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1. INTRODUCTION

In this work we present a unified approach for treating the existence,
uniqueness and asymptotic stability of classical solutions for a class of
nonlinear partial differential equations governing the behavior of nonlinear
continuous dynamical systems. From this class we treat the following initial
boundary value problems for o a positive constant in varying detail:

Uy — zo‘ux:tt — Upy :f(u> Uy s Upy Ugy y Ugy 5 X, t); (A)
utt + 2aut - uac‘l' :f(u) uz‘ ) ut y Xy t), (B)

Uy — Uy, :f(u7 Uy, X, t), (C)

uy — 20V, — Vi = f(u,u, ,u, , u,, x, 1), (D)

Uy — 20y — Ugy = [r{Uy 0, Uy s Uy Uy Uy s Upyy Vi s Ut , Vg, %, 1), (E)
Ty — zavth — Ugy :f-z(u: Uy Uy y Uy y Uy s Uy y Uy s Uy Ut 5 Uty Xy t)-
Here there is no intention of indicating how the content of the nonlinearities
is determined. That will be discussed in our detailed consideration of (A).
Some problems of this type have been treated before. Ficken and Fleishman
[1] investigated the existence, uniqueness and stability of solutions of the
initial value problem for

Upe — gy — 200Uy — ot = eu® + b.

Greenberg, MacCamy and Mizel [2] have treated the initial boundary
value problem for wu; — u,,, = o'(u,)u,, (which is a special case of (A))
using some results from the theory of parabolic equations. Rabinowitz [3, 4]
has proven the existence of periodic solutions for u, + 2om, — u,, = f
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2 CAUGHEY AND ELLISON

where € is a small parameter and f is periodic in time. In [3] he treats f
flu,u,, u;, x, t)and in [4] he treats the fully nonlinear case f = f(u, u,.,
Up, Uy Uy y Uy, &y 1), To do this he uses methods from the theory of elliptic
boundary value problems. Avner Friedman treats equations of the tvpe (C)
in his book on parabolic equations [5]. Notice that Burger’s equation is a
special case of (C).

This paper is divided into two parts. In Part 1 we discuss the general ideas
involved, including the general type of problem to which the techniques of
this paper can be applied, the fixed point theorem used for proving existence
and uniqueness, and a Liapunov functional approach to stability which is an
extension of Liapunov’s direct method for ordinary differential equations.
In Part 2 we treat the specific equations listed above in varving detail, using
the ideas developed in Part |.

Equation (A) will be treated in the greatest detail, making concrete all
the basic ideas of this paper. Equations (B) and (C) will be discussed in a
similar manner; however, the lemmas and proofs of the theorems will not be
included. Because of space limitations, we give only a brief discussion of
Eq. (D); it was selected because it has two spatial dimensions. Equation
(E) will not be considered at all, it can be treated in the same way as (A)
and is mentioned here only to make the reader aware of the applicability of
the ideas in this paper to systems. We feel that an understanding of part
two will give the reader the necessary tools for handling similar problems.

Much of this material was originally discussed in [6] in a Sobolev space
context; this paper is an improvement over those results. The authors thank
Charles De Prima of Cal Tech for the suggestion that led to the present
treatment.

ParTt . GENERAL THEORY

1.1 INTRODUCTION

In this part we discuss the basic ideas for treating existence, uniqueness
and stability for problems of the form:

Lu = uy + 20l + Lyu =,

(1)
a >0, xeZ and te0, T,
with homogeneous boundary conditions
Bu(x,t) =0 for xedZ 2)

and initial conditions

u(x, 0) = ay(x), udx, 0) = ay(x). 3
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Here %, and %, are linear self adjoint “spatial” operators with certain other
properties depending on the context, f is a nonlinear function of x, #, # and
some derivatives of #, and 2 is a spatial domain.

In the treatment of Eqgs. (A), (B) and (C) in Part 2, 2 is the interval [0, 1]
and for Eq. (D) it is [0, 1] x [0, 1]. Equation (C) does not fall into the form
of (1)-(3), however, it will be clear how to extend the ideas of this paper to
the initial boundary value problem:

uy+Lu=f, xe& and te]0, T,

with homogeneous boundary conditions
Bu(x,t) =0 for xed2 4)
and initial condition
u(x, 0) = a(x),

of which (C) is a special case.

