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1. INTRODUCTION 

In this work we present a unified approach for treating the existence, 
uniqueness and asymptotic stability of classical solutions for a class of 
nonlinear partial differential equations governing the behavior of nonlinear 
continuous dynamical systems. From this class we treat the following initial 
boundary value problems for 01 a positive constant in varying detail: 

Here there is no intention of indicating how the content of the nonlinearities 
is determined. That will be discussed in our detailed consideration of (A). 

Some problems of this type have been treated before. Ficken and Fleishman 
[l] investigated the existence, uniqueness and stability of solutions of the 
initial value problem for 

%z - utt - 2cx,u, - a2u = a3 + b. 

Greenberg, MacCamy and Mizel [2] h ave treated the initial boundary 
value problem for utt - uZZt = u’(u,)u,, (which is a special case of (A)) 
using some results from the theory of parabolic equations. Rabinowitz [3,4] 
has proven the existence of periodic solutions for utt + 2olu, - u,, = l f 
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where .S is a small parameter and f is periodic in time. In [3] hc treats j 

.f(% u.,, ? % > s, t) and in [4] he treats the fully nonlinear case f = J(u, 21,. , 

ut , NJ., , 1l.d , z+ , s, t). To do this he uses methods from the theory of elliptic 
boundary value problems. Avner Friedman treats equations of the type (Cj 
in his book on parabolic equations [5]. Notice that Burger’s equation is a 
special case of (C j. 

This paper is divided into two parts. In Part 1 we discuss the general ideas 
involved, including the general type of problem to which the techniques of 
this paper can be applied, the fixed point theorem used for proving esistence 
and uniqueness, and a Liapunov functional approach to stability which is an 
extension of Liapunov’s direct method for ordinary differential equations. 
In Part 2 we treat the specific equations listed above in varying detail, using 
the ideas developed in Part 1. 

Equation (A) will be treated in the greatest detail, making concrete all 
the basic ideas of this paper. Equations (B) and (C) will be discussed in a 
similar manner; however, the lemmas and proofs of the theorems will not be 
included. Because of space limitations, we give only a brief discussion of 
Eq. (D); it was selected because it has two spatial dimensions. Equation 
(E) will not be considered at all, it can be treated in the same way as (A) 
and is mentioned here only to make the reader aware of the applicability of 
the ideas in this paper to systems. We feel that an understanding of part 
two will give the reader the necessary tools for handling similar problems. 

Rfuch of this material was originally discussed in [6] in a Sobolev space 
context; this paper is an improvement over those results. The authors thank 
Charles De Prima of Cal Tech for the suggestion that led to the present 
treatment. 

PART 1. GENER.4L THEORY 

1.1 INTRODUCTION 

In this part we discuss the basic ideas for treating existence, uniqueness 
and stability for problems of the form: 

~24 = utt + 2&u, + Az$4 = f, 
@. > 0, .Y E 9 and t E [O, q, 

(1) 

with homogeneous boundary conditions 

&4(x, t) = 0 for XE29 (2) 

and initial conditions 

u(s, 0) = a,(x), Ut(.Tr 0) = u&v). (3) 
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Here Yr and 9a are linear self adjoint “spatial” operators with certain other 
properties depending on the context, f is a nonlinear function of x, t, u and 
some derivatives of U, and 9 is a spatial domain. 

In the treatment of Eqs. (A), (B) and (C) in Part 2,9 is the interval [0, l] 
and for Eq. (D) it is [0, l] x [0, 11. Equation (C) does not fall into the form 
of (l)-(3), however, it will be clear how to extend the ideas of this paper to 
the initial boundary value problem: 

u,+8u -f, xc22 and t E [0, T], 

with homogeneous boundary conditions 

Bu(s, t) = 0 for x E Z? (4) 

and initial condition 

u(x, 0) = a(r), 

of which (C) is a special case. 

1.2 FORMULATION OF EXISTENCE AND UNIQUENESS FOR (lF(3) 

The key idea in our method for proving existence and uniqueness is the 
construction of a solution to the linear nonhomogeneous problem 

2pu = F(x, t), (5) 

associated with (1) by the use of an eigenfunction expansion. In order to 
do this we assume there exists a complete set of orthonormal eigenfunctions 
{T%(X)} which are eigenfunctions for both Yr and Za, i.e., 9rvn = h,q~,, , 
L&J, = pnq,, , and BvJx) = 0 for x E 29. Caughey and O’Kelly [7] have 
derived necessary and sufficient conditions for this to be true; we state them 
here without proof: 

a. the operators Zi and -(za commute, i.e., 9rYa = -!Z$LYi, 

b. if the operators are of different order the boundary conditions on the 
higher operator must be derivable from a compatible set of boundary condi- 
tions on the lower order operator. 

The unique solution of (l)-(3) can be viewed as a fixed point of the mapping 
A: u -+ v defined by 

PEPa := f(u, ut ,..., x, t), (6) 
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or in terms of d 

where u and v are required to satisfy the initial and boundary conditions 
(2) and (3). This, of course, is not the only mapping which can be defined 
from (1); however, this form is particularly useful because of the “damping” 
term, gr~, , and because of the properties of the eigenvalues of Zr and Sz. 

Since gI and .& are assumed to have the same complete set of eigen- 
functions, an eigenfunction expansion can be used to find an explicit re- 
presentation for the mapping. This is the same as saying that the linear 
nonhomogeneous equation (6) withF(x, t) = ~(u(x, f), ZQ(S, t),..., s, t) can be 
solved by an eigenfunction expansion 

The differential equation (6) requires that the @Jr) must satisfy the non- 
homogeneous ordinary differential equation 

‘L’,,,, + 24&&t + PL,‘L’, = F,(f), 

with initial conditions 

%(O) = al, > zh(O> = a,, , 

where 

I, = j-/(x, t) c&~) dx = S,f(u(x, t), u,(x, t),..., x, t) q~n(x> dx 

and 

ai, = 
s ~ a&> Y-G@> dx, i= 1,2. 

The solution of (9)-(10) can be written 

~0) = am&) + aznven(t> + f”~,&) Q& - 4 dv 
‘0 

(9) 

(10) 

(11) 

(12) 

(13) 

where zvln and z+,(t) solve the homogeneous equation (9) with initial conditions 

(14) 
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The mapping (7) can now be written 

(15) 

This is the form of the mapping we use in our discussion of existence and 
uniqueness. 

