Linear Algebra and its Applications 432 (2010) 1036-1041

Contents lists available at ScienceDirect

Linear Algebra and its Applications

journal homepage: www.elsevier.com/locate/laa

On the *k*th Laplacian eigenvalues of trees with perfect matchings^{β}

Jianxi Li^{a,*}, Wai Chee Shiu^a, An Chang^b

^a Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, PR China
 ^b Software College/Center of Discrete Mathematics, Fuzhou University, Fuzhou, Fujian 350002, PR China

ARTICLE INFO

Article history: Received 25 March 2008 Accepted 1 October 2009 Available online 4 November 2009

Submitted by R.A. Brualdi

AMS classification: 05C05 05C50

Keywords: Tree Laplacian eigenvalue Perfect matchings Bound

ABSTRACT

Let τ_n^+ be the set of all trees of order *n* with perfect matchings. In this paper, we prove that for any tree $T \in \tau_n^+$, its *k*th largest Laplacian eigenvalue $\mu_k(T)$ satisfies $\mu_k(T) = 2$ when n = 2k, and $\mu_k(T) \leqslant \frac{\lceil \frac{n}{2k} \rceil + 2 + \sqrt{(\lceil \frac{n}{2k} \rceil)^2 + 4}}{2}$ when $n \neq 2k$. Moreover, this upper bound is sharp when $n = 0 \pmod{2k}$.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V, E) be a connected graph with vertex set $V = \{v_1, v_2, \ldots, v_n\}$ and edge set E. Denote by $d_i = d(v_i)$ the degree of vertex $v_i \in V(G)$. Let A(G) and $D(G) = diag(d_1, d_2, \ldots, d_n)$ be the adjacency matrix and the diagonal matrix of vertex degrees of G, respectively. Then the matrix L(G) = D(G) - A(G) is called the Laplacian matrix of the graph G. Moreover, the eigenvalues of L(G) are called the Laplacian eigenvalues of G. It is well known that L(G) is positive semi-definite symmetric and singular. Moreover, since G is connected, L(G) is irreducible. Denote its eigenvalues by

* Corresponding author.

²⁷ Partially supported by GRF, Research Grant Council of Hong Kong and Faculty Research Grant; FRG, Hong Kong Baptist University; The Natural National Science Foundation of China (No. 10871046).

E-mail addresses: fzjxli@tom.com (J. Li), wcshiu@hkbu.edu.hk (W.C. Shiu), anchang@fzu.edu.cn (A. Chang).

$$\mu_1(G) \ge \mu_2(G) \ge \cdots \ge \mu_n(G) = 0,$$

which are always enumerated in non-increasing order and repeated according to their multiplicity. We shall use the notation $\mu_k(G)$ to denote the *k*th Laplacian eigenvalue of the graph *G*.

Two distinct edges in a graph *G* incident to the same vertex will be called adjacent edges. A matching of *G* is a set of edges in *G* such that no two of which are adjacent. The largest matching is called a maximum matching. The cardinality of a maximum matching of *G* is commonly known as its matching number, denoted by $\alpha'(G)$. Let *M* be a matching of *G*. *M* is called the *s*-matching of *G* if *M* contains exactly *s* edges of *G*. A vertex $v \in V(G)$ is said to be *M*-saturated if it incident with an edge of *M*, otherwise *v* is called an *M*-unsaturated vertex. The matching *M* of *G* is called a perfect matching if all vertices of *G* are *M*-saturated.

Throughout this paper, we always denote \mathcal{T}_n^+ the set of all trees of order *n* with perfect matchings. We use G - x and G - xy to denote the graphs obtained by deleting the vertex $x \in V(G)$ and the edge $xy \in E(G)$ from *G*, respectively. Similarly, G + xy is the graph obtained by adding an edge $xy \notin E(G)$ to *G*, where $x, y \in V(G)$. Other undefined notations may be referred to [1].

For any graph *G* of order *n*, it is well known that $\mu_1(G) \le n$, and the equality holds if and only if the complement of *G* is disconnected. Thus, if *T* is a tree of order *n*, then $\mu_1(T) \le n$, and the equality holds if and only if $T = K_{1,n-1}$, the star on $n \ge 2$ vertices. For a real number *x*, let $\lceil x \rceil$ denote the least integer not less than *x*. Guo [2] studied the *k*th Laplacian eigenvalue of a tree, and got the following result.

