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Abstract

In the past years, there have been tremendous advances in the field of planar N' = 4 super Yang-Mills
scattering amplitudes. At tree-level they were formulated as Gramannian integrals and were shown to be
invariant under the Yangian of the superconformal algebra psu(2, 2|4). Recently, Yangian invariant defor-
mations of these integrals were introduced as a step towards regulated loop-amplitudes. However, in most
cases it is still unclear how to evaluate these deformed integrals. In this work, we propose that changing
variables to oscillator representations of psu(2, 2|4) turns the deformed Gramannian integrals into certain
matrix models. We exemplify our proposal by formulating Yangian invariants with oscillator representations
of the non-compact algebra u(p, g) as GraBmannian integrals. These generalize the Brezin—Gross—Witten
and Leutwyler—Smilga matrix models. This approach might make elaborate matrix model technology avail-
able for the evaluation of GraBmannian integrals. Our invariants also include a matrix model formulation of
the u(p, ¢) R-matrix, which generates non-compact integrable spin chains.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction

The maximally supersymmetric Yang—Mills theory in four-dimensions, for short A" = 4 SYM,
is a remarkably rich mathematical model. Even more so in the planar limit where the theory is
conjectured to be integrable. By now this integrability is well established for the spectral prob-
lem of anomalous dimensions, see the comprehensive review series [1]. Less is known about
integrability for scattering amplitudes. However, at tree-level the amplitudes can be encoded as
surprisingly simple formulas, so-called GraBmannian integrals [2,3], see also [4]. The mere ex-
istence of such formulas already hints at an underlying integrable structure. Furthermore, it was
shown that tree-level amplitudes are invariant under the Yangian of the superconformal algebra
psu(2, 2|4) [5]. For the GraBmannian integral formulation this was achieved in [6,7]. The ap-
pearance of this infinite-dimensional Yangian algebra is synonymous with integrability. Later,
it was observed that the tree-level amplitudes allow for multi-parameter deformations while
maintaining Yangian invariance. These deformations are of considerable interest as they relate the
four-dimensional scattering problem to the two-dimensional quantum inverse scattering method.
Furthermore, they might regulate infrared divergences at loop-level [8,9].

As in the undeformed case, the deformed tree-level amplitudes can be nicely packaged
as GraBmannian integrals [10,11]. Let us briefly review this formulation. The Grafimannian
Gr(N, K) is the space of all K-dimensional linear subspaces of CV. The entries of a K x N
matrix C provide “homogeneous” coordinates on this space. The transformation C — V C with
V € GL(K) corresponds to a change of basis within a given subspace, and thus it does not
change the point in the GraBmannian. This allows us to describe a generic point in Gr(N, K) by
the “gauge fixed” matrix

Cik+1 -+ Ciy

C=(1K><K§C) with C= : : . (1.1)
Ckk+1 -+ Ckn

The amplitudes are labeled by the number of particles N and the degree of helicity viola-

tion K. Amplitudes with K = 2 are maximally helicity violating (MHV). The deformed N -point
NX=2MHYV tree-level amplitude is given by the Grafmannian integral

54K|4K(CW)
a,..., K)1+vl+<—_vl_ .--(N,....,K — 1)1+U271—v;,

with the holomorphic K (N — K)-form dC = /\k’ ;1 dCy;. In this formula (i, ..., i + K — 1) denotes
the minor of the matrix C consisting of the consecutive columns i,...,i + K — 1. These are
counted modulo N such that they are in the range 1, ..., N. The kinematics of the j-th particle

An.k =/dC (1.2)

is encoded in a supertwistor with components Wi, where A is a fundamental gl(4|4) index. The
2N deformation parameters {v;r , v; } have to obey the constraints

vh g =vi (1.3)
for i = 1,..., N. Then the GraBmannian integral (1.2) is invariant under the Yangian of
psu(2, 2|4), where the generators of the algebra act on the supertwistors. In the undeformed
case vl.i = 0, the proper integration contour for (1.2) is known and the integral can be evaluated
by means of a multi-dimensional residue theorem [2.4]. In the deformed case, the evaluation
is much more involved due to branch cuts of the integrand. Most notably there are partial re-
sults on the 6-point NMHV amplitude [10]. However, finding an appropriate multi-dimensional
integration contour for the evaluation of (1.2) is still a pressing open problem.
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In the present work, we establish a connection between the GraBmannian integral formulation
of Yangian invariants and unitary matrix models. We follow a systematic approach and do not
focus on the particular supertwistor realization of the algebra psu(2, 2|4) that is often employed
for amplitudes. Instead, we work with a class of harmonic oscillator representations of the non-
compact algebra u(p, q), where we restrict to the bosonic case for clarity. We find that also in
this setting Yangian invariants can be formulated as Gralmannian integrals. The only change
compared to (1.2) is that the delta function of the supertwistors gets replaced by an exponential
function of oscillators,

