# On the $k$ th Laplacian eigenvalues of trees with perfect matchings ${ }^{2 \pi}$ 

Jianxi Li ${ }^{\text {a,*, }}{ }^{\text {, Wai Chee Shiu }}{ }^{\text {a }}$, An Chang ${ }^{\text {b }}$<br>${ }^{\text {a }}$ Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China<br>${ }^{\text {b }}$ Software College/Center of Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, PR China

## ARTICLE INFO

## Article history:

Received 25 March 2008
Accepted 1 October 2009
Available online 4 November 2009
Submitted by R.A. Brualdi

## AMS classification:

05 C 05
05C50

Keywords:
Tree
Laplacian eigenvalue
Perfect matchings
Bound


#### Abstract

Let $\mathcal{T}_{n}^{+}$be the set of all trees of order $n$ with perfect matchings. In this paper, we prove that for any tree $T \in \mathcal{T}_{n}^{+}$, its $k$ th largest Laplacian eigenvalue $\mu_{k}(T)$ satisfies $\mu_{k}(T)=2$ when $n=2 k$, and $\mu_{k}(T) \leqslant \frac{\left\lceil\frac{n}{2 k}\right\rceil+2+\sqrt{\left(\left\lceil\frac{n}{2 k}\right\rceil\right)^{2}+4}}{2}$ when $n \neq 2 k$. Moreover, this upper bound is sharp when $n=0(\bmod 2 k)$.


© 2009 Elsevier Inc. All rights reserved.

## 1. Introduction

Let $G=(V, E)$ be a connected graph with vertex set $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and edge set $E$. Denote by $d_{i}=d\left(v_{i}\right)$ the degree of vertex $v_{i} \in V(G)$. Let $A(G)$ and $D(G)=\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be the adjacency matrix and the diagonal matrix of vertex degrees of $G$, respectively. Then the matrix $L(G)=D(G)-$ $A(G)$ is called the Laplacian matrix of the graph $G$. Moreover, the eigenvalues of $L(G)$ are called the Laplacian eigenvalues of $G$. It is well known that $L(G)$ is positive semi-definite symmetric and singular. Moreover, since $G$ is connected, $L(G)$ is irreducible. Denote its eigenvalues by

[^0]$$
\mu_{1}(G) \geqslant \mu_{2}(G) \geqslant \cdots \geqslant \mu_{n}(G)=0
$$
which are always enumerated in non-increasing order and repeated according to their multiplicity. We shall use the notation $\mu_{k}(G)$ to denote the $k$ th Laplacian eigenvalue of the graph $G$.

Two distinct edges in a graph $G$ incident to the same vertex will be called adjacent edges. A matching of $G$ is a set of edges in $G$ such that no two of which are adjacent. The largest matching is called a maximum matching. The cardinality of a maximum matching of $G$ is commonly known as its matching number, denoted by $\alpha^{\prime}(G)$. Let $M$ be a matching of $G . M$ is called the $s$-matching of $G$ if $M$ contains exactly $s$ edges of $G$. A vertex $v \in V(G)$ is said to be $M$-saturated if it incident with an edge of $M$, otherwise $v$ is called an $M$-unsaturated vertex. The matching $M$ of $G$ is called a perfect matching if all vertices of $G$ are $M$-saturated.

Throughout this paper, we always denote $\mathcal{T}_{n}^{+}$the set of all trees of order $n$ with perfect matchings. We use $G-x$ and $G-x y$ to denote the graphs obtained by deleting the vertex $x \in V(G)$ and the edge $x y \in E(G)$ from $G$, respectively. Similarly, $G+x y$ is the graph obtained by adding an edge $x y \notin E(G)$ to $G$, where $x, y \in V(G)$. Other undefined notations may be referred to [1].

