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Let T +
n be the set of all trees of order n with perfect matchings.

In this paper, we prove that for any tree T ∈ T +
n , its kth largest

Laplacian eigenvalue μk(T) satisfies μk(T) = 2 when n = 2k, and

μk(T) � � n
2k

�+2+√
(� n

2k
�)2+4

2
when n /= 2k. Moreover, this upper

bound is sharp when n = 0(mod 2k).
© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Let G = (V , E) be a connected graph with vertex set V = {v1, v2, . . . , vn} and edge set E. Denote by

di = d(vi) the degree of vertex vi ∈ V(G). Let A(G) and D(G) = diag(d1, d2, . . . , dn) be the adjacency

matrix and the diagonal matrix of vertex degrees of G, respectively. Then the matrix L(G) = D(G) −
A(G) is called the Laplacian matrix of the graph G. Moreover, the eigenvalues of L(G) are called the

Laplacian eigenvalues of G. It is well known that L(G) is positive semi-definite symmetric and singular.

Moreover, since G is connected, L(G) is irreducible. Denote its eigenvalues by

�
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μ1(G) � μ2(G) � · · · � μn(G) = 0,

which are always enumerated in non-increasing order and repeated according to their multiplicity.

We shall use the notation μk(G) to denote the kth Laplacian eigenvalue of the graph G.

Twodistinct edges in a graphG incident to the samevertexwill be called adjacent edges. Amatching

of G is a set of edges in G such that no two of which are adjacent. The largest matching is called a

maximummatching. The cardinality of amaximummatching ofG is commonly known as itsmatching

number, denoted by α′(G). Let M be a matching of G. M is called the s-matching of G if M contains

exactly s edges of G. A vertex v ∈ V(G) is said to be M-saturated if it incident with an edge of M,

otherwise v is called an M-unsaturated vertex. The matchingM of G is called a perfect matching if all

vertices of G areM-saturated.

Throughout this paper, we always denote T +
n the set of all trees of order nwith perfect matchings.

We use G − x and G − xy to denote the graphs obtained by deleting the vertex x ∈ V(G) and the edge

xy ∈ E(G) from G, respectively. Similarly, G + xy is the graph obtained by adding an edge xy /∈ E(G)
to G, where x, y ∈ V(G). Other undefined notations may be referred to [1].

For any graph G of order n, it is well known that μ1(G) � n, and the equality holds if and only if the

complement of G is disconnected. Thus, if T is a tree of order n, thenμ1(T) � n, and the equality holds

if and only if T = K1,n−1, the star on n� 2 vertices. For a real number x, let �x� denote the least integer

not less than x. Guo [2] studied the kth Laplacian eigenvalue of a tree, and got the following result.

Theorem 1.1. Let T be a tree of order n. Then μk(T) �� n
k
�, and the equality holds if and only if k < n,

n = 0(mod k) and T is spanned by k vertex disjoint copies of K1, n
k
−1.

In this paper, we investigate the kth Laplacian eigenvalue of a tree with a perfect matching, and

obtain the following result:

Let T ∈ T +
n . Then μk(T) = 2 when n = 2k, and μk(T) � � n

2k
�+2+√

(� n
2k

�)2+4

2
when n /= 2k. More-

over, this upper bound is sharp for n = 0(mod 2k).

2. Preliminaries

Let G be a graph of order n and let G′ = G + e be the graph obtained from G by adding a new edge

e into G. Then L(G′) = L(G) + zzT , where z is a column n-vector with two non-zero entries 1, −1 in

suitable places. The next Lemma follows from the well-known Courant–Weyl inequalities and the fact

that μn(zz
T ) = 0, where μn(zz

T ) is the least eigenvalue of zzT .

Lemma 2.1 [3]. The Laplacian eigenvalues of G and G′ interlace, that is,
μ1(G

′) � μ1(G) � μ2(G
′) � μ2(G) � · · · � μn(G

′) = μn(G) = 0.

Lemma 2.2 [3]. Let A be a Hermitian matrix with eigenvalues λ1 � λ2 � · · · � λn and B be a principal

submatrix of A. Let B has eigenvalues μ1 � μ2 � · · · � μm. Then the inequalities λn−m+i � μi � λi (i =
1, 2, . . . ,m) hold.

Lemma 2.3 [4]. Let T be a tree of order n. Then for any positive integer a, there exists a vertex v ∈ V(T)
such that there is one component of T − v with order not exceeding max{n − 1 − a, a} and all the other

components of T − v have order not exceeding a.

Lemma 2.4 [5]. Let T be a tree on n = 2k vertices. Then μk(T) � 2, and the equality holds if and only if T

has a perfect matching.

Lemma 2.5 [6]. Let T be a tree on n (n� 3) vertices with α′(T) = m. Then μ1(T) � μ1(T(n,m)), where

μ1(T(n,m)) is the largest root of the equation

x3 − (n − m + 4)x2 + (3n − 3m + 4)x − n = 0.
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Fig. 1. T(n,m).

The equality holds if and only if T ∼= T(n,m) (see Fig. 1).