SAKI4K (CW) (detc)fqetr(CI’,JrIoC_')|0> ) (1.4)

For the moment, we restrict for simplicity to the “split helicity” case N = 2K in order for C~!
to exist. The K x K matrices I, and I, contain certain oscillator invariants associated with the
compact subalgebras u(p) and u(g), respectively. The integration contour is still unspecified.
We observe that the deformation parameters vl.i can be chosen such that the exponents of all
minors in (1.2) vanish. If we restrict in addition the range of integration to unitary matrices C,
the Gralmannian integral reduces to an intensively studied unitary matrix model, the Brezin—
Gross—Witten model [12,13]. Similarly, we may also obtain the Leutwyler—Smilga model [14].
This motivates us to conjecture that the “unitary contour” works as well for general deformation
parameters. This would mean that the GraBmannian integrals can be considered as novel types of
unitary matrix models. We provide a non-trivial example of this conjecture by investigating the
invariant with (N, K) = (4, 2). In this example the GraBmannian integral becomes a U (2) matrix
model that correctly evaluates to the u(p, ¢) R-matrix, which is known to be Yangian invariant.
This R-matrix generates non-compact integrable spin chains.

The connection between Gramannian integrals and matrix models opens exciting possibil-
ities. In particular, advanced matrix model technology such as character expansions, see e.g.
the concise review [15], might become applicable for the evaluation of GraBmannian integrals.
We expect our results to generalize straightforwardly from u(p, g) to superalgebras u(p, g|r)
and thus to psu(2, 2|4). Hence our matrix model approach should also be of utility for the open
problem mentioned above, the evaluation of deformed N = 4 SYM amplitudes. There are further
fascinating prospects which we elaborate on in the outlook of Section 7.

2. Yangian and non-compact oscillators

In this preparatory section, we introduce the Yangian of the Lie algebra gl(n) and the notion of
Yangian invariants. In addition, we define the classes of oscillator representations of the algebra
u(p, q) C gl(p + g = n) that we will use to build up representations of the Yangian.

The Yangian of gl(n) is defined by the relation, see e.g. [16],

Ru—u)(Mw)@DA@Mu)) =(1&Mwu)(M@u)® HR(u—u'). 2.1

Here R(u) acts on the tensor product C* @ C" and solves the Yang—Baxter equation. It is built
from n x n matrices with components (esp)cp = dacépp and reads

n
Ruwy=14u"" Y erp®epa. (2.2)
A,B=1
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The operator valued monodromy matrix M (1) contains the infinitely many Yangian generators

M Xl)a withr =1, 2, .... They are obtained from an expansion in the complex spectral parameter u
n
My =Y eagMap), Map)=My+u"" M) +u2MT+ ... (2.3)
A,B=1
with Mgol)g = 64 p. Expressed in terms of these generators, the defining relation (2.1) becomes
min(r,s)
G MEDI = > (MM — M ). 2
q=1

From this formula one easily deduces that all generators MX; with 7 > 2 can be expressed via
M/gl; and M/(f}g. In our study we are interested in states that are Yangian invariant [17]

MapW)|V) =64BI¥). (2.5)
With the help of the expansion in (2.3) this condition translates into
Mwy =0, M3w)=0. (2.6)

From now on we specialize on realizations of the Yangian where the monodromy is that of an
inhomogeneous spin chain with N sites. Thus
M@u)=Li(u—v1)---Ly(u—vy) 2.7)

is the product of N Lax operators

n
Litw—v)=1+@—-v)"" > el (2.8)
A,B=1
Here the meaning of the word inhomogeneous is twofold. First, we associate a complex inho-
mogeneity parameter v; with each site. Second, each site carries a different representation of the
gl(n) algebra with generators J}, ; that satisfy

g Jepl=8caTip —8apIip 2.9)

and act on a space V'. Consequently the matrix elements of the monodromy M () act on the
tensor product V! ® --- ® VV. The Yangian generators introduced in (2.3) can be expressed in
terms of the gl(n) generators,

N N N n
1 i 2 i i j
M= "Tha. MOB=D"0idha+ Y Y Jiadhe. ... (2.10)
i=1 i=1 i,_j:_l C=1
i<j