For any graph $G$ of order $n$, it is well known that $\mu_{1}(G) \leqslant n$, and the equality holds if and only if the complement of $G$ is disconnected. Thus, if $T$ is a tree of order $n$, then $\mu_{1}(T) \leqslant n$, and the equality holds if and only if $T=K_{1, n-1}$, the star on $n \geqslant 2$ vertices. For a real number $x$, let $\lceil x\rceil$ denote the least integer not less than $x$. Guo [2] studied the $k$ th Laplacian eigenvalue of a tree, and got the following result.

Theorem 1.1. Let $T$ be a tree of order $n$. Then $\mu_{k}(T) \leqslant\left\lceil\frac{n}{k}\right\rceil$, and the equality holds if and only if $k<n$, $n=0(\bmod k)$ and $T$ is spanned by $k$ vertex disjoint copies of $K_{1, \frac{n}{k}-1}$.

In this paper, we investigate the $k$ th Laplacian eigenvalue of a tree with a perfect matching, and obtain the following result:

Let $T \in \mathcal{T}_{n}^{+}$. Then $\mu_{k}(T)=2$ when $n=2 k$, and $\mu_{k}(T) \leqslant \frac{\left\lceil\frac{n}{2 k}\right\rceil+2+\sqrt{\left(\left\lceil\frac{n}{2 k}\right\rceil\right)^{2}+4}}{2}$ when $n \neq 2 k$. Moreover, this upper bound is sharp for $n=0(\bmod 2 k)$.

## 2. Preliminaries

Let $G$ be a graph of order $n$ and let $G^{\prime}=G+e$ be the graph obtained from $G$ by adding a new edge $e$ into $G$. Then $L\left(G^{\prime}\right)=L(G)+z z^{T}$, where $z$ is a column $n$-vector with two non-zero entries $1,-1$ in suitable places. The next Lemma follows from the well-known Courant-Weyl inequalities and the fact that $\mu_{n}\left(z z^{T}\right)=0$, where $\mu_{n}\left(z z^{T}\right)$ is the least eigenvalue of $z z^{T}$.

Lemma 2.1 [3]. The Laplacian eigenvalues of $G$ and $G^{\prime}$ interlace, that is,

$$
\mu_{1}\left(G^{\prime}\right) \geqslant \mu_{1}(G) \geqslant \mu_{2}\left(G^{\prime}\right) \geqslant \mu_{2}(G) \geqslant \cdots \geqslant \mu_{n}\left(G^{\prime}\right)=\mu_{n}(G)=0
$$

Lemma 2.2 [3]. Let $A$ be a Hermitian matrix with eigenvalues $\lambda_{1} \geqslant \lambda_{2} \geqslant \cdots \geqslant \lambda_{n}$ and $B$ be a principal submatrix of $A$. Let $B$ has eigenvalues $\mu_{1} \geqslant \mu_{2} \geqslant \cdots \geqslant \mu_{m}$. Then the inequalities $\lambda_{n-m+i} \leqslant \mu_{i} \leqslant \lambda_{i}(i=$ 1, 2, . . . , m) hold.

Lemma 2.3 [4]. Let $T$ be a tree of order $n$. Then for any positive integer $a$, there exists a vertex $v \in V(T)$ such that there is one component of $T-v$ with order not exceeding $\max \{n-1-a, a\}$ and all the other components of $T-v$ have order not exceeding $a$.

Lemma 2.4 [5]. Let $T$ be a tree on $n=2 k$ vertices. Then $\mu_{k}(T) \leqslant 2$, and the equality holds if and only if $T$ has a perfect matching.

Lemma 2.5 [6]. Let $T$ be a tree on $n(n \geqslant 3)$ vertices with $\alpha^{\prime}(T)=m$. Then $\mu_{1}(T) \leqslant \mu_{1}(T(n, m))$, where $\mu_{1}(T(n, m))$ is the largest root of the equation

$$
x^{3}-(n-m+4) x^{2}+(3 n-3 m+4) x-n=0
$$



Fig. 1. $T(n, m)$.
The equality holds if and only if $T \cong T(n, m)$ (see Fig. 1).
When $T$ is a tree on two vertices, i.e., $T=K_{2}$, it is easy to see that $\mu_{1}\left(K_{2}\right)=2$. When $T$ is a tree of order $2 t(t \geqslant 2)$ and has a perfect matching, then $\alpha^{\prime}(T)=t$. Hence Lemma 2.5 implies that $\mu_{1}(T) \leqslant \mu_{1}(T(2 t, t))=\frac{t+2+\sqrt{t^{2}+4}}{2}$, and the equality holds if and only if $T \cong T(2 t, t)$.