1.2 FormuLATION OF EXISTENCE AND UNIQUENESs FOR (1)}—(3)

The key idea in our method for proving existence and uniqueness is the
construction of a solution to the linear nonhomogeneous problem

Pu = F(x, t), (5)

associated with (1) by the use of an eigenfunction expansion. In order to
do this we assume there exists a complete set of orthonormal eigenfunctions
{@n(x)} which are eigenfunctions for both %, and %, ie., o, = Ao, ,
LoPn = PnPrn » and Bey(x) = 0 for x € ¢Z. Caughey and O’Kelly [7] have
derived necessary and sufficient conditions for this to be true; we state them
here without proof:

a. the operators % and %, commute, i.e., £.F, = £HYE,

b. if the operators are of different order the boundary conditions on the
higher operator must be derivable from a compatible set of boundary condi-
tions on the lower order operator.

The unique solution of (1)-(3) can be viewed as a fixed point of the mapping
A: u — v defined by

Lo = f(u’ U yeory Xy t), (6)
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or in terms of .4

¢ = Au, (7)

where u and ¢ are required to satisfy the initial and boundary conditions
(2) and (3). This, of course, is not the only mapping which can be defined
from (1); however, this form is particularly useful because of the “damping”
term, %7, , and because of the properties of the eigenvalues of %, and %, .

Since % and %, are assumed to have the same complete set of eigen-
functions, an eigenfunction expansion can be used to find an explicit re-
presentation for the mapping. This is the same as saying that the linear
nonhomogeneous equation (6) with F(x, t) = f(u(x, 1), u{x, t),..., X, t) can be
solved by an eigenfunction expansion

o 1) = Y 0alt) gale). (8)

1

The differential equation (6) requires that the v,(f) must satisfy the non-
homogeneous ordinary differential equation

Unet -+ 20‘)\nwnt + UnTn = ‘n(t)’ (9)
with initial conditions
7/'11(0) = a1p,» 7*’m‘(o) = oy (10)
where
Fot) = f F(x, 1) (%) dx = j Fulx, 1), ufx, 1)y, D pu(x)dx (1)
9 174
and

an =] a@ o dr, =12 (12)

The solution of (9)-(10) can be written
11
0u(t) = @n¥in(t) + @pen(t) + [ Fu) vt — ) v (13)

where v, and v,,(¢) solve the homogeneous equation (9) with initial conditions

'L'In(O) =1, 7;271(0) =0,

(14)
Wlnt(o) - 0’ r‘;‘27115(0) = 1.
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The mapping (7) can now be written

v =Au = i amin(t) eafx) + i A2nV2n(t) Pn()

+ 2 ( fot Fo) van(t — v) dv) (). (15)

This is the form of the mapping we use in our discussion of existence and
uniqueness.

The existence and uniqueness of a classical solution to (1)~(3) is thus
reduced to showing that 4, explicitly given in (15), is a contraction mapping
on a suitable complete metric space. The distance function we use is a curious
sort of norm; for example, in the case of equation (A) we use the distance
function d(u, , u,) = || u; — us || where

il =l wlm + Ttglm 4+ e b+ | g L+ 1 2t [
Lty |l 1 ag [+ %zt I | Yazow | (16)
A 1 oaat lom + | et {Lm
and
|6 Dl = max [ g, )], 2 =1[0,1] X [0, T]
1 1/2 (17)
lg(x, Olim = max ( fo g, 1) dx) -

The form of the fixed point theorem we use is taken from Korevaar

I8, p. 213]:

DerFINITION. Let N be a metric space. The transformation 4 of N into
itself is called a contraction if there exists a positive constant 7 <C 1 such that

d(Au, , Auy) < rd(uy , u,) forall u,,u, in N.

Contraction Mapping Theorem. Let A4 be a contraction operator on a
nonempty complete metric space N. Then A has exactly one fixed-point #,
and if %, is any point in N

u = lim A, .
koo

As k — oo the distance between u and A%y, tends to zero at least as fast as r*.

The proof of this is in Korevaar.

In each case in Part 2 we proceed by defining a suitable complete metric
space and then finding conditions such that 4 maps the space into itself and
is a contraction. Each case contains three results related to existence and
uniqgueness:
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(a) An existence, uniqueness theorem on a finite interval t [0, T].
Here there are essentially no restrictions on f, @, and a, except for smoothness
requirements, and the contraction mapping is obtained by making 7" small.
The problem of the extension of solutions to a maximum time interval is not
considered in this paper.

(b) An existence, uniqueness theorem on the semi-infinite interval
t e [0, oc). Here along with smoothness conditions we require that a;, a;
and f be small and that f|,_, =0 (Le., # = 0 is an equilibrium solution).
This theorem also gives the asymptotic stability of the zero solution.

(c) A bound on the solution under the conditions used in (b). This is
obtained by using a form of the Gronwall lemma.