Next, we introduce the representations of the gl(n) algebra which we will employ at the sites
of the spin chain monodromy (2.7). We work with certain classes of unitary representations of
the non-compact Lie algebra u(p, g) C gl(p + q) that are constructed in terms of a single family
of harmonic oscillator algebras. These are sometimes referred to as “ladder representations”, see
e.g. [18]. Consider the family of oscillator algebras

[as,ap]=8ap, a,=a4, 24l0)=0 (2.11)
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with A, B =1,2,...n. These oscillators are realized on a Fock space F that is spanned by
monomials of creation operators a4 acting on the vacuum |0). We split the index A = (¢, @) into
apairofindicesa =1,...,panda = p+1,..., p+q with p+¢ = n. Employing this notation,
we define generators

Jocﬂ%Ja' ﬁaaﬂg—ﬁaﬁ'
Jap) = L) = L (2.12)
Jdﬂ §Jd/§ adaﬂg—adaﬁ

that satisfy the gl(n) algebra (2.9). Let V. C F be the eigenspace of the central element
C=>",_,Jaa with eigenvalue c. For each ¢ € Z this infinite-dimensional space forms a uni-
tary irreducible representation of u(p, g). Hence we may interpret ¢ as a representation label.
The space V. contains a lowest weight state, which by definition is annihilated by all J4 with
A > B. Notice that in the special case ¢ =0 or p = 0 the space V, is finite-dimensional and
forms a unitary irreducible representation of the compact Lie algebra u(n). According to (2.6),
Yangian invariants are in particular gl(n) singlet states. For such states to exist, we need also spin
chain sites with representations that are dual to the class of representations V.. Its generators are
obtained from (2.12) by Jaz = —J', 5. This yields

Ja,g J —aga, aga,
Tap) = = (e 2.13)
Jap. Ja,g —apag ajag

satisfying the gl(n) algebra (2.9). The element C = > e Jaa is central. We denote the
eigenspace of C with eigenvalue ¢ by V. C F. For each ¢ € Z this space forms a unitary ir-
reducible representation of u(p, ¢). The representation V. is dual to V_.. It contains a highest
weight state, which is annihilated by all Jap with A < B. In case of ¢ =0 or p = 0 the rep-
resentation V. is a unitary irreducible representation of u(n). Having defined the two classes of
non-compact oscillator representations allows us to use them at the sites of the monodromy M (u)
in (2.7). At each site we chose either a representation V., with generators J 1’4 g =J4p or V,; with
J A B = =J '+5- The monodromy M (), and hence the representation of the Yangian, is completely
specified by 2N parameters, i.e. N inhomogeneities v; € C and N representation labels ¢; € Z.
We remark that the tensor product decomposition of the oscillator representations employed at
the spin chain sites has been studied in [19], see also e.g. [20,21] for exemplary results.

3. Simple sample invariant

Before formulating a GraBmannian integral for the just defined oscillator representations of
u(p, q), it is instructive to construct a simple solution of the Yangian invariance condition (2.5)
“by hand”.

We consider a monodromy with two sites. To be able to construct a gl(n) singlet state,
we choose for the first site a “dual” representation and for the second site an “ordinary” one.
Hence the monodromy elements M 4 p (1) act on the space ]_)Cl ®V,,. The gl(n) generators, which
appear in the Lax operators (2.8) and consequently also in the Yangian generators (2.10), become
J /{ 5= =] 4p and J% B= =J .5+ To proceed we will make an ansatz for the Yangian invariant state
|W2,1), which is labeled by the total number of sites N = 2 and the number of “dual” sites K = 1.
For this ansatz we introduce u(p) and u(g) invariant contractions of oscillators, respectively,

p+q

P
(1e2) :Z . (lo2)= ) ala;. (3.1)

a=p+1
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We assume |5 1) to be a power series in (1 @ 2) and (1 o 2) acting on the Fock vacuum |0). Next,
we demand Yangian invariance (2.5) of this ansatz. Furthermore, we impose that each site carries
an irreducible representation of u(p, g), i.e. Cl [Wa.1) =c1|W2,1) and C2|W2 1) = c2|W2,1). This
fixes the invariant, up to a normalization constant, to be

[W2,1) =2mi f: MMM:M le,+4(2/(T02)(102))

g! h! Jde2)(To2) 2 (127710

g.h=0
g—h=cr+q

(3.2)

where we identified the sum with the series expansion of the modified Bessel function of the first
kind 7, (x).! The parameters of the monodromy have to obey

v1—v2=1—n—c2, C1=—L‘2€Z. (3.3)
We observe that the invariant (3.2) can be expressed as a complex contour integral

gC12(1'2)+C1_2I (102) 10)

I‘I’2,1>=/dC12 34

Cll 2+¢2+!1
Here the contour is a counterclockwise unit circle around the essential singularity at C12 = 0.
It can be interpreted as group manifold of the unitary group U (1). The integral is easily evaluated
by using the residue theorem. This yields the series representation in (3.2). As we will see in the
next section, (3.4) can already be considered as a simple Gramannian integral.