When T is a tree on two vertices, i.e., T = K2, it is easy to see that μ1(K2) = 2. When T is a

tree of order 2t (t � 2) and has a perfect matching, then α′(T) = t. Hence Lemma 2.5 implies that

μ1(T) � μ1(T(2t, t)) = t+2+√
t2+4

2
, and the equality holds if and only if T ∼= T(2t, t).

3. Main results

In this section, we give a sharp upper bound for the kth Laplacian eigenvalue of a treewith a perfect

matching. Our results is as follows.

Lemma 3.1. Let T ∈ T +
n and n = k(2t). Then μk(T) = 2 when t = 1 and μk(T) � t+2+√

t2+4
2

when

t > 1.

Proof. When t = 1, then n = 2k. Lemma 2.4 implies that μk(T) = 2. When t > 1, fix t. We proceed

by induction on k. By Lemma 2.5, the result is obvious for k = 1. Assume that for any tree T ′ on
(k − 1)(2t) vertices, we have μk−1(T

′) � t+2+√
t2+4

2
, k � 2. Now let T be a tree on n = k(2t) vertices.

We only need to show that μk(T) � t+2+√
t2+4

2
.

Let a = 2t − 1 in Lemma 2.3. Then a� n − a − 1, and so there exists a vertex v ∈ V(T) such that

there is one component T0 of T − v with order not exceeding

n − a − 1 = n − 2t = (k − 1)(2t),

andall theother componentsofT − v, sayTj (j = 1, 2, . . . , s), haveordernotexceeding2t − 1. Suppose

that v0, v1, . . . , vs are the vertices of T and vj ∈ V(Tj), vvj ∈ E(T) (j = 0, 1, . . . , s). For each j (0� j � s),

let T ′
j be the tree obtained from Tj by attaching its vertex vj to the vertex v. Then |T ′

j | = |Tj| + 1. Let

Lv(T
′
j ) be thematrix obtained from L(T ′

j ) by deleting the rowand column corresponding to the vertex v.

Note that Lv(T
′
j ) is a principal submatrix of L(T ′

j ). Let Lv(T)be thematrix obtained from L(T)bydeleting

the row and column corresponding to the vertex v. Without loss of generality, we may assume that

Lv(T) =

⎡
⎢⎢⎢⎢⎣

Lv(T
′
0) 0 · · · 0

0 Lv(T
′
1) · · · 0

...
...

. . .
...

0 0 · · · Lv(T
′
s)

⎤
⎥⎥⎥⎥⎦

(n−1)×(n−1)

Since T is a tree with a perfect matching, it is obvious that only one of the components of T − v has

not a perfect matching. Now we consider the following two cases.

Case 1. T0 has a perfectmatching. Then only one of Tj (j = 1, . . . , s)has not a perfectmatching.Without

loss of generality, we assume that T1 has not a perfect matching. Then α′(T1) = 1
2
(|T1| − 1) and

|T1| � 2t − 1 and |Tj| � 2t − 2 (j = 2, 3, . . . , s).

We consider the following two subcases.

Subcase 1.1. |T0| �(k − 1)(2t) − 2. Let T̃0 be the tree obtained from T ′
0 by attaching a new vertex

and
(k−1)(2t)−|T ′

0|−1

2
paths of length two to its vertex v. Then T̃0 has a perfect matching, and |T̃0| =

(k − 1)(2t). Hence by Lemmas 2.1 and 2.2, and induction, we have
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μk−1(Lv(T
′
0)) � μk−1(L(T

′
0)) � μk−1(L(T̃0)) �

t + 2 + √
t2 + 4

2
.

Recall that T ′
1 has a perfect matching and T ′

j (j = 2, 3, . . . , s) has not a perfect matching, and

|T ′
1| � 2t and |T ′

j | � 2t − 1 (j = 2, 3, . . . , s).

Let T̃1 be the tree obtained from T ′
1 by attaching

2t−|T ′
1|

2
paths of length two to its vertex v, T̃j be the

tree obtained from T ′
j by attaching a new vertex and

2t−|T ′
j |−1

2
paths of length two to its vertex v

(j = 2, 3, . . . , s). Then T̃j has a perfect matching, and |T̃j| = 2t (j = 1, 2, . . . , s). By Lemmas 2.1, 2.2 and

2.5, we have

μ1(Lv(T
′
j )) � μ1(L(T

′
j )) � μ1(L(T̃j)) �

t + 2 + √
t2 + 4

2
(j = 1, 2, . . . , s).

Then μk−1(Lv(T)) � t+2+√
t2+4

2
. Hence by Lemma 2.2, we have

μk(T) � μk−1(Lv(T)) �
t + 2 + √

t2 + 4

2
.

Subcase 1.2. |T0| = (k − 1)(2t). Then the edge vv0 ∈ E(T) gives

T − vv0 = Tv
⋃

T0, |Tv| = 2t and |T0| = (k − 1)(2t),

where Tv and T0 are the two connected components of T − vv0.

HencebyLemma2.5wehaveμ1(Tv) � t+2+√
t2+4

2
; andby induction,wehaveμk−1(T0) � t+2+√

t2+4
2

.