The existence and uniqueness of a classical solution to (l)-(3) is thus 
reduced to showing that A, explicitly given in (15), is a contraction mapping 
on a suitable complete metric space. The distance function we use is a curious 
sort of norm; for example, in the case of equation (A) we use the distance 
function d(u, , u,) = 11 u1 - u, I/ where 

II u II = I fJ. 1111 + I % lm + I Ut I?,, + I Km Inz + I %t Im 
t I Utt Im + I 4-m Im + I %xt I m + I Kzr+r ILW (16) 

+ I %xct IL.m + I %tt IL,,1 
and 

I g(x, t)l, = m;x I g(m, 01 , J-2 = [O, l] x [O, T] 

(17) 

The form of the fixed point theorem we use is taken from Korevaar 
[S, p. 2131: 

DEFINITION. Let N be a metric space. The transformation d of N into 
itself is called a contraction if there exists a positive constant Y < 1 such that 

Contraction Mapping Theorem. Let A be a contraction operator on a 
nonempty complete metric space N. Then A has exactly one fixed-point U, 
and if u,, is any point in N 

As K + cc the distance between u and A%, tends to zero at least as fast as rL. 
The proof of this is in Korevaar. 
In each case in Part 2 we proceed by defining a suitable complete metric 

space and then finding conditions such that r4 maps the space into itself and 
is a contraction. Each case contains three results related to existence and 
uniqueness: 
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(a) -4n existence, uniqueness theorem on a finite interval t E [0, T]. 
Here there are essentially no restrictions on f, CI~ and a1 except for smoothness 
requirements, and the contraction mapping is obtained by making T small. 
Th e problem of the extension of solutions to a maximum time interval is not 
considered in this paper. 

(b) iln existence, uniqueness theorem on the semi-infinite interval 
t E [0, ccj). Here along with smoothness conditions we require that a, , a, 
and f be small and that f jrrcO == 0 (i.e., ZI = 0 is an equilibrium solution). 
This theorem also gives the asymptotic stability of the zero solution. 

(c) A bound on the solution under the conditions used in (b). This is 
obtained by using a form of the Gronwall lemma. 

Since nonlinear problems are in general much more difficult than linear 
problems, an interesting question is “When does the solution of the nonlinear 
problem behave like the solution of the linearized version ?” 

For ordinary differential equations there are theorems attributed in various 
places to Liapunov,’ Poincark and Perron, which say, in essence, that if 
solutions of the linearized equation are asymptotically stable and the non- 
linearity is small then solutions of the nonlinear equation are asymptotically 
stable. Results (b) and (c) together comprise a theorem of this type for the 
equations considered in this paper; a Liapunov-PoincarC type theorem. 

1.3 FORMULATION 0~ LIAPLJNOV'S DIRECT RIETHOD FOR STABILITY 

Stability analysis by Liapunov’s Direct nIethod has been applied extensively 
to ordinary differential equations and so it is natural to look for extensions 
of this method to partial differential equations. Several recent papers [9-l l] 
treat stability for certain partial differential equations by such an extension. 
Greenberg, AIacCamy and Mizel [2] and Rabinowitz [3] treat stability by a 
method which is essentially the same as the Direct Method. 

In this section we state a theorem on asymptotic stability which applies 
to (l)-(2) if a “Liapunov Functional” can be constructed. It is assumed here 
that (1) admits a zero (equilibrium) solution. 

We introduce a state vector U(x, t) which consists of u defined by (l)-(3) 
(or (4)), ut and various spatial derivatives of zc and ut , sometimes writing 
U(x, t, UO) where U,,(X) denotes the initial state of the system, i.e., 
qx, 0, CT()) == rr, . The asymptotic stability will be discussed in terms of a 
time dependent norm, 
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where the UI(x, t) are the scalar components of U. For example, in Case A, 

p(t) = (Jo1 (u” + uz2 + u: + u&J dy. 

Before proceeding to the theorem, which is almost identical to a theorem 
proved by Kalman and Bertram [12] for ordinary differential equations, we 
need the following stability definitions in terms of the norm, p: 

DEFINITION 1. The zero solution of (l)-(3) (or (4)) is said to be stable if 
for every E > 0 there exists a S(E) > 0 such that p(O) < 6 implies p(t) < E 
for all t >, 0. 

DEFINITION 2. The zero solution of (l)-(3) (or (4)) is said to be 
asymptotically stable in the large if 

(1) the zero solution is stable, and 

(2) all solutions which are bounded initially (p(O) is bounded) remain 
bounded for all time (p(t) is bounded for all t > 0) and approach zero as 
t -+ a (Iimt-J3p(t) = 0). 

Let 19” be a spatial integral operator (functional) which maps the vector 
function U(.r, t) into a scalar function V(t), i.e., 5-[U(x, t)] = I’(t). 

Liapunov Stability Theorem(Liapunov’sDirect Methodfor Asymptotic Stability). 
Suppose there exists a functional Y[U(x, t)] = V(t) differentiable in t along 
every solution curve U such that V[O] = 0 and 

(a) Y[U] = F(t) is positive definite, that is, there exists a continuous 
nondecreasing scalar function ,& such that PI(O) = 0 and for all t and all 
L’ f 0, 0 < Pl(&)) < W); 

(b) there exists a continuous scalar function y such that y(O) = 0 
and the derivative I” of V along the motion satisfies, for all t > 0 and U # 0, 
P(t) < --y(p(t)) < 0; 

(c) there exists a continuous, nondecreasing scalar function j3, such 
that /3,(O) = 0 and, for all t, L’(t) < &(p(t)); 

(4 Ph)+~asP+~. 

Then the zero solution of (l)-(3) (or (4)) is asymptotically stable in the large. 
The proof is contained in [6] and a similar proof is contained in [12]. 

DEFINITION 3. A functional V[U], which maps the vector function 
U(x, t) into a scalar function of t and which satisfies the conditions of the 
above theorem is called a Liapunov Functional. 
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Liapunor’s Direct Method for stability has the advantage that it does not 
require any knowledge of the solution (except that it satisfy a certain differrn- 
tial equation); however, it suffers in that there is no general way to find a 
Liapunov Functional. An exception to this is the case of (1) where f A 0, 
i.e., the linear homogeneous case. A Liapunov Functional can be constructed 
by multiplying utt + 2&i%;ut + &u = 0 by ut + C&U, integrating over the 
domain 9 and then making appropriate restrictions on pi and -rP, . We shall 
demonstrate the procedure here since it can be carried out for the general 
operators pi and X2 and because the functional so constructed will be useful 
for the cases considered in Part 2. In the following derivation we assume 
.Ep1 and Z1 are self-adjoint. 

If the inner product of .f(.r) and S(X) is defined by 

then 

0 = (Ut + ol-qu, 0) = (ut + CL@, zltt + 2c44, + ,Ea,u) 

= g(u, , 4 + (Ut , 2~=9$,) + (4 , -e) + (oL-@, Utt) (19) 

+ (c4% 2ol=5%,) + (oL=qu, -Q). 

