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Abstract 

Sol&, P., On the parameters of codes for the Lee and modular distance, Discrete Mathematics 

89 (1991) 185-194. 

We introduce the concept of a weakly metric association scheme, a generalization of metric 

schemes. We undertake a combinatorial study of the parameters of codes in these schemes, 

along the lines of [9]. Applications are codes over 2, for the Lee distance and arithmetic codes 

for the modular distance. 

Our main result is an inequality which generalizes both the Delsarte upper bound on 

covering radius, and the MacWilliams lower bound on the external distance, yielding a strong 

necessary existence condition on completely regular codes. 

The external distance (in the Lee metric) of some self-dual codes of moderate length over Z, 

is computed. 

1. Introduction 

The external distance S’ of a code C for the Hamming metric, introduced by 
Delsarte [9], is a useful upper bound on the covering radius of a code [7]. It can 
be computed from the distance distribution. If C is linear, s’ is the number of 
nonzero weights of the orthogonal dual. Recently, Helleseth [lo] noted that this 
bound failed in the case of arithmetic codes for the modular distances, and 
proposed another bound. 

In this work we introduce a new parameter, still called external distance, and 
denoted by p, which is well suited to metrics less regular than the Hamming 
metric, like the Lee metric or the modular distance, and can be computed either 
from the Lee composition distribution [12], or from enumeration of cyclotomic 
cosets. We recover Helleseth’s bound and give a tighter bound, which applies 
equally well to the Lee metric. As a by-product, we obtain results on the 
regularity of codes. An appendix collects some numerical applications to self-dual 
codes over Z,. 
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2. Weakly metric schemes 

2.1. Definitions 

A commutative association scheme with t classes consists of a finite set X along 

with a partition R = (R,, RI, . . . , R,) on X x X, satisfying the following axioms: 

AI: RO = {(x, x) ] x E X}, 

AZ: R;‘= {(y, x) 1 (x, y) E Ri} = RjS, for some i’, 
A,: The cardinality of {z 1 (x, z) E R; and (z, y) E Ri} is a function p$ which 

depends on k, but not on (x, y) E Rk, 
A,: p$=p;. 
We call a quasi-distance on X any mapping from X2 to the nonnegative reals 

satisfying the triangle inequality. If furthermore, this mapping is symmetric, it is 

called a distance, or metric. If we replace A2 by the stronger condition 

A;: R;’ = Ri the scheme is said to be of the Bose-Mesner type. We call weakly 
metric [19] an association scheme equipped with a quasi-distance d constant on 

the classes of the scheme. This means that there exists a monovariate function, 

still denoted by d, from [0, . . . , t] to the nonnegative reals such that: 

aRkb 3 d(a, b) =d(k). (1) 

In Tarnanen’s terminology [16], d is said to be R-invariant. However, we will not 

use the concept of quasi-metric scheme, which is central in [16]. When d is 

graphic, i.e., is the shortest path distance of some graph on X, [9] and d(k) = k, 
we recover exactly the definition of a metric scheme [8]. In the following 

subsections we construct examples of both practical and theoretical interest. 

2.2. An all-purpose construction 

Let X be a finite set endowed with a metric d. We suppose that a subgroup of 

the group G of isometries of d acts transitively on X, and we consider the action 

of G on the Cartesian product X X X. Let (R,, RI, . . . , R,) be the orbits with 

RO = {(x, x) ] x E X}. We assume that every Rj is symmetric. 

Proposition 1. (X, R) is a weakly metric scheme, of Bose-Mesner type. 

Proof. The pair (X, R) satisfies axioms AI, A*, A3 by Lemma 1.2 of [l]. Axiom 

A4 is entailed by Lemma 1.5 of [l]. Since G is a subgroup of the isometry group, 

d is constant on the Ri. 0 

2.3. The Hamming association scheme 

Let GF(q) denote the finite field with q elements. The Hamming scheme 

H(n, q) [B, 121 is defined by: 

xR,y e 44x, Y) = k (2) 
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where d, stands for the Hamming distance [12]. The Hamming scheme is metric, 

hence weakly metric for the Hamming distance. This can be recovered from 

Proposition 1 by letting X = GF(q)” and G = S, ] S, where ] denotes the wreath 

product [ 11. 

2.4. The Lee association scheme 

We consider the scheme on Z, with s = [q/2] classes (called ordinary q-gon in 

Ill): 
xR;y e x-y=fk. 

For any vector z in Zz we define its Lee composition, denoted It(z): 

/c(z) = (co, Cl, . . . ) cs) where the ci are given by: 

ci = I{j E [0, TZ] ) Zj = *i>l. 

