  
value problem, no complex eigenvalues were computed. This holds  true for both  plane-stress 
and plane-strain conditions, for the case of orthotropic elasticity and (of course) for the isotropic 
case. A QR [8] method was used to extract  all the eigenvalues of the discretized boundary  value 
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problem, Figures 4 and 5 show the lowest (real) eigenvalues for all stress combinations for each 
of the orthotropic models. The eigenvalue distribution for isotropy is very similar. 

7. C O N C L U D I N G  R E M A R K S  

We have investigated the eigenvalues related to the operator of an elasto-plastic constitutive 
model with a Drucker-Prager yield function and a nonassociated flow rule. The nonassociated 
flow rule leads to a nonsymmetric constitutive operator, and therefore, possibly to complex 
eigenvalues. For the elastic part  of the elasto-plastic model, orthotropy and isotropy have been 
assumed, respectively. 

We have shown an important  role in the eigenvalue analysis is played by the difference between 
the normal to the yield surface n and the direction of the plastic flow m. When no contraction was 
considered, in combination with orthotropy, we have proved that  the eigenvalues of the stiffness 
matrix will always be real when the elements of m and n have the same sign. If they differ, 
we have deduced extra sufficient conditions for the plane-stress model. These enlarge the set of 
stress distributions for which real eigenvalues can be guaranteed. Some complex eigenvalues were 
computed, for those stress combinations not covered by any of the conditions. 

Isotropic materials on the other hand, for which contraction was taken into account, will 
always produce real eigenvalues. The structure of the characteristic polynomial is such that  we 
can guarantee real eigenvalues, for reasonable values for the elastic material parameters. 

Finally, we have combined the constitutive equation with the equilibrium and kinematic rela- 
tions and discretized the model with finite elements. We have shown that  for the simple example 
chosen, the structural tangent stiffness matrix does not possess complex eigenvalues. 
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