(20) 

imply 

W/4 [(ut , 4 + (II, -@) + 24% ut) + 2a2(q%;u, T2u)] 

= -&[(ut , 2olYiUJ + (2ard%;U, P2u)]. (21) 

If we define 

then (21) can be written 

v(t) = -+G , =QG) + (,L4u, -%)I. (23) 

By making appropriate restrictions on Y; and Z2 , e.g., positive definiteness, 
it can be shown that V in (22) is a Liapunov Functional for (l)-(2) mithf = 0. 
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If we consider (I) withf + 0 the same procedure yields 

VI@> = &[(u, =J@> + @t + a=@, ut + 4~) + a2(.Eplu, =+)] (24) 

and 

I-i will be part of the Liapunov Functionals constructed in Part 2. 
In the cases to follow later we pick one or two rather specific nonlinearities 

f and prove the asymptotic stability in the large in terms of some norm, p, 
by constructing a Liapunov functional. It can be seen from these cases that 
the application of the Liapunov stability theorem is more general than the 
Liapunov-Poincare result described in Section 1.2 in the sense that there is 
no restriction on the size of the initial data (recall asymptotic stability in the 
large) or the size of the nonlinearity, only a restriction on the form of the 
nonlinearity. For example, in the Liapunov-Poincare type result the sign 
of the nonlinearity plays no role; however, in Liapunov’s direct method it 
may determine the difference between stability or instability. 

PART 2. APPLICATIONS 

2.1 INTRODUCTION 

Each of the four cases presented here is discussed in the following way: 
(a) Existence and uniqueness of classical solutions (i.e., solutions such that 
u and all the derivatives appearing in the differential equation are continuous) 
on a finite interval and an infinite interval, (b) a Liapunov-PoincarC type 
theorem and (c) stability via Liapunov’s direct method. Case A is worked 
out in considerable detail and is the only case where proofs are given. We feel 
that an understanding of the proofs in Case A will allow the reader to supply 
his own proofs for the other cases. Cases B and C will be discussed in a 
similar manner; however, the lemmas and proofs of the theorems will not 
be included. For Case D, we give only a brief discussion. 

2.2 CASE A 

2.2a. Preliminaries. 

The differential equation is 

224 = Utt - 2%mt - %, = f (u, &I! , Ut , u,, , %t 9 x, t) 
x E [O, 11, t 30, 01 > 0, t-41) 
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with boundary and initial conditions 

u(0, t) -: u( I, f) == 0, (AZ) 

u(.\., 0) -= a,(x), Uf(S, 0) ~~ &(S). (.13) 

The eigenfunctions and eigenvalues associated with -Vi = Yz - -(i’“/i.G) 
(see Section 1.2) are 

92J.Y) = 47 sin nrr.f, h,, = p’n = n%G, (A4) 

so the solution of (Al)-(A3) can be viewed as a fixed point of the mapping 
A defined in Eq. (15) with 

and 

al,(t) = e-nn2n’t 
[ 

an %r2 
cash Xt + T sinh Xt 

I 

sinh Xt 
Q”(t) = e-1,1*n2t s ) 

(W 

where 

Jy = (&4~4 - n2rr2)a, 647) 

The following relationships are needed for the existence, uniqueness 
discussion: 

i 

1 

‘0 
= win(t) dt = m , 

I 

D 1 

0 

&(t) dt = m . 
(W 

For every 01 > 0 there exist positive a and k such that 

I %l(t)i < ke-“f, 
dkin(t) 

649) 

I I - < k(nT)2fi-l) e-af, 
dti 

j== 1,2; 2.2 1. 

Also 

s 0 
a (eatwzn(t))’ dt < & , 

1 m (eQfw2nt(t))2 dt < & . 
‘0 

(-410) 
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The inequalities (AlO) d o not follow from (A9), but can be obtained by 
examining the integrals directly. 

We want to prove existence and uniqueness of classical solutions to 
(Al)-(A3), that is, we seek solutions U(X, t) such that utt , uSrt , u,, and ZC,~ 
are continuous. Before defining the appropriate norm and function spaces we 
offer the following partial motivation for our choice of norm (other norms 
were tried but failed to produce the desired contraction mappings). 

Because of the nature of the Fourier series representation of solutions to 
dpu = F(x, t), the square integrability of F,, and F, on Q = [0, l] x [0, T] 
is needed in order for z+, u,,~ and u,, to be continuous on Q (for details, 
see Lemma A2, following). The square integrability of Fr;,, and F, also yields 
the continuity of u,,, on Q, the square integrability of u,,,, , ufzzt and uztt 
on [0, I] for every t in [0, T] and the continuity of these integrals in t. This 
indicates that in order for there to be no derivative loss in the transformation 
of u into v defined by .Yv =-f(u,...), a condition necessary to obtain a 
contraction mapping, the nonlinearity f can contain only u, uz, ut , u,, 
and uzt . We define the following normed function spaces: 

DEFINITION ill. 

g = M? t) I u, % 9 Ut > u.r, ? U,t , utt > u,,, , %,t , U,tt , u,,,, , u,,,t E C(Q)), 

where C(Q) is the class of continuous functions on Q. 

DEFINITION A2. B is the completion of %’ under the norm 

where ] Irn and 1 lL5m are defined in Section 1.2, (17). 
We also need an auxiliary t-dependent norm, /I u IIr , defined as 

II u Ill = I 24 lm1 + I % Iq + I Ut Ln, + I %c Inzl 

+ I uzt Iq + I utt Im, + I %,x Iq + I %t Im, (All) 

+ I Krsrx IL + I %zzt IL + I Ustt IL Y 

where 
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and 

For a discussion of some of the properties of B see the Appendix. 
\%‘e now state and prove two lemmas needed in the proofs of the existence 

and uniqueness theorems. 

LEMnfa Al. Let h(.u, t) = xy C,z(t) pn(x) where C:(t) is continuous on 
[0, T]. Then h E B if the seriesxy Cn2(t) n*d, x: C::(t) n6d adz: C:(t) 7zz7? 
converge uniforms on [0, T]. Also 

,, h iI1 G 5 [(f c,‘(t) n8n8)1’2 + (f c:(t) ~2%~)~‘~ + (f C;;‘(t) n2~‘)li2] . 
1 1 1 

Proof. Let h, =I 1: CJt) v,Jx); then by assumption 12, E P. The 
uniform convergence of the three series insures that {hN} is a Cauchy sequence 
in B.The inequality (A12) follows from applications of the Schwarz inequality. 
For example, consider 

and 

02 
h,,, = 1 CJt) (-1, 2 n3n3 cos n~+z) 

1 

h 2223c = f C,(t) n’dq#. 
1 

Therefore 

h:,, < (f 2 ‘;;;y 
1 

) (f n877”C,‘(t)) < f f n87rsCn2(t) 
1 1 

and 

1 h,,,, IL. = ($ C;(t) r~“n~)~“. 

DEFINITION A3. 

ill = {u 1 u E B, u(s, 0) = a,(x), z+(x, 0) = a,(x), ~(0, t) = ~(1, t) = O}. 