Since nonlinear problems are in general much more difficult than linear
problems, an interesting question is “When does the solution of the nonlinear
problem behave like the solution of the linearized version ?”

For ordinary differential equations there are theorems attributed in various
places to Liapunov, Poincaré and Perron, which say, in essence, that if
solutions of the linearized equation are asymptotically stable and the non-
linearity is small then solutions of the nonlinear equation are asymptotically
stable. Results (b) and (c) together comprise a theorem of this tvpe for the
equations considered in this paper; a Liapunov-Poincaré type theorem.

1.3 FormMuLATION OF LiapuNov’s DIRECT METHOD FOR STABILITY

Stability analysis by Liapunov’s Direct Method has been applied extensively
to ordinary differential equations and so it is natural to look for extensions
of this method to partial differential equations. Several recent papers [9-11]
treat stability for certain partial differential equations by such an extension.
Greenberg, MacCamy and Mizel [2] and Rabinowitz [3] treat stability by a
method which is essentially the same as the Direct Method.

In this section we state a theorem on asymptotic stability which applies
to (1)—(2) if a “Liapunov Functional” can be constructed. It is assumed here
that (1) admits a zero (equilibrium) solution.

We introduce a state vector U(x, #) which consists of # defined by (1)—~(3)
(or (4)), u, and various spatial derivatives of # and %, , sometimes writing
U(x, t, U,) where Uyx) denotes the initial state of the system, i.e.,
U(x, 0, Uy) = U, . The asymptotic stability will be discussed in terms of a
time dependent norm,

. 1/2
o0 = ([ (@ + U2+ U2 ) (18)
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where the Uj(x, t) are the scalar components of U. For example, in Case A,
1, . s s 1/2
o) = ([ @ +ul+u, —}—uw)dx) .
v

Before proceeding to the theorem, which is almost identical to a theorem
proved by Kalman and Bertram [12] for ordinary differential equations, we
need the following stability definitions in terms of the norm, p:

DeriNiTION 1. The zero solution of (1)-(3) (or (4)) is said to be stable if
for every e > 0 there exists a 8(¢) > 0 such that p(0) < 8 implies p(t) < €
forall £ = 0.

DerinttioN 2. The zero solution of (1)-(3) (or (4)) is said to be
asymptotically stable in the large if

(1) the zero solution is stable, and

(2) all solutions which are bounded initially (p(0) is bounded) remain
bounded for all time (p(¢) is bounded for all # 2> 0) and approach zero as
t — o (lim,, p(t) = 0).

Let #” be a spatial integral operator (functional) which maps the vector
function U(x, #) into a scalar function F(¢), i.e., ¥ [U(x, t)] = V(¥).

Liapunov Stability Theorem(Liapunov’s Direct Method for Asymptotic Stability).
Suppose there exists a functional ¥ [U(x, t)] = V(t) differentiable in ¢ along
every solution curve U such that #70] = 0 and

(a) 7 [U] = V() is positive definite, that is, there exists a continuous
nondecreasing scalar function B8, such that 8,(0) = 0 and for all # and all
U 0,0 < B(p(t) < V(1)

(b) there exists a continuous scalar function y such that y(0) =0
and the derivative I of I along the motion satisfies, for all ¢ > 0 and U + 0,
V(£) < —p(t)) < 0;

(c) there exists a continuous, nondecreasing scalar function 8, such
that 8,(0) = 0 and, for all ¢, F(t) < By(p(2));

(d) Bilp) > o asp— oo.

Then the zero solution of (1)~(3) (or (4)) is asymptotically stable in the large.
The proof is contained in [6] and a similar proof is contained in [12].

Derinition 3. A functional #7[U], which maps the vector function
U(x, t) into a scalar function of # and which satisfies the conditions of the
above theorem is called a Liapunov Functional.
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Liapunov’s Direct Method for stability has the advantage that it does not
require any knowledge of the solution (except that it satisfy a certain differen-
tial equation); however, it suffers in that there is no general way to find a
Liapunov Functional. An exception to this is the case of (1) where f = 0,
i.e., the linear homogeneous case. A Liapunov Functional can be constructed
by multiplying u,; + 20fu; + Fu = 0 by u, + «Fu, integrating over the
domain & and then making appropriate restrictions on % and .%, . We shall
demonstrate the procedure here since it can be carried out for the general
operators %, and %, and because the functional so constructed will be useful
for the cases considered in Part 2. In the following derivation we assume
% and %, are self-adjoint.