We finish this section with some remarks. The two-site invariant (3.2) can be thought of as
the oscillator analogue of the twistor intertwiner that has been essential for the construction of
Yangian invariants in [22-24]. This intertwiner already appeared in the early days of twistor
theory, cf. [25,26]. We also note that recently a two-site Yangian invariant for oscillator repre-
sentations of psu(2, 2|4) was used in [27] based on a construction in [28]. It takes the form of an
exponential function instead of a Bessel function as in (3.2). This difference occurs because the
invariant of [27] is not an eigenstate of the central element of the symmetry algebra at each site.”
Furthermore, we remark that employing the identity

LQ2Vx)  oFi(v+15x)
NN Fw+1)
cf. [29], the invariant (3.2) can alternatively be expressed in terms of a generalized hypergeomet-
ric function o F1(a, x). Sometimes this form is more convenient because it avoids the “spurious”
square roots, which are absent in the series expansion. Additionally, the invariant in (3.2) has
infinite norm and thus is technically speaking not an element of the Hilbert space V,, ® V,,. As a
last aside, let us consider the special case of the compact algebra u(p, 0), i.e. we set g = 0. The
sum in (3.2) simplifies to a single term
(1e2)

[W21) = ZNiTIO) (3.6)

, (3.5)

with ¢; > 0, where we used (1 o 2)" = 8on. This form of the compact two-site Yangian invariant
is known from [17].

' In the double sum in (3.2) ¢y + g can also manifestly take negative values. The validity of the Bessel function
formulation in this case is easily verified using the series expansion.
2 We thank Ivan Kostov and Didina Serban for clarifying this point.
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4. GraBSmannian integral formula

At this point everything is set up to state our main formula, a GraBmannian integral for Yan-
gian invariants with oscillator representations of the non-compact algebra u(p, ¢g). We motivate
it by combining our knowledge of the Gramannian integral for scattering amplitudes (1.2) with
that of the simple sample invariant (3.4). In this section we merely state the resulting formula.
A proof of its Yangian invariance is deferred to Appendix A.

A Yangian invariant for a monodromy with N = 2K sites, out of which the first K are “dual”
sites and the remaining K = N — K sites are “ordinary”, is given by the GrafSmannian integral
formula

etr(CI’.—Q—IOC*l) 0)

[WN k) =/dC 4.1

(etC)(1, ..., K) =" . (N, .. K — )Tk
Here the numerator can be understood as a matrix generalization of the sample invariant (3.4).
The single contractions of oscillators in the exponent are replaced by the matrices

18K+ -+ (18N)

I = : : 4.2)
(KEK+1) - (KEN)
These K x K matrices I, and I, contain, respectively, all possible u(p) and u(g) invariant con-
tractions of the type (3.1) between a “dual” and an “ordinary” site. The denominator of (4.1) is
analogous to the GraBmannian integral for scattering amplitudes (1.2) and contains the minors
of the K x N matrix C defined in (1.1). Notice however the extra factor of (detC)?. The gauge
fixing of the matrix C corresponds to the order of “dual” and “ordinary” sites. Furthermore, the
measure is the same as in (1.2). Finally, the 2N parameters {vl.+ , v; } have to obey the N relations
in (1.3).

Next, we specify in detail the monodromy M (1) with which the Gramannian integral for
Wy k) in (4.1) satisfies the Yangian invariance condition (2.5). The elements M4p(u) of this
monodromy act on the space V¢, ® -+ @ Ve ® Veg, ® -+ ® V. The gl(n) generators in the
Lax operators (2.8) and in the Yangian generators (2.10) become

lAB for i=1,...,K,

Jie= 43
AB {’AB for i=K+1,...,N. )

In the formula (4.1), the 2N parameters {v;, ¢;} describing the monodromy were traded for a
different set of 2N parameters { v, v; }. They are related by, cf. [30],3

1

Ci / g+{n—1 for i=1,...K, 44

+ 1
vii=v,t—, V,=v; — .

i ) L ) 0 for i=K+1,...N.
The monodromy is equivalently described by either {v;, ¢;} or {v;r , v; }. Notice, however, that for
the oscillator representations under consideration the deformation parameters vl.i cannot be any
complex numbers. They have to be such that the corresponding c¢; are integers. This completes
the specification of the monodromy.