LEMMA A2. The linear nonhomogeneous problem L?z! = F(x, t), subject 
to (A2, 3), has a solution v E Mgiven by v(x, t) = s1 +- s2 + s3 , where 

Sl = f %%(t) %W 
-7 

SP = x QnnfJ2&)9)&) 
1 1 
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and 

s2 = f j t F,(v) a,,(t - v) dvpn(x). 
1 0 

Moreover, there exist positive constants KI and K2 depending on k (see (A9)- 
(AlO)) such that 

+ K2 [(jot e?(t-“) jol F&(x, V) dx dv)1’2 

+ (1” e-za(t-v) jolFt(x, v) dx dv)“*] 
0 

(Al3) 

II ZJ II < &(I ~~~~~~ IL + I aZIzr IL + I Fe@-, Oh) 
(Al4) 

+ K, [(jTjlFzz(x, t) d.ydt)“* + (joTjo1F,2(x, t) dxdt)“*] 
0 0 

provided that 

(a) F(x, t) is an indefmite integral in t for almost every x and F,(x, t) is an 
indefinite integral in x for every t, 

(b) F(0, t) = F(1, t) = 0, 

(c) jl J’i Fz, dxdt and SOT si Ft dxdt exist, 

(4 I alssxz IL and I a2sxx IL exist, 
(4 01 1 a2 , %r and a2xr vanish at x = 0 and x = 1. 

Proof. Since B is a linear space v E B as long as sl , s2 and ss E B. It is easy 
to verify that s1 and s2 E B and that 

II s1 II + II s2 II < Kle-at(l alsEIr IL + I a2rsz Id 

by using conditions (d) and (e), the inequalities (A9), and Lemma Al. 
Therefore we focus our attention on ss and the corresponding C;” CE* n2rr2 
from Lemma A 1. 

We know sg = x; C,(t) vn(x) where 

c,(t) = 1 t F,(v) qn(t - v) dv. 
'0 



Now if F(s, t) is an indefinite integral in 1 for almost cl-cry s then CL(t) =-. 

F,(O) %t(t) + J‘:F,J1’) rs cznr(f ~ 19) f/l,. Since J”IF,L’(~t) ?.z,,(t - 1,) f/i: can he 
written as J’X e-U(t-r)F71’(Y) en”-’ I.-, c&f - V) &, an application of the Schwarz 
inequality and the use of (a9) and (AlO) yield 

Parseval’s equality, condition b and c and the monotone convergence theorem 
give us the following: 

and 

ii: n%2F,yo) == I’ Fx2(x, 0) d.x 
1 0 

== I 
.t 
.n e- Pa(t-v) 

J 
-’ Ft2(r, v) dx dv 

:.:.I ~:r,‘F,“(x, :) d.r dv. 

Therefore xy C:‘(t) n2n2 converges uniformly and 

< (dz kecat / F,(x, O)(, + \“z k (ji’ e-la(*-“) ~01J7t2(~~, “) d.z: dv)lia. 

After similar calculations on x:;” C:fn’+ and x’r C,2nsG are completed the 
fact that v E B and the inequalities (-413) and (A14) follow from Lemma Al. 
Since the series for ZI and We converge uniformly it is an easy matter to verify 
that z’(x, 0) = a,(x), v,(x, 0) = u2(x) and $0, t) = ~(1, t) = 0. Thus ~1 E M. 

A good reference for the type of calculation used in the proof of this lemma 
is Weinberger [ 131. 

2.2b. Existence and Uniqueness on [0, T] 

DEFINITION A4. M,(8) = {u / u E 51, Ij u I/ -::i S>. 

Recall from definitions (Al)-(-43) that ;I2 depends on T. 
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DEFINITION A5. f(~1, u, , ut , urx . uXt, X, t) = F(x, t) is a Lipschitz 
function on Ml(S) if there exist L,(S) and L,(S) such that 

(a) I F,, L + I Ft IL,,, < -G(S) for every u E Jfl , 

(b) I Fm.z - F2rx L + I Flf - F2t Lnl ,< h(S) II u1 - u2 II for every u1 , 
u2 E Xl where 

Fi(x, t) == f(ui , ui+ , u;t , uixr , uist , .y, t), i= 1,2. 

In the Appendix we show that if u E B then uXt is an indefinite integral 
in t for almost every X, u,,, and u,,~ are indefinite integrals in x for every t 
and these derivatives exist in the Lm norm. It follows that F,, , Ft and their 
Lm norms make sense. A sufficient condition for f to be Lipschitz on Mr is 
thatfE C3 on [-S, S15 x Sz. 

We now have the machinery to prove the following: 

THEOREM Al (Existence and Uniqueness on a Finite Time Interval). Let 
7 be an arbitrary number in (0, 1) and let f, a, and a2 satisfy the following 
conditions: 

(a) f is Lipschitz on M,(S), 

(b) F(0, t) = F(l, t) = 0, 

(4 &(I alxxzs IL + I a2sxz IL + I F& Wd 52 r1k 
(4 al y a2 , alsx and azrx aanishatx =Oandx = 1. 

If T1/* < min((1 - 7)S/K,L,, l/K,L,) then there exists a unique classical 
solution of (Al)-(A3) for t E [0, T]. Recall that KI and K, are de$ned in 
Lemma A2. 

Proof. To prove this it is sufficient to prove that A (see (15) and (Al)- 
(AT)) maps the complete metric space M, into itself and is a contraction 
on Mi . 

Let z’ = Au; we want to prove that if u E fig1 then z’ E Mi . If we make the 
identification F(x, t) = f (u, u, , ut , u,, , uXt, X, t) then conditions a - d 
of this theorem assure that the conditions of Lemma A2 are satisfied. It 
follows that v E M and that 

II 7~ II ,< Kdl alspsx IL + I alssr IL + I F&G W 

+ K, [(s,’ IF,, I:. dt)1’2 + (IoT I Ft I; dt)liz] 

< 7s + K,(W2W). 

But (T)1/2 < (1 - 7)S/K2L1 implies II z’ 11 < 6, therefore v E Ml . 

409/51/I-2 
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To prove that -4 is a contraction we must show there exists a positive 
r < 1 such that 11 A4u1 - --lu, 11 :.G r 11 ur - zl,! 11 for every ur , u3 E N, . The 
inequalitv (A14) can be used here with aI e: a, = 0 and F replaced b! 
Fl - Fz f it becomes: 

Using a, // Au, - 9u, /j :g E=,L,(6)z/T /I u1 - u, //. But K,L,(A)dT < 1. 
Theorem Al follows by applying the contraction mapping theorem described 
in Section 1.2. 

2.2~. Existence and Uniqueness on [0, a) and Asymptotic Stability 

DEFINITION A6. ilf.7(S, U) = {U 1 U E M, I/ U /I1 < Se-Ot}. 

LEnmIA A3. nfa(& u) is complete. 

Proof. Let {un} be a Cauchy sequence in Ma C 111. Since M is complete 
there exists a u E M such that u,~ -+ u. The Lemma is proved if 11 u II1 < Se-“‘. 

From the triangle inequalit! 

11 u Ill e II u - u, II1 + II u, II1 < II 24 - 4 /I1 + a@, 

for n large 

for every E > 0. Therefore 11 u /II < 8e-at. 