## 3. Main results

In this section, we give a sharp upper bound for the $k$ th Laplacian eigenvalue of a tree with a perfect matching. Our results is as follows.

Lemma 3.1. Let $T \in \mathcal{T}_{n}^{+}$and $n=k(2 t)$. Then $\mu_{k}(T)=2$ when $t=1$ and $\mu_{k}(T) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}$ when $t>1$.

Proof. When $t=1$, then $n=2 k$. Lemma 2.4 implies that $\mu_{k}(T)=2$. When $t>1$, fix $t$. We proceed by induction on $k$. By Lemma 2.5, the result is obvious for $k=1$. Assume that for any tree $T^{\prime}$ on $(k-1)(2 t)$ vertices, we have $\mu_{k-1}\left(T^{\prime}\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}, k \geqslant 2$. Now let $T$ be a tree on $n=k(2 t)$ vertices. We only need to show that $\mu_{k}(T) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}$.

Let $a=2 t-1$ in Lemma 2.3. Then $a \leqslant n-a-1$, and so there exists a vertex $v \in V(T)$ such that there is one component $T_{0}$ of $T-v$ with order not exceeding

$$
n-a-1=n-2 t=(k-1)(2 t)
$$

and all the other components of $T-v, \operatorname{say} T_{j}(j=1,2, \ldots, s)$, have order not exceeding $2 t-1$. Suppose that $v_{0}, v_{1}, \ldots, v_{s}$ are the vertices of $T$ and $v_{j} \in V\left(T_{j}\right), v v_{j} \in E(T)(j=0,1, \ldots, s)$. For each $j(0 \leqslant j \leqslant s)$, let $T_{j}^{\prime}$ be the tree obtained from $T_{j}$ by attaching its vertex $v_{j}$ to the vertex $v$. Then $\left|T_{j}^{\prime}\right|=\left|T_{j}\right|+1$. Let $L_{v}\left(T_{j}^{\prime}\right)$ be the matrix obtained from $L\left(T_{j}^{\prime}\right)$ by deleting the row and column corresponding to the vertex $v$. Note that $L_{v}\left(T_{j}^{\prime}\right)$ is a principal submatrix of $L\left(T_{j}^{\prime}\right)$. Let $L_{v}(T)$ be the matrix obtained from $L(T)$ by deleting the row and column corresponding to the vertex $v$. Without loss of generality, we may assume that

$$
L_{v}(T)=\left[\begin{array}{cccc}
L_{v}\left(T_{0}^{\prime}\right) & 0 & \cdots & 0 \\
0 & L_{v}\left(T_{1}^{\prime}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & L_{v}\left(T_{s}^{\prime}\right)
\end{array}\right]_{(n-1) \times(n-1)}
$$

Since $T$ is a tree with a perfect matching, it is obvious that only one of the components of $T-v$ has not a perfect matching. Now we consider the following two cases.
Case 1. $T_{0}$ has a perfect matching. Then only one of $T_{j}(j=1, \ldots, s)$ has not a perfect matching. Without loss of generality, we assume that $T_{1}$ has not a perfect matching. Then $\alpha^{\prime}\left(T_{1}\right)=\frac{1}{2}\left(\left|T_{1}\right|-1\right)$ and

$$
\left|T_{1}\right| \leqslant 2 t-1 \text { and }\left|T_{j}\right| \leqslant 2 t-2(j=2,3, \ldots, s)
$$