We now define a scheme with N = (” :” ) - 1 classes on Zi by: xR,y a 
fc(x - y) = k where k is any composition vector. 

This scheme is called the extension of order n of the q-gon and is denoted by 

L(n, q) (and extensively studied) in [16]. It was first introduced for q an odd 

prime in [8]. The Lee metric is constant on the classes of the scheme, since we 

can define the Lee distance by: 

xR,y j d(x,y)=k,+2k,+..++sk,. 

Starting from this definition, we could recover everything by Proposition 1 [15]. 

Note that the Lee distance is the shortest-path distance on the Cartesian product 

of II copies of the q-gon. 

The Lee scheme is weakly metric for the Lee distance, but in most cases not 

metric [14] and [22, an encyclopedic reference]. 

2.5. Arithmetic codes for the modular distance 

(This example is new.) We let X = Z,,,, the integers modulo M, we let d be the 

modular distance in the sense of [6] with radix r, and G be the semi-direct 

product of TM by Gr,M. The group TM is the group of translations of ZM, and Gr,M 

the group of permutations of Z, generated by multiplications by r, and -1. We 

assume that r is prime to M so that Gr,,, is an isometry group for d (see [6] for a 

proof in the case of M = r”’ - 1). d is graphic from the discussion in [17, p. 1231. 

Roughly speaking, the orbits of Gr,+., on ZM are the cyclotomic classes merged 

with their opposite. If X,, = {0}, Xi, X,, . . . , X; denote these orbits, then the 

relation: 

xR,y e x-YEX, 

defines a scheme on ZM that we call the Clark-Liang scheme CL(M, r). For 

instance, M = 17, r = 2, the nontrivial orbits on Z,,, are 

x, = (1, 2, 4, 8, -1, -2, -4, -S} (3) 
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of modular weight 1, and 

X, = (3, 6, 12, 7, -3, -6, -12, -7) 

of modular weight 2. 

(4) 

We obtain a two-class association scheme in the Bose-Mesner sense, or 

equivalently, a strongly regular graph [S, 121. (Here the cyclotomic classes 

coincide with their opposites.) Its parameters in the notation of [5] are 

(17,g, 274). 
In the previous case the scheme was metric for the modular distance. This is 

not always the case. A counterexample is CL(31, 2) with the orbits on Z3,: {0}, 

C3 U CT, C5 U Cll, Cl U Cl5 of weights 0,2,2,1 where Ci stands for the ith 

cyclotomic class. This latter scheme is weakly metric, but not metric for the 

modular distance, since two classes of the scheme share the same modular weight. 

3. Packings and coverings 

We call any non-empty subset of X, a code. A code Y is said to be an 

E-packing if the spheres for d of radius E centered on the points of Y, are 

disjoint. The largest E such that Y is an E-packing is called the packing radius, or 

error correcting capacity of Y, and denoted by e. 

The distance of a point x to the code Y is defined as: 

d(x, Y) = $I d(x, y). 

A code Y is said to be an r-covering if the spheres of radius r centered on the 

points of Y cover X. The smallest r such that Y is an r-covering is called the 

covering radius of Y and denoted by p. 

Clearly, p 3 e. Codes such that p = e are called perfect. Perfect codes in weakly 

metric schemes are investigated in [19]. 

The principal aim of this paper is to derive an upper bound on p (Theorem 3), 

involving e and a parameter to be defined in the next section. 

4. MacWiHiams transform in a scheme 

Let Y denote a code. Its inner distribution [S, p. 251, is defined by: 

1 
ai=i]&flY*]; i=O,l,..., t. (5) 

In H(n, q), (u,)~ is the distance distribution, and in L(n, q) the Lee composition 

distribution. Its dual inner distribution is defined by: 

i=O 
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where the qk(i) are numbers depending on the scheme (X, R) and called second 
eigenvalues. There is an inversion formula: 

ai = A- i p,(i)aj 
IXI i=o 

(7) 

where the pk(i) are numbers depending on (X, R) and called first eigenvalues. 
Suppose now that X is an abelian group, with characters {x-, a,,(x) ) y E X}, 

and Y a subgroup of X. We define the dual subgroup Y’ [8, pp. 23-881 by: 

Y’ = {y E x 1 vx E Y@,(x) = l}. (8) 

In this case the a; are, up to a constant factor, the inner distribution of Y’. For an 
unrestricted code Y, the number of indices k 3 1 such that a; is nonzero is called 

the dual degree of Y and is denoted by s’. 