DEFINITION -47. f(u, u, , ut , u,, , uzt , X, t) = F(x, t) is an exponential 
Lipschitz function on Ma(S, a) if there exist L,(6) and I&(8) such that 

(a) 1 F,, IL and 1 F, IL ,( +L, 11 u 11: ,( +L, I/ u )I1 6e-ut for every u E Ma , 

(b) I Fl,, -F,,, IL and I Fit - F 2t I L < +L, // u1 - u2 118 for every 
u1 , I+ E At2 where 

Ft(x, t) = f(ui 3 ui.r, uit t u<rs > uist 9 5, t), i= 1,2. 

THEOREM A2 (Existence and Uniqueness for every t > 0 and Asymptotic 
Stability). Let 71 be an arbitrary number in (0, 1) and let f, a, and a2 satisfy 
the following conditions: 
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(a) f is esponentiaZLipschitx on AZ,@, a), 

(b) F(0, t) = li( 1, t) = 0, 

(4 &(I ~lxxxx IL + I a2zrz IL + I F&, Oh) d 6 

(4 al , a2 , aljcx and a,,, vanishatx =Oandx = 1. 

If 6 is such that the inequalities 

and 

L,(S)6 ,<I (1 - v)(2a)1/9/Kz 

L,(S)6 < (2a)‘D/K, 

are satisjied, then there exists a unique classical solution of (Al)-(A3) in Al, 
for ewery T > 0. 

Remarks. (a) The exponential Lipschitz condition implies that u SE 0 
is an equilibrium solution. The nature of M, insures the asymptotic stability 
of the zero solution. 

(b) Condition a of Theorem A2 can be weakened; however, for exposi- 
tory purposes we feel the above statement of the theorem is the most instruc- 
tive. For example, a form of Theorem A2 can be proved under the condition 
that 1 F,, IL. and 1 F, II. < &C,(6) II u II:+’ for E > 0. 

Proof. To prove the theorem it is sufficient to prove that ,4 maps the 
complete metric space M, into itself and is a contraction on Mz . 

Let v = Au; we want to prove that if u E fitr, then z’ E Ms. It follows 
from conditions a-d and Lemma A2 that v E M and that 

II n II1 < I;-;e-at(l ~~~~~~ IL + I acszs IL + I F&G WL) 

+ K, [(Jb” e--2a(f-“) I F,, 1; dv)“’ + [ it e-2a(f-“) I F, 1; dv)li2] 
‘* 0 

< TSepat + K2L182(2a)-1/2 e-a’t. 

But L,(a)6 < (1 - 7)(2a)‘/‘/lu, implies II v II1 < 8e-at, therefore ZJ E M2 . 
To prove that A is a contraction we must show there exists a positive 

r < 1 such that II Au, - Au, 11 .< r 11 u1 - up /I for every z+ , uq E M2 . The 
inequality (A13) can be used here with a, = a? E 0 and F replaced by 
Fl - Ft ; it becomes: 

11 Au, - Au, /I1 < K2 [ (Iof e-2a(f-Y) 1 FIZZ - F,,, 12 dv)liz 

+ (s,’ e-2a(t-v) IF,, - F2t 1; dv)li2] . 
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Condition a and the inequality L,(h)6 < (2a)lia/Ka impI! 

with r < 1. Therefore 

Theorem A2 follows by applying the contraction mapping theorem described 
in Section 1.2 and noting that there is no restriction on T in the proof of the 
theorem. 

THEOREM A3. Suppose all the conditions of Theorem A2 are satis$ed, then 

11 24 Ill < \/Z $i exp[( I - T)~ (1 - e-*Qt)]e-at, 

where u is the jxed point of (Al)-(A3). 

Proof. Lemma A2, condition a of Theorem A2 and the fact that u is a 
fixed point of (Al)-(A3) imply that 

II * Ill < &+(I h.rl.z IL + I a2rss IL + I F&i WL) 

“t f &Id1 
(1 

e-2a(f-“’ 
‘(I 

11 u [I; dv)? 

Condition c of Theorem A2, the fact that /) u III < Ge-at and the fact that 
L,6 < (1 - ~)(2a)ll”/Ks imply that 

eat /I u /I1 < 116 + (1 - 7) (2~)‘~” (Iot 11 u IIf dv)“‘. 

Let y(t) == eat Ij u iI1 , then 

y(t) < $5 + (1 - 71) (2n)l/a (.r,’ e-4avy2 dv)? 

If we square both sides and use the fact that (p + q)2 < 2~” 

y’(t) < 27jQ2 + 4a(l - q)” Jot e-2avy2 dv. 

(A15) 

2q2 we find 

6416) 

An application of Gronwell’s inequality to (A16) gives the desired result: 

II 24 Ill 2 e2at = y2 ,( 277aS2 exp[2( 1 - 7)’ (1 - eeeat)] 

or 

11 24 Ill < dZ 7$ exp[( 1 - 7)2 (1 - e-2at)]e-af. 
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Remark. The step (Al5) to (A16) is unfortunate as (A15) gives a better 
bound than (A16); however, it appears to be necessary in order to get a 
closed form solution of the inequality. If the approach used in the derivation 
of Gronwall’s inequality is attempted on (A15) a differential inequality is 
derived which cannot be solved in closed form. 

2.2d. Construction of a Liapunov Functional for Special f ‘s. 

We consider two specific types of nonlinearities f, f = -g(u) and f = 
(Z/&)g(uJ where g has the properties 

zg(z) > 0 .z f 0, (A17) 

g’(z) > 0. (Al@ 

The Liapunov functional for each type of nonlinearity will be of the form 
V(t) = Vi(t) + V2(t) where I/r is defined in (24) 

Vi(t) = $ s,’ [us2 + (ut - au,,)’ + ct2&] dx. (A19) 

From (25) 

&(t) = -a s,’ [u:, + u:, + uzsf ] dx + s,’ utf dx. 6420) 

Notice that VI(t) is positive definite and that for the f’s we are considering 
Ji u,, fdx is nonnegative. The basic idea in constructing V(t) is to find a 
V2(t) which is nonnegative such that v2(t) cancels out the last term in (A20). 
It must be remembered that u satisfies (A2). 

THEOREM A4. Let f = -g(u) where g satisfies (A17)-(A18). Then V(t) = 
V;(t) + V2(t) where 

V2(t) = Ia1 (~ou(x*t)g(() d[! dx, Wl) 

is a Liapunov functional for (Al)-(A2). It f 11 o OZLS 1 f rom the Liapunov stability 
theorem that the zero soZution of (Al)-(A2) is asymptotically stable in the large. 

Proof. Differentiation of (A21) yields 

rr2(t) = s1 u,g(u) dx, 
0 

which leads to 

v(t) = & lo1 1~: + (ut - a~,,)~ + ~% + 2 j-oug(E) dt\ dx G422) 
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and 

r’(t) E -a /.I . o (u$ + u:, $ u~‘g’(21)) CL\. (X3) 

The theorem follows once we show (A22) and (A23) satisfy conditions (a)-(d) 
of the Liapunov stability theorem with 

p”(t) = I1 [u’ + u,* +- ut2 + u;,] d.y. 
‘0 

(A24) 

The following inequalities will be useful in our proof. Since u is such that 
~(0, t) = u( 1, t) = 0 and u,, exists, 

and 

Inequality (A26) is based on the fact that for each t, u.Jx, t) has a zero for 
some x (by Rolle’s theorem). 