If the inner product of f(x) and g(x) is defined by

()= | fed
then
0 = (4, + afu, 0) = (u; + oL, uy + 20Lu, + Lu)
= Jue, ue)e + (e, 20L5u,) + (u,, L) + (@B, ) (19)
(B, 20 L) + (oL, L. |
The relations
(e, L) = 3(u, Lo,
(B, uy) = (L, ug)y — (Ljug, u), (20)
(L, L)) = WL, L)
imply
Wl [ ) + (1, L) + 2oLty ) + 2L, L)
= —(w , 20Fu,) + Q0Hu, Lu)). (21

If we define
V(t) = 3w, L) + (4 + B, u; + ofu) + o(Fu, L)) (22)
then (21) can be written
V(t) = —of(u;, Lu) + (Hu, L)) (23)

By making appropriate restrictions on %, and %, , e.g., positive definiteness,
it can be shown that ¥ in (22) is a Liapunov Functional for (1)~(2) with f = 0.
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If we consider (1) with f = 0 the same procedure yields

Vi(t) = H(u, L) + (u, + «Bu, u, + afiu) + oX(Lu, Lu)]  (24)
and
Vi(t) = —of(ue , L) + (L, L)) + (u, + «Lu, f). (25)

¥, will be part of the Liapunov Functionals constructed in Part 2.

In the cases to follow later we pick one or two rather specific nonlinearities
f and prove the asymptotic stability in the large in terms of some norm, p,
by constructing a Liapunov functional. It can be seen from these cases that
the application of the Liapunov stability theorem is more general than the
Liapunov-Poincaré result described in Section 1.2 in the sense that there is
no restriction on the size of the initial data (recall asymptotic stability in the
large) or the size of the nonlinearity, only a restriction on the form of the
nonlinearity. For example, in the Liapunov-Poincaré type result the sign
of the nonlinearity plays no role; however, in Liapunov’s direct method it
may determine the difference between stability or instability.

PArT 2. APPLICATIONS

2.1 INTRODUCTION

Each of the four cases presented here is discussed in the following way:
(a) Existence and uniqueness of classical solutions (i.e., solutions such that
u and all the derivatives appearing in the differential equation are continuous)
on a finite interval and an infinite interval, (b) a Liapunov—Poincaré type
theorem and (c) stability via Liapunov’s direct method. Case A is worked
out in considerable detail and is the only case where proofs are given. We feel
that an understanding of the proofs in Case A will allow the reader to supply
his own proofs for the other cases. Cases B and C will be discussed in a
similar manner; however, the lemmas and proofs of the theorems will not
be included. For Case D, we give only a brief discussion.

2.2 Case A

2.2a. Preliminaries.
The differential equation is

ZLu = Uy — Zaum:ct — Ugy :f(u, Uy s Up s Uy » Ugy 5 X, t)

xe[0,1], >0, a«>0, (AD)
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with boundary and initial conditions

u(0, 1) == u(1, 1) == 0, (A2)

u(x, 0) = ay(), u(x, 0) — ax). (A3)

The eigenfunctions and eigenvalues associated with &, = %, — —(0%/¢+?)
(see Section 1.2) are

ou(x) = V2 sin amx, A, = p, == nin?, (A4)

so the solution of (A1)-(A3) can be viewed as a fixed point of the mapping
A defined in Eq. (15) with

F(x, t) = f(u(x, t), uy(x, 1), ux, t), uglx, t), ug,lx, t), &, 1) (AS)

and
2,2
Vya(t) = emonintt [cosh Xt 4 a—n)—gl sinh Xt]
) (A6)
£ o gt sinh Xt
Upn(t) = € —v
where
X = (oPnint — nPn?)t, (A7)

The following relationships are needed for the existence, uniqueness
discussion:

1

dantqgt’

2, 1
Vane(t) dt =
J;] zt() 4

oantm?

[T ety de =
° (A8)

For every a > 0 there exist positive @ and & such that

ke—«at
l o)l < ke, [ op(O)] < 55

(A9)

ld";’lf;(t) S R(am)i-D et 1,2 i 1.

Also
0 ; 9 k2
Glgy —_—
[ @ty < 5z,

k2

nig?’

(A10)

[7 (o) de <
v0
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The inequalities (A10) do not follow from (A9), but can be obtained by
examining the integrals directly.

We want to prove existence and uniqueness of classical solutions to
(A1)—(A3), that is, we seek solutions u(x, t) such that u;, , u,., u,, and u,,
are continuous. Before defining the appropriate norm and function spaces we
offer the following partial motivation for our choice of norm (other norms
were tried but failed to produce the desired contraction mappings).