5. The outer distribution of a code 

The outer distribution matrix of a code is defined ([8, p. 251) by the relation: 

Bx,i= l{Y E y 1 xRiYll* (12) 

In H(n, q) the row B, of B is the weight distribution of the translate of the code 
Y by x. For future use, we quote the following lemma. 

Lemma 1. rank(B) = s’ + 1. 

Proof. See [8, Theorem 3.1 and Corollary 3.2, p. 261, or [9] for the case of 

H(n, 4). q 

6. Bounds on the parameters 

We call the dispersion function and denote by n(e), [14], the number of i such 
that: 0s d(i) se. This parameter reduces to e + 1 in metric schemes. For the 
connection with the Lloyd theorem in the Lee metric, see [14, 18-191. 

Theorem 1. s’ 5 n(e) - 1. 

Proof. Let y denote an arbitrary point of Y, fixed once and for all, and such that 
XRiY with d(i) s e. 

By the definition of n(e) there are n(e) such x with pair-wise distinct i, 
yielding that many rows beginning with i zeros, and a nonzero (i + 1)th entry. 
This yields a regular n(e) X II(e) upper triangular submatrix of B, hence n(e) 
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linearly independent rows (i = 0 is counted in this process). By elementary linear 

algebra, we have that II(e) s rank(B). Using Lemma 1, the result follows. 0 

In the case of H(n, q) this yields the MacWilliams inequality [8,12]: 

The proof in [8-91, makes use of the P-polynomial structure. Though more 

general, our proof is simpler. 

We give the natural generalization of the Delsarte bound in H(n, q) [9]. 

Theorem 3 is a tighter bound, but its proof combines the arguments of Theorems 

1 and 2, so that we give all three proofs, with a decreasing amount of details. The 

proof in [9,12] makes use of a recursion on the weight distribution of translates. 

Again, despite its greater generality, our proof is simpler. Of course, we do not 

obtain a recursion on the columns of B. 
First, we recall a simple fact [20] on graphic distances. 

Lemma 2. A distance d is graphic iff for every pair of points (x, y) at distance k 

apart, there is a point z with d(x, y) = k - 1, and d(y, z) = 1. 

Theorem 2. In a weakly metric scheme with d graphic p s s’. 

Proof. Same reasoning as in the proof of Theorem 1 with the xi such that 

d(xi, Y) = i, i =O, . . . , p. The point xP exists by definition of p. The point xP_i 

exists by application of Lemma 2. By induction all Xi exist. 0 

Example 1. Consider an AN code [lo] for the modular distance [6] with radix r (r 
prime to M) and modulus M such that M = AD. 

AN= {Ai 1 l<icD}. (21) 

Then the additive dual of AN in the sense of Section 3 is DN and s’ is the 

number of nontrivial orbits of Gr,A on DN. This is also the number of nontrivial 

orbits Of Gr,* on z,, say nA, since, for any integers a and b <A we have that 

a = b(fr’)[A] e Da = Db(fr’)[M]. (24 

We obtain immediately the known [lo] result: 

p(AN) s nA. (23) 

As shown in [lo] this bound is attained on examples and the number of 

modular weights of DN can be <p(AN), so that the analogous statement of 

Delsarte bound in H(n, q) is wrong in general. It is obviously true when the 

modular scheme is metric, but this seems to occur rarely. This means that the 

relations xR;y e d(x, y) = k do not always yield an association scheme, as in 

the first example of Subsection 2.5. Since d is graphic, this scheme would be 
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metric, s’ would count nonzero weights, and Delsarte bound on covering radius 

would always hold. 

We introduce a parameter called external distance, denoted by p, and defined 

as: 
p=s’-II(e)+e+l. 

This parameter is the usual external distance in metric schemes, since there 

II(e) = e + 1. We are now in a position to prove the main result of this paper, 

which implies both Theorems 1 and 2. 

Theorem 3. In a weakly metric scheme with d graphic, p s p. 

Proof. Take the same i as in Theorem 1, plus p - e points xi such that 

d(xi, C) = i E [e + 1, p]. Using lemma 1 we obtain: 

n(e)+@--e)Ss’+l. 0 

Example 2. For the double error-correcting code Qi2 of the appendix we obtain 

p d 11 instead of p s 12 with Corollary 2. 

Example 3. In CL(218 - 1, 2) we consider the AN code with A = (218 - 1)/19 

(Mandelbaum-Barrow code). It has minimum distance d = 6, hence packing 

radius e = 2. It is easily seen by counting in base 2 that the first cyclotomic cosets 

c 2k+l, 0 s k G 28 are disjoint [12, p. 2621 and disjoint from their opposites. By 

taking 2k + 1 for some j we get 2 * 9 = 18 cosets of modular weight 2, implying 

that 27(2) 3 20, which by Corollary 3 yields p G S’ - 17, a dramatic improvement 

on Theorem 2. 