3 This redefinition of parameters has also been discussed in [23] for the u(2) case, i.e. n = 2. The equation for vlf
differs from the corresponding equation (40) in [23] by a shift of 1 at the dual sites. This shift originates from a shift of
the inhomogeneities of the Lax operators at those sites.
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Let us remark that imposing the condition N = 2K guarantees C to be a square matrix. Thus
it is sensible to use its inverse in (4.1). In the compact special case u(p,0) we have I, =0,
thus C~! is absent from (4.1) and the GraBmannian integral yields Yangian invariants also for
N # 2K. However, we do not elaborate on the compact case in this work. We note that be-
cause of I, = 0, the compact case of (4.1) is reminiscent of the link representation of scattering
amplitudes, cf. [2]. It is different though, as the amplitudes transform under the non-compact
algebra psu(2,2|4). Another remark concerns the multi-dimensional contour of integration in
(4.1), which we did not specify so far. The proof in Appendix A only assumes that the boundary
terms vanish upon integration by parts, which is satisfied in particular for closed contours. The
choice of the integration contour will be an issue in the following sections.

5. Unitary matrix models

In this section we choose a “unitary contour” and special values of the deformation parameters
vl.jE in the GraBmannian integral (4.1). Thereby this integral reduces to the Brezin—Gross—Witten
matrix model or even a slight generalization thereof, the Leutwyler—Smilga model. In this spe-
cial case, the Graimannian integral can be computed easily by applying well established matrix
model techniques. In this way, we obtain a representation of these Yangian invariants in terms of
Bessel functions.

In order to reduce (4.1) with N = 2K to the Leutwyler—Smilga integral, we restrict to a special
solution of the constraints in (1.3) on the deformation parameters vl.i. The solution has to be
such that all minors in (4.1), except for (1,...,K)=1and (N — K +1,..., N) =detC, have a
vanishing exponent. A short calculation shows that this solution depends only on two parameters
veC,ceZ. Itis given by

v =v—c—n+14+@G-1), ¢ =—- for i=1,...,K, 6.1
v =v+(@—-—K-1), ¢ci= ¢ for i=K+1,...,2K. ’
Here we used (4.4) to change from the variables {vf, v; } employed in (4.1) to the variables
{v;, ¢;i}. Let us now focus on the measure dC = /\k, ;dCr; in (4.1). One readily verifies that

dc

[dC]ZXW’

5.2)
with a constant number x € C, is invariant under C + VC and C +— CV for any constant matrix
V € GL(K). Hence for unitary C the expression [dC] defined in (5.2) is the Haar measure on
the unitary group U(K). The normalization x is chosen such that |, U( K)[dC] = 1. We select a

“unitary contour” in the GraBmannian integral (4.1) by demanding C* = C~!. This allows us to
express the Yangian invariant with the special choice of deformation parameters (5.1) as
U CL+LCT) 10)

_ 1
o =1 [

U(K)

(5.3)

where ¢ € Z is a free parameter. Eq. (5.3) is known as Leutwyler—Smilga model [14], where the
matrices I, and I, are considered as sources. For ¢ = —q it becomes the Brezin—-Gross—Witten
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model [12,13]. Remarkably, the integral (5.3) can be computed exactly. For two independent
source matrices I, and I, this was achieved in [31] using the character expansion methods of [32],

54

K—-1
L et (g k(2T
Wk k) =x""T]J! der [ Pererax ) 10).
j=0 kI

A(IOI’.) /—(IOII.)I k+c+q—K

Assuming the matrix LI, to be diagonalizable, we denote its /-th eigenvalue by (I,I,);. Further-
more, A(LLIL) = det((I,I%) lk_l )1 is the Vandermonde determinant. The formula (5.4) involving
a determinant of Bessel functions generalizes the single Bessel function that we found for the
sample Yangian invariant |W3 1) in (3.2).