To verify conditions a and d of the Liapunov stability theorem we make 
use of (A25) and the inequality j ut 1 < / ut - ‘YU,, / + OL j u,, ) to find 

$ < j1’ [2zr,2 + 2(u, - au,,)2 + 2~*u:, + &.I d.v 

< 2(2 + l/G) s;(t) = &l;(t) < &F(t). 

Therefore r(t) 3 p*/K, = j?r(p) and clearly /3i satisfies the appropriate 
conditions. 

To verify condition c we notice that there exists a Kz such that 

VJt) G 4 f1 ruz2 + 2~: + 3a”uQ d.r G KJ. 
“” 

Now consider V*(t) = ji (J-i g(t) d[) d x 
jRU g(S) 49. Th’ 

and let h() u i) EE max( j,” g(t) dt, 
IS implies that h(O) = 0. From (A17) we see h is a nonde- 

creasing function of 1 u 1 and sr g(t) d( ,( h(l u I). By (A25) 1 u 1 < p, therefore, 

L;(t) == IO1 tug(f) dc.f da- < Jo1 h(,~) dx = &). 
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Combining this with the result for Vr yields V(t) < Ka p2 + h(p) = /3*(p) 
and clearly /Ie satisfies the appropriate conditions. 

Condition b will be satisfied if we find a y such that 

Y(P) < a o1 [z& + u?,, + uz2g’(u)] dx. 
I 

Using (A23 and (A26) we find 

p2 = O1 [G + ff,2 
s 

+ ut2 + u;J dx < c,’ [3& + &] dx, 

but g’(u) is positive; therefore, 

p2 < 3 ,’ [& + z& + u;g’(u)] ds. 
s 

It we take y(p) = ap2/3, condition b is satisfied. 
This completes the proof of Theorem A4. 

THEOREM A5. Let f = (a/&)g(uJ where g satis$es (A17)-(A18). The-n 
V(t) = Vi(t) + V2(t) where 

V2(t) = I1 (~“z’z.‘ig([) d[) dx 6427) 
0 0 

is a Liapunov functional for (Al)-(A2). It f 11 o ows f rom the Liapunov stability 
theorem that the zero solution of (Al)-(A2) is asymptotically stable in the large. 

Proof. The proof of this theorem follows the proof of Theorem A4, with 
the appropriate modifications in the construction of&(p). 

Remark. It is interesting to note that in the case where f E 0, V,(t) 
is a Liapunov functional and there exists a positive constant c such that 
Vi(t) < I;(0)e-Et/c. So, not only do we have asymptotic stability in the 
large but we have an estimate on the rate of decay of the Liapunov functional. 
Similar bounds can be obtained in Theorems A4A5 by making further 
restrictions on g. 

2.3 CASE B 

2.3a. Preliminaries 

The differential equation is 

Utt + 2orut - Km =f(w u, , Ut , x, t) 

x E [O, 11, t 3% OI > 0, 
WI 



22 CAUGHET AND ELLISON 

with boundarv and initial conditions 

u(0, t) = u( I, t) = 0, (BZ) 

U(X, 0) = U,(X), u,(x, 0) = U&Y). W) 

We shall give neither the lemmas nor proofs of the theorems which are 
parallel to those in Case A; an understanding of Case A should be sufficient 
for filling these in. 

DEFINITION Bl. V = {u(x, t) 1 u E C3(J2)> where B = [0, l] x [0, T] and 
C3 denotes the class of 3 times continuously differentiable functions. 

DEFINITION B2. B is the completion of K under the norm 

(B4) 

and 1 /,,1 and / lLPn are the same as in Case A. 
The properties of B can be discussed in exactly the same way as in the 

Appendix. 

DEFINITION B3. lW = {u [ u E B, u(x, 0) = a,(x), %(x, 0) = %(~), 
u(0, t) = u( 1, t) = 0). 

2.3b. Existence and Uniqueness on [0, T] 

DEFINITION B4. M,(S) = {u 1 u E M, /I u 11 < S}. 

DEFINITION B5. f(~, u, , Us , x, t) = F(x, t) is a Lipschitz function on 
M,(S) if there exist L,(S) and L,(S) such that 

(4 I F,, Lr + I FM IL,,~ <L,(S) for every u E Jfl , 

(b) I F,z, - Fzz, L + I FM - F2ft ILm <L(8) II u1 - u2 II for every 
ul , u2 E Ml where 

Fib-, t) = f(ui , uix , uit , by, t), i = 1, 2. 

THEOHEM Bl (Existence and Uniqueness on a Finite Time Interval). Let 
7 be un arbitrary number in (0, 1) and let f, a, and a2 satisfy the following 
conditions: 
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(a) f is Lipschitz on MI(S), 

(b) F(0, t) =F(l, t) = 0. 

(4 &(I %!xr IL + I a 2rr IL + I F&9 Oh + I Ft(% Wd < $1 

(4 a, , alzs and up vanish at x = 0 and x = 1. 

If T1/2 < min((1 - 7)S/KzL,, l/&L,) then there exists a unique classical 
solution of (Bl)-(B3) for t E [0, T]. 

Remark. KI and Kz are positive constants which can be determined as in 
Lemma A2. 

2.3~. Existence and Uniqueness on [0, W) and Asymptotic Stability 

DEFINITION B6. M&8, a) = {U j u E M, (( u (I1 < Be-at], where 

II ~111 = ,$=.I DJU lm1 + 1 I D”u IL 
Q 10[=3 

and I Ll and j IL are the same as in Case A. 

W) 

DEFINITION B7. f (u, u, , ut , x, t) is an exponential Lipschitz function on 
Ms(S, u) if there exist L,(S) and L,(S) such that 

(a) IF,, IL and IF,, IL < &LI (/ u 11: < &L, (( u (I1 Se-Qt for every u E ill, , 

(b) I Flxz -F2,, IL and I FItt -F 2tt L < *L2/Iul-uu,~~S for every I 
ur , u2 E Ms , where FI and F, are as in Definition B5. 

THEOREM B2 (Existence and Uniqueness for every t > 0 and Asymptotic 
Stability). Let 7 be an arbitrary number in (0, 1) and let f, a, and a2 satisfy the 
following conditions: 

(a) f is exponential Lipschitz on M&S, a), 

(b) F(0, t) = F(I, t) = 0, 

(4 &(I a,,,, IL. + I a zzs IL + I F&t ‘W + I Ft@v Oh,) e 4, 
(4 a, , alss and a2 vanish at x = 0 and x = 1. 