We consider the following two subcases.
Subcase 1.1. $\left|T_{0}\right| \leqslant(k-1)(2 t)-2$. Let $\widetilde{T_{0}}$ be the tree obtained from $T_{0}^{\prime}$ by attaching a new vertex and $\frac{(k-1)(2 t)-\left|T_{0}^{\prime}\right|-1}{2}$ paths of length two to its vertex $v$. Then $\widetilde{T_{0}}$ has a perfect matching, and $\left|\widetilde{T}_{0}\right|=$ $(k-1)(2 t)$. Hence by Lemmas 2.1 and 2.2 , and induction, we have

$$
\mu_{k-1}\left(L_{v}\left(T_{0}^{\prime}\right)\right) \leqslant \mu_{k-1}\left(L\left(T_{0}^{\prime}\right)\right) \leqslant \mu_{k-1}\left(L\left(\widetilde{T}_{0}\right)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}
$$

Recall that $T_{1}^{\prime}$ has a perfect matching and $T_{j}^{\prime}(j=2,3, \ldots, s)$ has not a perfect matching, and

$$
\left|T_{1}^{\prime}\right| \leqslant 2 t \text { and }\left|T_{j}^{\prime}\right| \leqslant 2 t-1(j=2,3, \ldots, s)
$$

Let $\widetilde{T_{1}}$ be the tree obtained from $T_{1}^{\prime}$ by attaching $\frac{2 t-\left|T_{1}^{\prime}\right|}{2}$ paths of length two to its vertex $v, \widetilde{T}_{j}$ be the tree obtained from $T_{j}^{\prime}$ by attaching a new vertex and $\frac{2 t-\left|T_{j}^{\prime}\right|-1}{2}$ paths of length two to its vertex $v$ $(j=2,3, \ldots, s)$. Then $\widetilde{T}_{j}$ has a perfect matching, and $\left|\widetilde{T}_{j}\right|=2 t(j=1,2, \ldots, s)$. By Lemmas 2.1, 2.2 and 2.5, we have

$$
\mu_{1}\left(L_{v}\left(T_{j}^{\prime}\right)\right) \leqslant \mu_{1}\left(L\left(T_{j}^{\prime}\right)\right) \leqslant \mu_{1}\left(L\left(\widetilde{T}_{j}\right)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2} \quad(j=1,2, \ldots, s) .
$$

Then $\mu_{k-1}\left(L_{v}(T)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}$. Hence by Lemma 2.2, we have

$$
\mu_{k}(T) \leqslant \mu_{k-1}\left(L_{v}(T)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}
$$

Subcase 1.2. $\left|T_{0}\right|=(k-1)(2 t)$. Then the edge $v v_{0} \in E(T)$ gives

$$
T-v v_{0}=T_{v} \bigcup T_{0}, \quad\left|T_{v}\right|=2 t \quad \text { and } \quad\left|T_{0}\right|=(k-1)(2 t),
$$

where $T_{v}$ and $T_{0}$ are the two connected components of $T-v v_{0}$.
Hence by Lemma 2.5 we have $\mu_{1}\left(T_{v}\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}$; and by induction, we have $\mu_{k-1}\left(T_{0}\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}$. Therefore, by Lemma 2.1 we have

$$
\mu_{k}(T) \leqslant \mu_{k-1}\left(T-v v_{0}\right) \leqslant \max \left\{\mu_{k-1}\left(T_{0}\right), \mu_{1}\left(T_{v}\right)\right\} \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}
$$

Case 2. $T_{0}$ has not a perfect matching. Then $\alpha^{\prime}\left(T_{0}\right)=\frac{1}{2}\left(\left|T_{0}\right|-1\right)$, and all of $T_{j}(j=1,2, \ldots, s)$ have a perfect matching. We consider the following two subcases.
Subcase 2.1. $\left|T_{0}\right| \leqslant(k-1)(2 t)-3$. Since $T_{0}^{\prime}$ has a perfect matching, let $\widetilde{T_{0}}$ be the tree obtained from $T_{0}^{\prime}$ by attaching $\frac{(k-1)(2 t)-\left|T_{0}^{\prime}\right|}{2}$ paths of length two to its vertex $v$, then $\widetilde{T}_{0}$ has a perfect matching, and $\left|\widetilde{T}_{0}\right|=(k-1)(2 t)$. By Lemmas 2.1 and 2.2 , and induction, we have

$$
\mu_{k-1}\left(L_{v}\left(T_{0}^{\prime}\right)\right) \leqslant \mu_{k-1}\left(L\left(T_{0}^{\prime}\right)\right) \leqslant \mu_{k-1}\left(L\left(\widetilde{T}_{0}\right)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}
$$