In this section we showed that the choice of a “unitary contour” in the GraBmannian integral
(4.1) is appropriate for the special deformation parameters v,.jE given by (5.1). We conjecture
that this contour can also be used for the GraBmannian integral (4.1) with general deformation
parameters. In this case one is lead to a novel unitary matrix model of the type (5.3) containing
powers of principal minors of the matrix C in addition to detC. In the next section we illustrate
for a non-trivial example that this model indeed produces the correct Yangian invariant.

6. Another sample invariant: R-matrix

Let us now apply the “unitary contour” to the Gralmannian integral (4.1) for the sample
invariant |\Wy 7). This invariant is of special importance because its Yangian invariance condition
(2.4) can be translated into the Yang—Baxter equation, cf. [17]. Therefore |W4 ») is equivalent to
the u(p, ¢) R-matrix.

We begin by choosing C to be unitary which transforms the integral (4.1) into

etr(CI’.—i—IOCT) 0)

_ 1
|Wa2) =X U(/z) [dC] (_C13)I+Z(detc)—l+q—z+c3 (—C24)H'Z_C3+C4

6.1)

with the abbreviation z = v3 — v4. The constraints on the deformation parameters in (1.3) read
explicitly

vi—vs=1l—n—c3, ci=—c3€Z, vy—vy=1l—n—cq4, cr=—c4€Z. (6.2)

Notice that (6.1) is a generalization of the Leutwyler—Smilga model (5.3), as it contains in addi-
tion the principal minors C3 and C»4 of the unitary 2 x 2 matrix C. This currently hinders the
direct application of matrix model techniques to evaluate (6.1). Therefore we resort to an explicit
parameterization,

_(Ciz Cis\ _ acosf —bsin6
C‘(cm cz4>_c<b—1sin9 a—lcose)’ ©3)
where 0 € [0, Z] and a = ¢/, b= ¢, c = ¢!” with o, B € [0,27] and y € [0, 7r]. With this the

Haar measure (5.2) becomes

4sin6 cos6
[dC] = x%da AdbAdeAdd. (6.4)
aoc

We observe that the exponents of a, b, ¢ in denominator of (6.1) combine into integers, where for
the moment we ignore that this rearrangement is not allowed for generic values of the exponent
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z € C. Thus the integrals in the variables a, b, ¢ can be performed by means of the residue

theorem,
o0

|Wy0) = (= 1)~ 3Q2mi)’ Z (103)813 (1 04)814 (2 03)823 (2 0 4)82
' _ 813! 814! 823! 824!
Mo io4=0 (103)3 (104)M14 (2.03)123 (2 0 4)h2s
with (6.0) x 0)

hi3! hia! ho3! ha4!
x (=184 FMB g1y + hos 4+ 1, hiz + goa — 2 +¢3 —ca) ©
(6.5)
In this formula the constraints
gi3—hiz+guu—hu=-ci+q, g3—ha+gua—hu=—c+q,
gi3—hiz+gs3—hs = c3+q, gu—hiatgu—hu= ca+q

on the summation range guarantee that |\Wy ») is an eigenstate of C!, C?%, 3, C* with eigenvalues
c1, €2, €3, C4, respectively. The remaining 6-integration yields the Euler beta function

do(sin)* " (cos )2 = L) (6.6)

B =2 =
(x.7) TGty

o\mm

which is valid for Rex, Rey > 0, cf. [29]. This means ¢3 — ¢4 > Re z for the arguments of the
beta function in (6.5). The expression (6.5) is our final form of the Yangian invariant |W4 »), i.e.
the u(p, ¢g) R-matrix for oscillator representations. The parameter z is the spectral parameter of
this R-matrix. A formula analogous to (6.5), however derived in a completely different way, can
be obtained by specializing the u(p, g|r) R-matrix expression found in [9] to the bosonic case.
At this point we remark that the integrand in (6.1) is multi-valued for generic z and thus the
U (2) contour is not closed. Hence in principle the formal proof in Appendix A does not directly
apply. Therefore we verified the Yangian invariance of |W4 7) explicitly on the level of the series
expansion (6.5). Finally, it is worth noting that in the compact case u(p, 0) = u(n) the invariant
(6.5) simplifies to

Wy o) = (—1)4™532(27i)3 i (1 @3)S37814 (1 @4)814 (2 @ 3)814 (2 @ 4)4—814
== ) i
) oD @—swl gl gl (@-gil T (67)

x (=1)84B(gia+1,—z+c3—g14) .