If 6 is such that the inequalities 

and 
L,(S)6 < (1 - 77)(2~+~/1;(, 

L,(S)6 C; (2u)‘/‘/Kz 

are satisfied then there exists a unique classical solution of (Bl)-(B3) in M, 
for every T > 0. 
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The remarks made after Theorem d? are appropriate here. 

THEOREM B3. Suppose all the conditions oj. Theorem B2 are satisfjed, then 
the inequality of Theorem A3 holds where u is the jixed point of (B I)-(B3). 

2.3d. Liapunov Functional for Stabi1it-y for Special f’s 

We consider the same two specific types off as in Case A, but let 

g = IO1 [u’ + u,2 + IQ] d-y. 

THEOREM B4. Let f = -g(u). Then 

V(t) = + i1 [uz2 + (ut + a~)~ + cA2 + 2 Ioug(() d[] dx W) 
0 

is a Liapunov functional for (Bl)-(B2), where 

G-(t) = -a f1 [ut’ + u,z + ug(u)] d.r. 
‘0 

THEOREM B5. Letf = (a/&)g(u,). Then 

i-et) = 3 i1 [ux2 + cut + au)z + o12u2 + 2 /o”‘g(t) dt] ds, (B7) 
'0 

is a Liapunw functional for (Bl)-(B2). 

(Notice the existence theorems do not apply to nonlinearities of this type.) 
The remark after Theorem A5 is appropriate here. 

2.4 CASE C 

2.4a. Preliminaries 

The differential equation is 

9u = Uf - u,, =f(u, U2) x, t) 

XE[O, 11, t >, 0, 

with boundary and initial conditions 

u(0, t) = u( 1, t) = 0, 

u(x, 0) = al(s). 

(Cl) 

((3) 

(C3) 
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We discuss this case in the same way as Case B except we briefly consider 
the mapping since it differs from (15). 

The mapping of u into zl defined by 

vt - VT, = f(U(N, t), z&(x, t), x, t) = F(x, t), 

can be written in a form similar to (15) as 

Z’ = *.u zzz f %n%L(~) 944 + f (pnM %2(t - 4 dv) %A@) (C5) 
1 1 0 

where 

v,,(t) = e-n2n2t, 

and 

F,(t) = j%(r, t) c&x) dx. 
0 

The solution of (Cl)-(C3) can be viewed as a fixed point of the mapping A 
in (C5). 

DEFINITION Cl. 99 = {u 1 II, U, , ut , u,, , u,,, , uXt E C(Q)} where Q = 
P, 11 x LO, q. 

DEFINITION C2. B is the completion of L; under the norm 

II u II = I u Im + I u, lm + I ut Im + I %z Im + I U,t ILm + I %z!z ILm 

where I Inl and I ILm are the same as in Case A. 
The properties of B can be discussed in exactly the same way as in the 

Appendix. 

DEFINITION C3. M = (u 1 u E B, u(x, 0) = a,(x), ~(0, t) = ~(1, t) = O}. 
2.4b. Existence and Uniqueness on [0, T] 

DEFINITION C4. Ml(S) = {u I u E A/I, 11 u[/ < S}. 

DEFINITION C5. f(u, uz, X, t) = F(x, t) is Lipschitz on M,(S) if there 
exist L,(S) and L*(S) such that 

@‘c.~ 
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THEOREM Cl (Existence and Uniqueness on a Finite Time Interval). Let 
7 be an arbitrary number in (0, 1) and let f and al(x) satiqy the following 
conditions: 

(a) f is Lipschitz on MI(6), 

(b) F(0, t) = F(l, t) = 0, 

(4 &(I alrEx IL + IF.&, W < 4, 
(4 al and alzz vanish at x = 0 and x = 1. 

If T1r2 < min((1 - ?)S/I(,L,, l/k;L,) then there exists a unique classical 
solution of (Cl)-(C3)for t E [0, T]. 

Remark. Ki and KZ are positive constants which can be determined as in 
Lemma A.2. 

2.4~. Existence and Uniqueness on [0, co) and Asymptotic Stability 

DEFINITION C6. M,(S, a) = {u / u E AI, /I u Ii1 < Se-at}, where 11 u /Ii = 

I u La1 + I u, llnl + I Ut lnll + I u,, l1,11 + I uxt IL + I u,,, IL7 and I lnzl and 
I IL are as in Case A. 

DEFINITION C7. f(u, ux , s, t) = F(x, t) is an exponential Lipschitz 
function on Ma if there exist L,(S) and L3(S) such that 

(a) 1 F,, IL. and / F, IL. < +L, I/ u 11: < +L, 11 u Ill 8ecat for every ul, u,EJ&, 

(b) IFIzz -FzzI IL and IFIt - Fzt IL. ::g $L, // u1 - uZ l/8 for every 
u1 , u, E Ma , where FI and FZ are as in Definition C5. 

THEOREM C2 (Existence and Uniqueness for every t > 0 and Asymptotic 
Stability). Let 7 be an arbitrary number in (0, 1) and let f and a, satisfy the 
following conditions: 

(a) f is exponential Lipschitz on M&j, a), 

(b) F(0, t) = F(l, t) = 0, 

(4 &(I alxxr IL + I F&, W < rls, 
(4 al and alxr aanish at x = 0 and x = 1. 
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If 6 is such that the inequalities 

and 
L,(S)6 <I (1 - 7)(2a)li”)/K* 

L,(S)6 < (2a1p)/K2 

are satisfied, then there exists a unique classical solution of (Cl)-(C3) in Mz 
for every T > 0. 

The remarks made after Theorem A2 are appropriate here. 

THEOREM C3. Suppose all the conditions of Theorem C2 are satisfied, then 
the inequality of Theorem A3 holds for Case C where u is the fixed point of 
(Cl)-(C3). 

2.M. Liapunov Functional for Stabilit-y for Special f’s 

We consider the same two specific types off as in Case A, but let 

p2 = ,: (u” + ux2) dx. 
.c 

THEOREM C4. 

l’(t) = J- j-l (u’ + uz2) d.v 
0 

is a Liapunov functional for (Cl)-(C2) for both nonlinearities. 

2.5 CASE D 

The differential equation and auxiliary conditions are: 

924 3 Utt - 2cwu, - V’u = f (u, u, , uy , ut , x, y, t) 

x,ye9, t 20, 01 >o, 
Pl) 

where 9 = [0, 112, 

u(x, y, t) = 0 on 89, w 

where a9 is the boundary of 9, and 

u(x,Y, 0) = a,@, y), ut(-r, y, 0) = a2(x, y). (D3) 

Results for this case can be obtained just as in the other cases, but because 
of space limitations we shall just indicate some points which may not be 
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obvious simply from a studs of the prc\-ious cases. This case was selected to 
illustrate that the ideas in this paper are applicable to problems containing 
more than one spatial dimension. 

(1) Definitions of ‘t and B. 

B is the completion of ‘5 under the norm 

The modifications needed in the Appendix in order to discuss the properties 
of the space B in this case are not as trivial as in Cases B and C. 