Theorem 1.1. Let *T* be a tree of order *n*. Then $\mu_k(T) \leq \lceil \frac{n}{k} \rceil$, and the equality holds if and only if k < n, $n = 0 \pmod{k}$ and *T* is spanned by *k* vertex disjoint copies of $K_{1,\frac{n}{k}-1}$.

In this paper, we investigate the *k*th Laplacian eigenvalue of a tree with a perfect matching, and obtain the following result:

Let $T \in \mathcal{T}_n^+$. Then $\mu_k(T) = 2$ when n = 2k, and $\mu_k(T) \leq \frac{\lceil \frac{n}{2k} \rceil + 2 + \sqrt{(\lceil \frac{n}{2k} \rceil)^2 + 4}}{2}$ when $n \neq 2k$. Moreover, this upper bound is sharp for $n = 0 \pmod{2k}$.

2. Preliminaries

Let *G* be a graph of order *n* and let G' = G + e be the graph obtained from *G* by adding a new edge *e* into *G*. Then $L(G') = L(G) + zz^T$, where *z* is a column *n*-vector with two non-zero entries 1, -1 in suitable places. The next Lemma follows from the well-known Courant–Weyl inequalities and the fact that $\mu_n(zz^T) = 0$, where $\mu_n(zz^T)$ is the least eigenvalue of zz^T .

Lemma 2.1 [3]. The Laplacian eigenvalues of G and G' interlace, that is,

 $\mu_1(G') \ge \mu_1(G) \ge \mu_2(G') \ge \mu_2(G) \ge \cdots \ge \mu_n(G') = \mu_n(G) = 0.$

Lemma 2.2 [3]. Let A be a Hermitian matrix with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$ and B be a principal submatrix of A. Let B has eigenvalues $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_m$. Then the inequalities $\lambda_{n-m+i} \le \mu_i \le \lambda_i$ (i = 1, 2, ..., m) hold.

Lemma 2.3 [4]. Let *T* be a tree of order *n*. Then for any positive integer *a*, there exists a vertex $v \in V(T)$ such that there is one component of T - v with order not exceeding $\max\{n - 1 - a, a\}$ and all the other components of T - v have order not exceeding *a*.

Lemma 2.4 [5]. Let *T* be a tree on n = 2k vertices. Then $\mu_k(T) \leq 2$, and the equality holds if and only if *T* has a perfect matching.

Lemma 2.5 [6]. Let *T* be a tree on $n (n \ge 3)$ vertices with $\alpha'(T) = m$. Then $\mu_1(T) \le \mu_1(T(n,m))$, where $\mu_1(T(n,m))$ is the largest root of the equation

$$x^{3} - (n - m + 4)x^{2} + (3n - 3m + 4)x - n = 0.$$

Fig. 1. *T*(*n*, *m*).

The equality holds if and only if $T \cong T(n, m)$ (see Fig. 1).

When *T* is a tree on two vertices, i.e., $T = K_2$, it is easy to see that $\mu_1(K_2) = 2$. When *T* is a tree of order 2*t* ($t \ge 2$) and has a perfect matching, then $\alpha'(T) = t$. Hence Lemma 2.5 implies that $\mu_1(T) \le \mu_1(T(2t, t)) = \frac{t+2+\sqrt{t^2+4}}{2}$, and the equality holds if and only if $T \cong T(2t, t)$.

3. Main results

In this section, we give a sharp upper bound for the *k*th Laplacian eigenvalue of a tree with a perfect matching. Our results is as follows.

Lemma 3.1. Let $T \in \mathcal{T}_n^+$ and n = k(2t). Then $\mu_k(T) = 2$ when t = 1 and $\mu_k(T) \leq \frac{t+2+\sqrt{t^2+4}}{2}$ when t > 1.

Proof. When t = 1, then n = 2k. Lemma 2.4 implies that $\mu_k(T) = 2$. When t > 1, fix t. We proceed by induction on k. By Lemma 2.5, the result is obvious for k = 1. Assume that for any tree T' on (k - 1)(2t) vertices, we have $\mu_{k-1}(T') \leq \frac{t+2+\sqrt{t^2+4}}{2}$, $k \geq 2$. Now let T be a tree on n = k(2t) vertices. We only need to show that $\mu_k(T) \leq \frac{t+2+\sqrt{t^2+4}}{2}$.