This agrees with the compact invariant |\Wy4 7) obtained in [17] up to a normalization factor.
7. Conclusions and outlook

In this work we showed that the GraBmannian integral, commonly used in the realm of A/ = 4
SYM scattering amplitudes, can be applied to construct Yangian invariants for oscillator repre-
sentations of the non-compact algebra u(p, g). We found that in this setting the integral takes the
form of a matrix model which generalizes the Brezin—Gross—Witten and the Leutwyler—Smilga
model. Our results also imply that these two well-known matrix models are Yangian invariant in
the external source fields!

Our work calls for a series of further investigations, both on a technical and on a conceptual
level. Technically, the generalization to superalgebras u(p, g |r) should impose no obstacles. This
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is of importance to cover the psu(2,2|4) case relevant for amplitudes. In addition, the applica-
bility of the “unitary contour” has to be investigated further. In particular, replacing C~! by the
conjugate transpose C' in the GraBmannian integral formula (4.1) should also provide a way to
avoid the “split helicity” constraint N = 2K . Here the issue is to use an appropriate measure on
the complex Stiefel manifold of rectangular K x (N — K) matrices C with CCT = 1« ¢, see e.g.
[33]. This generalizes the unitary group manifold to the case of rectangular matrices. Moreover,
we want to apply matrix model technology for the evaluation of the Gramannian integral (4.1)
beyond the case of the Leutwyler—Smilga model (5.3). One might wonder whether the Bessel
function formula (5.4) generalizes to the case of Yangian invariants with general deformation
parameters vl.i. This formula would include the R-matrix constructed “by hand” in Section 6.
One promising technique for this endeavor is a character expansion, which was successfully em-
ployed for the Leutwyler—Smilga model (5.3), see [31,32]. Another auspicious method is the use
of Gelfand—Tzetlin coordinates, which has been applied to compute correlation functions of the
Itzykson—Zuber model [34]. In our setting these coordinates might be well adapted to the minors
appearing in the GraBmannian integral (4.1). A further interesting point to be addressed in the
future is the precise relation between the GraBmannian integral for twistors and that for oscil-
lator representations (1.4). There should exist a change of basis transforming the delta function
of twistors into the exponential function of oscillators. A twistorial description of the u(p, q)
oscillator representations, a.k.a. “ladder representations”, is discussed e.g. in [35].

Even more exciting questions arise on the conceptual level. It is well known that matrix mod-
els possess an integrable structure, see e.g. [36] and references therein. Their partition functions,
like e.g. (5.3), correspond to solutions, so-called t-functions, of classically integrable hierarchies.
There should be a relation between this classical integrable structure and quantum integrability
in the sense of Yangian invariance. One might even ask if there is an integrable hierarchy govern-
ing (tree-level) N' = 4 SYM scattering amplitudes. Finally, let us speculate that our matrix model
approach might also provide a conceptually clear route to loop-amplitudes. The psu(2, 2|4) ana-
logues of the oscillator representations, which we are using in this work, feature prominently
in the spectral problem of A" =4 SYM. There it is understood how to introduce the coupling
constant of the theory as a central extension of the algebra. Appealing to a common integrable
structure of the N =4 model, we suspect that in the oscillator basis such a coupling can also be
introduced in the Gralmannian integral.
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Appendix A. Proof of Yangian invariance

In this appendix we prove the Yangian invariance (2.6) of the GraBmannian integral (4.1) for
the invariant |Wy g) with N = 2K sites and representations of the non-compact algebra u(p, g).
With straightforward modifications this proof also applies to the compact case, i.e. ¢ = 0, where,
in particular, I, = 0 and N # 2K is possible.

Let us start with the ansatz

etr(CI’,+IoC71)|0> , (A.1)

which we recognize as the exponential function in (4.1). We want to show that this ansatz sat-
isfies the first equation of (2.6), that is to say gl(n) invariance. With the gl(n) generators of our
monodromy defined in (4.3), the Yangian generators appearing in this equation read

M) = ZJ'%A + Z T (A.2)

I=K+1
To evaluate the action of this operator on the ansatz (A.1) we compute

—W = / ,
(j];‘B) etr(CI’,-i-IoC’l) |()) _ aa aﬁ Cku) . Z w' a, f: D kckw etr(CI’,—Q—IoC’l) |0>
—aj aj X ak ag Duk + 845
al av C _al al
(Jl )etr(CI’.—i-loC*l)'O) _ ZU aa aﬂ vl aa aﬂ
AB = z
D854 aﬂ i DIU >o,ay aﬂ Dy — 844
etr(CI[.+IoC_l)|0> , (A3)
where the components of the matrix C~! are denoted by Dy;. Here and in the rest of this proof
the indices k, v, v’ always take the values 1, ..., K while [, w, w’ are in the range K +1,..., N.
Now one immediately obtains
Mf(‘% PICIAHLCT 10)=0. (A.4)

Hence the first equation of (2.6) holds for the ansatz (A.1).