(2) The Lemma corresponding to Lemma Al is not as good in this case 
because of the divergence of the series xr xy l/(m2 + n’). (Notice the role 
of the convergence of xy I/n” in the proof of Lemma Al.) The result of 
this is that the nonlinearity in (Dl) can contain the derivatives u, , u, and 
ut but not higher order ones. 

(3) The Lemma corresponding to Lemma A2 requires smoothness 
conditions on V2F and Ft (compare a. of Lemma A2) and the integrability of 
I V(VF)I and I TF, 1 (compare c. of Lemma A2). 

With the understanding of l-3, the proofs of existence, and uniqueness 
go through much the same as in the other cases. 

(4) A Liapunov functional for f = -g(u) subject to the conditions 
(A17-18) is 

+ (ut - aC2u)” + a”(T%)’ + fug(c) d[] dx dy. 
‘0 
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APPENDIX: PROPERTIES OF SPACE B IN CASE A 

Recall the definition of B (Al and AZ) and notice the structure of the 
norm defined there. It is clear that the continuity of the derivatives which 
are completed under the [ I,)! norm is preserved, i.e., if u E B then u, U, , 

Ut Y u.r.z 3 Uxt T % > KxKr and uzclt are continuous on Q = [0, I] x [0, 7’1, The 
question we consider here is: what happens to the x derivatives of utt , u,, 

and Uzzt and the t derivatives of uzf and u,, under the / IL,,! norm in the 
completion of g(Q) ? 

Consider two spaces B, and B, where B, is the completion of ?Zt(.Q) = 
(w(x, t) ) w, w, E C(Q)} under the norm 1) w j/ = ) w Jm + 1 w, JLm and B, 
is the completion of %‘.JQ) = {w(x, t) 1 w, wt E C(Q)} under the norm 

II w II = I w I,,, + I wt ILn, . The properties of the x derivatives of utt , u,,, 

and urzt and the t derivatives of uzt and u,,, follow from the properties of w 
in B, and B, , respectively. 

To discuss the properties of B, and B, we need Lemma 1. 

LEMMA 1. Let {ZIP} be a Cuuchy sequence in C(Q) under the norm / lLnl 

(k I 0, - zh lLnr + 0). Then there exists anf(x, t) such that 

(4 lip I v, -fIL=Ofor each tE[O, T], 

(b) lfl~m exists and li,m ) v, ) Lm = 1 f jLm 

and 

(c) li,m) v, -firm =O. 

Proof. Since / 21% - v’, IL < 1 v, - v, lLm , (2~~) is a Cauchy sequence in 
L,[O, I] for every t E [O, T]. The Riesz-Fischer theorem (see Korevaar [8, 
3911) asserts the existence of an f(x, t) EL,[O, l] for each t E [0, T] such 
that lim, / v, -f IL. = 0. 

Since f (x, t) E LJO, I], If IL exists for every t E [0, T] and the existence of 

If ILm follows if 1.0~ is a continuous function of t. To prove this we show 
that lim, 1 v, IL = If IL uniformly in t for t E [0, T]: The result 11 V~ JL - 

IfILl G I%-flL + 0 implies lim, 1 vsa IL = 1 f IL pointwise in t. Let 
h,(t) = I v, IL then 

I k(t) - hm(tI < I vn - 21, IL. < I 0, - vm lm - 0. 

Therefore 1 f IL is the uniform limit of a sequence of continuous functions 
which assures the continuity of 1 f IL and the existence of If lLln . 

To prove (c) we notice that for every E > 0 there exists an n such that 

for every p >, 0. 
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But 

therefore 

Consider the spaces B, and B, . 

LEMMA 2 (Properties of B,). Let w E B, . Then w is an indejnite integral 
in s for every t. 

LEMMA 3 (Properties of B,). Let w E B, . Then zo is an indefinite integral 
in t for almost ezery x. 

Proof of Lemma 2. For every w in B, there exists an associated Cauchy 
sequence (~3, w, E +?I such that 

and 

w,, is a Cauchy sequence in C(Q) under the norm 1 lLrrr (9 

wn(x, t) = w,(O, t) + 1” w,,(v, t) dv. 
‘0 

(ii) 

We know from Lemma 1 and (i) that there exists a g(x, t) such that 
lim,n 1 We, - g IL,n = 0. The equality 

li,m Iz u’,,(v, t) dv = czg(v, t) dv, 
0 ‘0 

(iii) 

for every x E [0, l] and for every t E [0, T], follows from the inequalities 

1 j”’ (wo,,(v, 4 - g(v, t>> dv 1 < f-l I w,,(v, t) - g(v, t>l dv 
0 ‘0 

G I wn, - g IL G I wn, -g ILm - 0. 

If we make use of (iii) and the uniform convergence of {wJx, t)}, the pointwise 
limit of equation (ii) yields 

w(x, t) = ~(0, t) + /‘g(v, t) dv. 
0 

(9 

Therefore W(X, t) is an indefinite integral in x’ for every t. 
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Proof of Lemma 3. For every w in B, there exists an associated Cauchy 
sequence {wn}, w, E %‘s such that 

writ is a Cauchy sequence in C(Q) under the norm 1 IL,,, (4 

and 

w,(x, 5) = w&l’, 0) + I’ wnt(h.7 v) dv. (4 

We know from Lemma 1 and (v) that there exists a g(x, t) such that 
lim, I wflt - g hln = 0. We now show there exists a subsequence n, such that 

s t lim 
*j 0 

w,&, v) dv = 10t g(x, v) dv, (vii) 

for every t E [0, T] and almost every x E [0, 11. 
The inequalities 

1 jot (w,&, v) - g(s, v) dv 1 < jO= I w,&, t) - g(x, t)l dt = G,(x) 

and 

give 

li,m 1 Gn(x)jr. = 0. 

The Riesz-Fischer theorem asserts the existence of a subsequence nj such 
that G,,(X) -+ 0 almost everywhere. Therefore (vii) is true. The subsequence 
{ujtzj} satisfies (vi), that is 

mnj(x, t) = w,,~(Jc, 0) -t- jut ~,~t(x., v> dv, (viii) 

so, if we make use of (vii) and the uniform convergence of wnj(s, t), the 
pointwise limit of (viii) yields 

w(x, t) = w(x, 0) + jot g(x, v) dv (4 

for almost every x in [0, 11. Therefore W(Y, t) is an indefinite integral in t 
for almost every x. 

The properties of u E B can now be stated as a theorem. 

409/S’/‘-3 
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THEOREM (Properties of B). If u E B, then 

(4 u, u, , Uf > ll.rL, U,t , U/f 3 II,,,., and u,,~ are c’ontiinrous, 

0)) Utt 1 u,~,.,~ and u,,,~ are indejinite integrals in s for celery t, 

(c) u,~ and IL~.~ are indefinite integrals in t for almost ezer-y x. 

Proof. Lemma 2 asserts b and Lemma 3 asserts c. 
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