Let a = 2t - 1 in Lemma 2.3. Then $a \leq n - a - 1$, and so there exists a vertex $v \in V(T)$ such that there is one component T_0 of T - v with order not exceeding

n - a - 1 = n - 2t = (k - 1)(2t),

and all the other components of T - v, say T_j (j = 1, 2, ..., s), have order not exceeding 2t - 1. Suppose that $v_0, v_1, ..., v_s$ are the vertices of T and $v_j \in V(T_j)$, $vv_j \in E(T)$ (j = 0, 1, ..., s). For each j ($0 \le j \le s$), let T'_j be the tree obtained from T_j by attaching its vertex v_j to the vertex v. Then $|T'_j| = |T_j| + 1$. Let $L_v(T'_j)$ be the matrix obtained from $L(T'_j)$ by deleting the row and column corresponding to the vertex v. Note that $L_v(T'_j)$ is a principal submatrix of $L(T'_j)$. Let $L_v(T)$ be the matrix obtained from L(T) by deleting the row and column corresponding to the vertex v. Without loss of generality, we may assume that

$$L_{\nu}(T) = \begin{bmatrix} L_{\nu}(T'_{0}) & 0 & \cdots & 0 \\ 0 & L_{\nu}(T'_{1}) & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & L_{\nu}(T'_{S}) \end{bmatrix}_{(n-1) \times (n-1)}$$

Since *T* is a tree with a perfect matching, it is obvious that only one of the components of T - v has not a perfect matching. Now we consider the following two cases. Case 1. T_0 has a perfect matching. Then only one of T_j (j = 1, ..., s) has not a perfect matching. Without loss of generality, we assume that T_1 has not a perfect matching. Then $\alpha'(T_1) = \frac{1}{2}(|T_1| - 1)$ and

$$|T_1| \leq 2t - 1$$
 and $|T_j| \leq 2t - 2$ $(j = 2, 3, ..., s)$.

We consider the following two subcases.

Subcase 1.1. $|T_0| \leq (k-1)(2t) - 2$. Let $\tilde{T_0}$ be the tree obtained from T'_0 by attaching a new vertex and $\frac{(k-1)(2t)-|T'_0|-1}{2}$ paths of length two to its vertex *v*. Then $\tilde{T_0}$ has a perfect matching, and $|\tilde{T_0}| = (k-1)(2t)$. Hence by Lemmas 2.1 and 2.2, and induction, we have

$$\mu_{k-1}(L_{\nu}(T'_0)) \leq \mu_{k-1}(L(T'_0)) \leq \mu_{k-1}(L(\widetilde{T}_0)) \leq \frac{t+2+\sqrt{t^2+4}}{2}$$

Recall that T'_1 has a perfect matching and T'_i (j = 2, 3, ..., s) has not a perfect matching, and

$$|T'_1| \leq 2t$$
 and $|T'_j| \leq 2t - 1$ $(j = 2, 3, ..., s)$.

Let \widetilde{T}_1 be the tree obtained from T'_1 by attaching $\frac{2t-|T'_1|}{2}$ paths of length two to its vertex v, \widetilde{T}_j be the tree obtained from T'_j by attaching a new vertex and $\frac{2t-|T'_j|-1}{2}$ paths of length two to its vertex v (j = 2, 3, ..., s). Then \widetilde{T}_j has a perfect matching, and $|\widetilde{T}_j| = 2t$ (j = 1, 2, ..., s). By Lemmas 2.1, 2.2 and 2.5, we have

$$\mu_1(L_{\nu}(T'_j)) \leq \mu_1(L(T'_j)) \leq \mu_1(L(\widetilde{T}_j)) \leq \frac{t+2+\sqrt{t^2+4}}{2} \quad (j=1,2,\ldots,s).$$

Then $\mu_{k-1}(L_{\nu}(T)) \leq \frac{t+2+\sqrt{t^2+4}}{2}$. Hence by Lemma 2.2, we have

$$\mu_k(T) \leq \mu_{k-1}(L_\nu(T)) \leq \frac{t+2+\sqrt{t^2+4}}{2}$$

Subcase 1.2. $|T_0| = (k - 1)(2t)$. Then the edge $vv_0 \in E(T)$ gives

 $T - vv_0 = T_v \bigcup T_0$, $|T_v| = 2t$ and $|T_0| = (k - 1)(2t)$,

where T_v and T_0 are the two connected components of $T - vv_0$.