Recall that $T_{j}^{\prime}(j=1,2, \ldots, s)$ has not a perfect matching and

$$
\left|T_{j}^{\prime}\right| \leqslant 2 t-1 \quad(j=1,2, \ldots, s)
$$

Let $\widetilde{T}_{j}$ be the tree obtained from $T_{j}^{\prime}$ by attaching a new vertex and $\frac{2 t-\left|T_{j}^{\prime}\right|-1}{2}$ paths of length two to its vertex $v(j=1,2, \ldots, s)$. Then $\widetilde{T}_{j}$ has a perfect matching, and $\left|\widetilde{T}_{j}\right|=2 t(j=1,2, \ldots, s)$. By Lemmas 2.1, 2.2 and 2.5 , we have

$$
\mu_{1}\left(L_{v}\left(T_{j}^{\prime}\right)\right) \leqslant \mu_{1}\left(L\left(T_{j}^{\prime}\right)\right) \leqslant \mu_{1}\left(L\left(\widetilde{T}_{j}\right)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2} \quad(j=1,2, \ldots, s)
$$

Then $\mu_{k-1}\left(L_{v}(T)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}$. Hence by Lemma 2.2, we have

$$
\mu_{k}(T) \leqslant \mu_{k-1}\left(L_{v}(T)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}
$$

Subcase 2.2. $\left|T_{0}\right|=(k-1)(2 t)-1$. Then $T_{0}^{\prime}$ has a perfect matching, and $\left|T_{0}^{\prime}\right|=(k-1)(2 t)$. By Lemma 2.2 and induction, we have

$$
\mu_{k-1}\left(L_{v}\left(T_{0}^{\prime}\right)\right) \leqslant \mu_{k-1}\left(L\left(T_{0}^{\prime}\right)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}
$$

Similarly, for each $T_{j}^{\prime}$, we can construct $\widetilde{T}_{j}$ such that $\widetilde{T}_{j}$ has a perfect matching, and $\left|\widetilde{T}_{j}\right|=2 t(j=$ $1,2, \ldots, s)$. Hence

$$
\mu_{1}\left(L_{v}\left(T_{j}^{\prime}\right)\right) \leqslant \mu_{1}\left(L\left(T_{j}^{\prime}\right)\right) \leqslant \mu_{1}\left(L\left(\widetilde{T}_{j}\right)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2} \quad(j=1,2, \ldots, s) .
$$

Then $\mu_{k-1}\left(L_{v}(T)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}$. Hence by Lemma 2.2, we have

$$
\mu_{k}(T) \leqslant \mu_{k-1}\left(L_{v}(T)\right) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2}
$$

From above discussion, the proof is completed.
Lemma 3.2. Let $T \in \mathcal{T}_{n}^{+}$and $n=k(2 t)+r$, where $r$ is even and $1 \leqslant r \leqslant 2 k-1$. Then $\mu_{k}(T) \leqslant \frac{(t+1)+2+\sqrt{(t+1)^{2}+4}}{2}$.