7. The regularity of codes 

We shall assume henceforth that d is graphic. We call b the number of distinct 

rows in B for x not in Y. 

Proposition 2. b 2 s’. 

Proof. There are b + 1 distinct rows in B, whose rank is s’ + 1. 0 

A set Y is said to be I.-regular if the row B(x) depends only on d(x, Y) for 

d(x, Y) s 3c and completely regular iff p-regular, i.e., p = b. These definitions are 

a straightforward generalization of those in [8-91. 

Corollary 1. If Y is completely regular then p = s’. 

Proof. Obvious from Theorem 2 and Proposition 2. 0 
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Proposition 3. Zf Y is a completely regular set then: 

II(e) - 1 = e. 

Proof. Y is completely regular, hence p = s’, by Corollary 1. Since s’ + e L 
n(e) - 1 + p we have e 2 n(e) - 1. The result follows, for e < n(e) - 1 holds by 
definition of E q 

We point out that there exists perfect sets in weakly metric schemes that are not 
completely regular. This contrasts strongly with metric schemes, where every 
perfect code is completely regular. For instance, we take X = L(n, q) with 
n = 2, q = 13, and Y the negacyclic self dual perfect code [2] with generator 
polynomial g(x) = x + 5 and ‘negacycle representatives’ (0, 0), (1,5), (3,2), 

(674). 
We have p = e = 2 and s’ = 3 # 2. Therefore Y is not completely regular. 

Theorem 4. For q L 5 and e 2 2 there are no completely regular codes in L(n, q). 

Proof. Clearly n(e + 1) - II(e) 2 1. Since q 3 5, 1 # 2 in Z, and 17(2) = 4, then 
an easy induction proof shows that n(e) 2 e + 2 for e > 2. 0 

Theorem 5. For n 3 3 and e 3 2, there are no completely regular codes in 

CL(2” - 1, 2). 

Proof. As in Theorem 4, it suffices to show that H(2) 3 4. More precisely, we 
show that II(2) = 2]n/2]. Note that n(l) = 2. We just have to count 17(2) - 
II(l), which is the number of CNAF (cyclic non-adjacent form [6,19]) of weight 
2, not equivalent by cyclic shift, nor complementation. 

There are 2( [n/2] - 1) of them, the 2 coming from the factor fl, and n/2 from 
the fact that the CNAF in CL(2” - 1, 2) is of length [n/2]. 0 

It can be shown [21], that there are completely regular codes in the Lee metric 
(p = 1) and modular distance (p = 1, 2, 3). A very simple example with p 
arbitrary is given in the next section. 

8. Appendix on self-dual codes over Z5 

An interesting feature of the external distance in L(n, q) is that it can be 
computed from the Lee composition distribution. Using information and notation 
of [II], we have compiled the following table, where the last column was 
established by using the preceding results and decompositions of the codes. It is 
easily seen that CT is completely regular of covering radius m. Computations of 
Lee enumerators were done in MACSYMA. See Table 1. 
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Table 1 

Length 1 Name e 1 Weight En. p overing Bound s’ I P 
2 c.J I 0 I I 1 Ill 1 

193 

The entry ‘covering bound’ is the lower bound on p computed through the 
well-known sphere-covering argument. Generating functions for the volume of 
the Lee spheres were found in [2], and computed in MACSYMA. See [24] for 
details. 

9. Conclusion 

In this paper, and in [19], we have introduced the concept of weakly metric 
scheme, a generalization of Delsarte’s metric schemes. If this concept is not 
completely new (cf. [16] and Section 2.1) a combinatorial study of codes in this 
setting, along the lines of [9], certainly is. 

We generalize to weakly metric schemes the MacWilliams inequality on the 
dual degree, and the Delsarte inequality on the covering radius. This solves a 
research problem raised in [lo]. 

In particular, a new parameter, called the dispersion function, measures the 
‘nonmetricity’ of a scheme. Connections with Neumaier’s classification of graphs 
by regularity [23] are pointed out in [24]. See also [25] for a coding theoretic use 
of [23]. An algebraic characterization of association schemes with a given n(e), 
generalizing Theorem 5.6 of [8], would be of great interest. 

From a constructive point of view, the Lee scheme seems less promising than 
the Clark-Liang scheme (compare the hypotheses of Theorems 4 and 5). In [21] 
we construct distance regular graphs of diameter 3 from completely regular 
arithmetic codes. 
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