Hence by Lemma 2.5 we have $\mu_1(T_v) \leq \frac{t+2+\sqrt{t^2+4}}{2}$; and by induction, we have $\mu_{k-1}(T_0) \leq \frac{t+2+\sqrt{t^2+4}}{2}$. Therefore, by Lemma 2.1 we have

$$\mu_k(T) \leq \mu_{k-1}(T - \nu \nu_0) \leq \max\{\mu_{k-1}(T_0), \mu_1(T_\nu)\} \leq \frac{t+2+\sqrt{t^2+4}}{2}.$$

Case 2. T_0 has not a perfect matching. Then $\alpha'(T_0) = \frac{1}{2}(|T_0| - 1)$, and all of T_j (j = 1, 2, ..., s) have a perfect matching. We consider the following two subcases. Subcase 2.1. $|T_0| \leq (k - 1)(2t) - 3$. Since T'_0 has a perfect matching, let $\tilde{T_0}$ be the tree obtained from

Subcase 2.1. $|T_0| \leq (k-1)(2t) - 3$. Since T_0' has a perfect matching, let T_0 be the tree obtained from T_0' by attaching $\frac{(k-1)(2t)-|T_0'|}{2}$ paths of length two to its vertex v, then $\tilde{T_0}$ has a perfect matching, and $|\tilde{T_0}| = (k-1)(2t)$. By Lemmas 2.1 and 2.2, and induction, we have

$$\mu_{k-1}(L_{\nu}(T'_0)) \leq \mu_{k-1}(L(T'_0)) \leq \mu_{k-1}(L(\widetilde{T}_0)) \leq \frac{t+2+\sqrt{t^2+4}}{2}$$

Recall that T'_i (j = 1, 2, ..., s) has not a perfect matching and

 $|T'_i| \leq 2t - 1$ (j = 1, 2, ..., s).

Let \tilde{T}_j be the tree obtained from T'_j by attaching a new vertex and $\frac{2t-|T'_j|-1}{2}$ paths of length two to its vertex v (j = 1, 2, ..., s). Then \tilde{T}_j has a perfect matching, and $|\tilde{T}_j| = 2t$ (j = 1, 2, ..., s). By Lemmas 2.1, 2.2 and 2.5, we have

$$\mu_1(L_{\nu}(T'_j)) \leq \mu_1(L(T'_j)) \leq \mu_1(L(\widetilde{T}_j)) \leq \frac{t+2+\sqrt{t^2+4}}{2} \quad (j = 1, 2, \dots, s).$$

Then $\mu_{k-1}(L_{\nu}(T)) \leq \frac{t+2+\sqrt{t^2+4}}{2}$. Hence by Lemma 2.2, we have

$$\mu_k(T) \leq \mu_{k-1}(L_\nu(T)) \leq \frac{t+2+\sqrt{t^2+4}}{2}.$$

1039

Subcase 2.2. $|T_0| = (k - 1)(2t) - 1$. Then T'_0 has a perfect matching, and $|T'_0| = (k - 1)(2t)$. By Lemma 2.2 and induction, we have

$$\mu_{k-1}(L_{\nu}(T'_0)) \leq \mu_{k-1}(L(T'_0)) \leq \frac{t+2+\sqrt{t^2+4}}{2}.$$

Similarly, for each T'_j , we can construct \tilde{T}_j such that \tilde{T}_j has a perfect matching, and $|\tilde{T}_j| = 2t$ (j = 1, 2, ..., s). Hence

$$\mu_1(L_{\nu}(T'_j)) \leq \mu_1(L(T'_j)) \leq \mu_1(L(\widetilde{T}_j)) \leq \frac{t+2+\sqrt{t^2+4}}{2} \quad (j = 1, 2, \dots, s).$$