Therefore, by Lemma 2.1 we have

μk(T) � μk−1(T − vv0) �max{μk−1(T0),μ1(Tv)} �
t + 2 + √

t2 + 4

2
.

Case 2. T0 has not a perfect matching. Then α′(T0) = 1
2
(|T0| − 1), and all of Tj (j = 1, 2, . . . , s) have a

perfect matching. We consider the following two subcases.

Subcase 2.1. |T0| �(k − 1)(2t) − 3. Since T ′
0 has a perfect matching, let T̃0 be the tree obtained from

T ′
0 by attaching

(k−1)(2t)−|T ′
0|

2
paths of length two to its vertex v, then T̃0 has a perfect matching, and

|T̃0| = (k − 1)(2t). By Lemmas 2.1 and 2.2, and induction, we have

μk−1(Lv(T
′
0)) � μk−1(L(T

′
0)) � μk−1(L(T̃0)) �

t + 2 + √
t2 + 4

2
.

Recall that T ′
j (j = 1, 2, . . . , s) has not a perfect matching and

|T ′
j | � 2t − 1 (j = 1, 2, . . . , s).

Let T̃j be the tree obtained from T ′
j by attaching a new vertex and

2t−|T ′
j |−1

2
paths of length two to its

vertex v (j = 1, 2, . . . , s). Then T̃j has a perfectmatching, and |T̃j| = 2t (j = 1, 2, . . . , s). By Lemmas 2.1,

2.2 and 2.5, we have

μ1(Lv(T
′
j )) � μ1(L(T

′
j )) � μ1(L(T̃j)) �

t + 2 + √
t2 + 4

2
(j = 1, 2, . . . , s).

Then μk−1(Lv(T)) � t+2+√
t2+4

2
. Hence by Lemma 2.2, we have

μk(T) � μk−1(Lv(T)) �
t + 2 + √

t2 + 4

2
.
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Subcase 2.2. |T0| = (k − 1)(2t) − 1. Then T ′
0 has a perfect matching, and |T ′

0| = (k − 1)(2t). By
Lemma 2.2 and induction, we have

μk−1(Lv(T
′
0)) � μk−1(L(T

′
0)) �

t + 2 + √
t2 + 4

2
.

Similarly, for each T ′
j , we can construct T̃j such that T̃j has a perfect matching, and |T̃j| = 2t (j =

1, 2, . . . , s). Hence

μ1(Lv(T
′
j )) � μ1(L(T

′
j )) � μ1(L(T̃j)) �

t + 2 + √
t2 + 4

2
(j = 1, 2, . . . , s).

Then μk−1(Lv(T)) � t+2+√
t2+4

2
. Hence by Lemma 2.2, we have

μk(T) � μk−1(Lv(T)) �
t + 2 + √

t2 + 4

2
.

From above discussion, the proof is completed. �

Lemma 3.2. Let T ∈ T +
n and n = k(2t) + r, where r is even and 1� r � 2k − 1. Then

μk(T) � (t+1)+2+
√

(t+1)2+4

2
.

Proof. Let T̂ be a tree on n + 2k − r = k(2t + 2) vertices that contains T and let T ′ be a subtree on T̂

on n + 1 vertices that contains T . By Lemmas 2.1, 2.2 and 3.1, we have

μk(T) � μk(T
′) � μk(T̂) �

(t + 1) + 2 +
√

(t + 1)2 + 4

2
. �

By Lemmas 3.1 and 3.2, it is easy to get our main result.

Theorem 3.1. Let T ∈ T +
n . Then μk(T) = 2 when n = 2k and μk(T) � � n

2k
�+2+√

(� n
2k

�)2+4

2
when n /=

2k.

Remark. Let T ∈ T +
n and n = k(2t). If T contains kT(2t, t) as a spanning subgraph, then when t = 1,

μ1(kK2) = μ2(kK2) = · · · = μk(kK2) = 2;
when t > 1,

μ1(kT(2t, t)) = μ2(kT(2t, t)) = · · · = μk(kT(2t, t)) = t + 2 + √
t2 + 4

2
;

and

|E(T)| − |E(kT2t,t)| = k − 1.

From Lemmas 2.1 and 3.1, we have when t = 1,

2� μk(kK2) � μk(T) = 2;
when t > 1,

t + 2 + √
t2 + 4

2
= μk(kT(2t, t)) � μk(T) �

t + 2 + √
t2 + 4

2
.

Thus the upper bound in Theorem 3.1 is sharp.

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with V1

⋂
V2 = ∅. A connected sum of G1 and

G2 is a graph G = (V , E), where V = V1

⋃
V2, and E differs from E1

⋃
E2 by the addition of a single
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edge joining some (arbitrary) vertex of V1 to some vertex of V2. At the end of this paper, we propose

the following problem.

Problem. Let T ∈ T +
n and n = k(2t). Then μk(T) = 2 when t = 1 and μk(T) = t+2+√

t2+4
2

when

t > 1 if and only if T is connected sum of kT(2t, t), i.e., T contains kT(2t, t) as a spanning subgraph.
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