Proof. Let $\widehat{T}$ be a tree on $n+2 k-r=k(2 t+2)$ vertices that contains $T$ and let $T^{\prime}$ be a subtree on $\widehat{T}$ on $n+1$ vertices that contains $T$. By Lemmas 2.1, 2.2 and 3.1, we have

$$
\mu_{k}(T) \leqslant \mu_{k}\left(T^{\prime}\right) \leqslant \mu_{k}(\widehat{T}) \leqslant \frac{(t+1)+2+\sqrt{(t+1)^{2}+4}}{2}
$$

By Lemmas 3.1 and 3.2, it is easy to get our main result.
Theorem 3.1. Let $T \in \mathcal{T}_{n}^{+}$. Then $\mu_{k}(T)=2$ when $n=2 k$ and $\mu_{k}(T) \leqslant \frac{\left\lceil\frac{n}{2 k}\right\rceil+2+\sqrt{\left(\left\lceil\frac{n}{2 k}\right\rceil\right)^{2}+4}}{2}$ when $n \neq$ 2k.

Remark. Let $T \in \mathcal{T}_{n}^{+}$and $n=k(2 t)$. If $T$ contains $k T(2 t, t)$ as a spanning subgraph, then when $t=1$,

$$
\mu_{1}\left(k K_{2}\right)=\mu_{2}\left(k K_{2}\right)=\cdots=\mu_{k}\left(k K_{2}\right)=2
$$

when $t>1$,

$$
\mu_{1}(k T(2 t, t))=\mu_{2}(k T(2 t, t))=\cdots=\mu_{k}(k T(2 t, t))=\frac{t+2+\sqrt{t^{2}+4}}{2}
$$

and

$$
|E(T)|-\left|E\left(k T_{2 t, t}\right)\right|=k-1 .
$$

From Lemmas 2.1 and 3.1, we have when $t=1$,

$$
2 \leqslant \mu_{k}\left(k K_{2}\right) \leqslant \mu_{k}(T)=2
$$

when $t>1$,

$$
\frac{t+2+\sqrt{t^{2}+4}}{2}=\mu_{k}(k T(2 t, t)) \leqslant \mu_{k}(T) \leqslant \frac{t+2+\sqrt{t^{2}+4}}{2} .
$$

Thus the upper bound in Theorem 3.1 is sharp.
Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two graphs with $V_{1} \cap V_{2}=\emptyset$. A connected sum of $G_{1}$ and $G_{2}$ is a graph $G=(V, E)$, where $V=V_{1} \cup V_{2}$, and $E$ differs from $E_{1} \cup E_{2}$ by the addition of a single
edge joining some (arbitrary) vertex of $V_{1}$ to some vertex of $V_{2}$. At the end of this paper, we propose the following problem.

Problem. Let $T \in \mathcal{T}_{n}^{+}$and $n=k(2 t)$. Then $\mu_{k}(T)=2$ when $t=1$ and $\mu_{k}(T)=\frac{t+2+\sqrt{t^{2}+4}}{2}$ when $t>1$ if and only if $T$ is connected sum of $k T(2 t, t)$, i.e., $T$ contains $k T(2 t, t)$ as a spanning subgraph.

## Acknowledgments

The authors would like to thank the referees for their careful reading, valuable suggestions and useful comments.

## References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, MacMillan, New York, 1976.
[2] J.M. Guo, The $k$ th Laplacian eigenvalues of a tree, J. Graph Theory 54 (2007) 51-57.
[3] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs - Theory and Applications, third ed., Johann Ambrosius Barth Verlag, 1995.
[4] J.Y. Shao, Bounds on the $k$ th eigenvalues of trees and forests, Linear Algebra Appl. 149 (1991) 19-34.
[5] J.M. Guo, S.W. Tan, A relation between the matching number and Laplacian spectrum, Linear Algebra Appl. 325 (2001) 71-74.
[6] J.M. Guo, On the Laplacian spectral radius of a tree, Linear Algebra Appl. 368 (2003) 379-385.


[^0]:    ${ }^{\text {* }}$ Partially supported by GRF, Research Grant Council of Hong Kong and Faculty Research Grant; FRG, Hong Kong Baptist University; The Natural National Science Foundation of China (No. 10871046).

    * Corresponding author.

    E-mail addresses: fzjxli@tom.com (J. Li), wcshiu@hkbu.edu.hk (W.C. Shiu), anchang@fzu.edu.cn (A. Chang).