However, each site of the ansatz (A.1) does not yet transform in an irreducible representation
of the algebra u(p, ¢). In fact, (A.1) is not an eigenstate of the central elements C/ = Yy J
and C* =Y, A=1 JX "14 that were defined in the context of (2.12) and (2.13), respectively. To obtam
eigenstates we have to pick special linear combinations of the ansatz (A.1),

t -1
Wy k)= / de £(C) e C D 0. (A.5)
It turns out to be suitable to choose an integrand that contains only consecutive minors of the

matrix C defined in (1.1),
1

C) =
J© (1,...., Kyt (N, .. K — 1)ty
with arbitrary complex constants «;. With this integrand the ansatz (A.5) is an eigenstate of the
central elements,

(A.6)

k+N—-K

l
C"|\DN,K>=(q— > a,-)wN,K), C’|wN,K>=<—q+ > a,»)wzv,m.

i=k+1 i=l-K+1
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(A7)

To show this property we assumed that upon integration by parts the boundary terms vanish.
Furthermore, we employed the identity

d ; . _
ico MELALLD0) = ((k o)=Y DuDi(vo w))e“(c‘-“oc V10). (A8)
v, w
which is easily verified taking into account ﬁDwv = — Dy Dy,. In addition, in evaluating
derivatives of the minors in f(C) we used, cf. [6,7],
d
D Chw—— (i i+ K =D = (1) (i, i+ K — D (A.9)
w dew

fori=k+1,...,k+ N — K. For other values of i the left hand side in (A.9) vanishes due to
the gauge fixing of C in (1.1).

Next, we turn our attention to the second equation of the Yangian invariance condition (2.6),
which involves the generators M . From (2.4) with r =2 and s = 1 one sees that if a state |\W)
is annihilated by all M;% and by one of the generators M,(L; ;, eg. by M fl), then it is annihilated
by all Mgzg. Thus in our case it is sufficient to verify the second equation of (2.6) for one of the

four blocks of generators, say for M ;?,) . Expressions for these generators can be found in (2.10).
We compute the action of all terms appearing therein on our ansatz (A.1),

n
- . . 1
Z Jl;aJiS tr(CI,+1,C~ )|0 _a aﬂ(Z Cvlckw + pCy l) tr(CL,+1.C~ )|0>

n
- -7/ t —1 I - d t —1
> By ORHCT0N0) = 37 L Y Cu Crar 75— T DN0),

I=1 w,w’ k'w’
n
/ t -1 =7 d t -1
Z Jl[aJlf}[ etI(CI.+IoC )|0> — Zaz aff} CUI Cv’l’ ic etr(CI.+IOC )|0> , (AIO)
v,V

for k # k' and [ # I, and furthermore

= t -1 _L — t -1
(Z we B, + D v J’ﬂa)e“(c‘-“°c 10) = Y a alg Cua (v — vi) " HC D0
k l

k.l
(A.11)
Making use of these formulas we can evaluate the action on (A.5),
k+N—K
M Wy k) = Z(vl—vk—p—}-l— > a,~>ﬁf§ﬁf3
k.l i=l—K+1
x / dCf(C) Cpy " CLALL™D ) (A.12)

Here we assumed once more that the boundary terms of the integration by parts vanish. Further-
more, we used (A.8) and properties of the minors in f(C) similar to (A.9). To ensure Yangian
invariance of the ansatz the parameters «; have to be chosen such that the bracket in (A.12)
vanishes.
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In conclusion, for the ansatz (A.5) to be Yangian invariant, the parameters v;, ¢; of the mon-
odromy and the «; appearing in this ansatz have to obey the equations obtained from (A.7) and
(A.12),

k+N-K I k+N-K
Ck=q — Z i, c=-—q-+ Z o, v—u=—-p+1l-— Z aj,
(A.13)

fork=1,...Kand/ =K + 1, ..., N. These equations are conveniently addressed after chang-
ing from {v;, ¢;} to {viJr ,v; } with (4.4). In these variables they are solved by

o = v,trK_1 — v +q3 N—K+1 (A.14)

and imposing the N constraints in (1.3). Eq. (A.14) turns the ansatz (A.5) into the Gramannian
integral formula (4.1). This concludes the proof of its Yangian invariance.
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