Then $\mu_{k-1}(L_{\nu}(T)) \leq \frac{t+2+\sqrt{t^2+4}}{2}$. Hence by Lemma 2.2, we have

$$\mu_k(T) \leq \mu_{k-1}(L_\nu(T)) \leq \frac{t+2+\sqrt{t^2+4}}{2}$$

From above discussion, the proof is completed. \Box

Lemma 3.2. Let $T \in \mathcal{T}_n^+$ and n = k(2t) + r, where *r* is even and $1 \le r \le 2k - 1$. Then $\mu_k(T) \le \frac{(t+1)+2+\sqrt{(t+1)^2+4}}{2}$.

Proof. Let \hat{T} be a tree on n + 2k - r = k(2t + 2) vertices that contains T and let T' be a subtree on \hat{T} on n + 1 vertices that contains T. By Lemmas 2.1, 2.2 and 3.1, we have

$$\mu_k(T) \leqslant \mu_k(T') \leqslant \mu_k(\widehat{T}) \leqslant \frac{(t+1)+2+\sqrt{(t+1)^2+4}}{2}. \quad \Box$$

By Lemmas 3.1 and 3.2, it is easy to get our main result.

Theorem 3.1. Let $T \in \mathcal{T}_n^+$. Then $\mu_k(T) = 2$ when n = 2k and $\mu_k(T) \leq \frac{\lceil \frac{n}{2k} \rceil + 2 + \sqrt{(\lceil \frac{n}{2k} \rceil)^2 + 4}}{2}$ when $n \neq 2k$.

Remark. Let $T \in T_n^+$ and n = k(2t). If T contains kT(2t, t) as a spanning subgraph, then when t = 1,

$$\mu_1(kK_2) = \mu_2(kK_2) = \dots = \mu_k(kK_2) = 2$$

when $t > 1$,

$$\mu_1(kT(2t,t)) = \mu_2(kT(2t,t)) = \dots = \mu_k(kT(2t,t)) = \frac{t+2+\sqrt{t^2+4}}{2};$$

and

 $|E(T)| - |E(kT_{2t,t})| = k - 1.$

From Lemmas 2.1 and 3.1, we have when t = 1,

$$2 \leq \mu_k(kK_2) \leq \mu_k(T) = 2;$$

when t > 1,

$$\frac{t+2+\sqrt{t^2+4}}{2} = \mu_k(kT(2t,t)) \leq \mu_k(T) \leq \frac{t+2+\sqrt{t^2+4}}{2}$$

Thus the upper bound in Theorem 3.1 is sharp.

Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ be two graphs with $V_1 \cap V_2 = \emptyset$. A connected sum of G_1 and G_2 is a graph G = (V, E), where $V = V_1 \bigcup V_2$, and E differs from $E_1 \bigcup E_2$ by the addition of a single

1040

edge joining some (arbitrary) vertex of V_1 to some vertex of V_2 . At the end of this paper, we propose the following problem.

Problem. Let $T \in \mathcal{T}_n^+$ and n = k(2t). Then $\mu_k(T) = 2$ when t = 1 and $\mu_k(T) = \frac{t+2+\sqrt{t^2+4}}{2}$ when t > 1 if and only if *T* is connected sum of kT(2t, t), i.e., *T* contains kT(2t, t) as a spanning subgraph.

Acknowledgments

The authors would like to thank the referees for their careful reading, valuable suggestions and useful comments.

References

- [1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, MacMillan, New York, 1976.
- [2] J.M. Guo, The kth Laplacian eigenvalues of a tree, J. Graph Theory 54 (2007) 51–57.
- [3] D. Cvetković, M. Doob, H. Sachs, Spectra of Graphs Theory and Applications, third ed., Johann Ambrosius Barth Verlag, 1995.
- [4] J.Y. Shao, Bounds on the *k*th eigenvalues of trees and forests, Linear Algebra Appl. 149 (1991) 19–34.
- [5] J.M. Guo, S.W. Tan, A relation between the matching number and Laplacian spectrum, Linear Algebra Appl. 325 (2001) 71–74.
- [6] J.M. Guo, On the Laplacian spectral radius of a tree, Linear Algebra Appl. 368 (2003) 379-385.