Because of the nature of the Fourier series representation of solutions to
Pu = F(x, t), the square integrability of F,, and F; on 2 = [0, 1] x [0, T]
is needed in order for #,;, u,,; and u,, to be continuous on £ (for details,
see Lemma A2, following). The square integrability of F,, and F, also vields
the continuity of «,,, on 2, the square integrability of u,,,, , #,..; and ©,,,
on [0, 1] for every ¢ in [0, T] and the continuity of these integrals in . This
indicates that in order for there to be no derivative loss in the transformation
of u into v defined by v = f(u,...), a condition necessary to obtain a
contraction mapping, the nonlinearity f can contain only u, u,, u;, u,,
and #,, . We define the following normed function spaces:

DeriNiTION Al
g = {u(x’ t) | u’ u:c ’ ut ’ uxm H uJL‘t ’ utt » u.l'.l‘.‘l,‘ ’ uxzt ’ u.l‘tt y ux.tm ’ uxtrt € C(.Q)},
where C(£2) is the class of continuous functions on 2.

DEerFINITION A2. B is the completion of € under the norm

||uH = Iuim +qu|m + Iut|m +|u.1‘1“m + ‘ ul‘llm +lutt[7n
+ | Upag \m + ‘ Uy Im + l Ugrrr |Lm + ‘ Urrat ‘Lm

+ | Uate lom s

where | |,, and | |, are defined in Section 1.2, (17).
We also need an auxiliary z-dependent norm, || ||, , defined as

” u Hl = [ u |ml + I Uy [m1 + I Uy |ml + I Uy Iml
+ [ Uyt |ml + ] Uyt [ml ‘l‘ I Uszs ]ml + | Ut Iml (All)
+ | Uarze |+ | Uazwe |+ [ 0ee L

where

| £(x, Dlmy, = max | g(x, )],
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and
lg(x, 1)l = ( JOI g% 1) d*‘)llu

For a discussion of some of the properties of B see the Appendix.
We now state and prove two lemmas needed in the proofs of the existence
and uniqueness theorems.

LemMMA Al. Let h(x,t) =Y, C,(t) pu(x) where CL(t) is continuous on
[0, T]. Then h € Bif the series Yy C,(t) n*n, Yy C'%(t) nb78 and Yy C¥(t) nPar®
converge uniformly on [0, T]. Also

1l <5 [(3 G wnt) ™+ (3 contat) (3 ey nad) ]
1 1 1 (A12)

Proof. Let hy = z: C.(t) pp(x); then by assumption hye%. The
uniform convergence of the three series insures that {#,} is a Cauchy sequence
in B.The inequality (A12) follows from applications of the Schwarz inequality.
For example, consider

hm‘x = Z C"(l) (—\’ E n3m3 cos nn-x)
1

and
Ragze = Y. Colt) mhmiep,(x).
1
Therefore
e < (2™ (S atC0) < 5 i)
1 1
and

172

I hzx,u‘ IL = (Z an(t) ns.,,s) .
1
DrrFiNiTION A3.
M = {u|ueB, u(x, 0) = a,(x), u,(x, 0) = ay(x), (0, t) = u(l, t) = 0}.

Lemma A2, The linear nonhomogeneous problem Fuv = F(x,t), subject
to (A2, 3), has a solution v € M given by v(x, t) = s, + s, + $5 , where

512 Y @ntun®) Pult), o = Y danont) o)
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and
%:;K&w%m—wmmn

Moreover, there exist positive constants K, and K, depending on k (see (A9)-
(A10)) such that

lolly < Kiew®(] @renee | 1 | Qanze |1 + | Fo(, 0)]1)
+ K ( j; gttt fo "F2(x, v) dy dv)l/2 (AL3)
+—U:e4M~wJ:Ff@,@¢x¢juj

and

” v ” < Kl(l A xxra [L + I Aoyrx IL + le(x! O)IL)

+ K [UOTLIFL(x, 1) dx dt\)ll2 € UOTLI F, 1) d dt)llz]

provided that

(A14)

(a) F(x, t) is an indefinite integral in t for almost every x and F ,(x, t) is an
indefinite integral in x for every t,

(b) F(O,t) =F(1,t) =0,
(© fg f(l) F%, dxdt and f: Iz F 2 dxdt exist,

(d) | G1rewa |1 and | @gazs |1, exist,

(&) a,a,, ay,, and ay,, vanishat x = O and x = 1.

Proof. Since B is a linear space v € Baslong as s, , s, and 55 € B. It is easy
to verify that s; and s, € B and that

H 51 ” + ” S2 H < Kle_at(| Ay rxzr |L + I Ay rrx |L)1

by using conditions (d) and (e), the inequalities (A9), and Lemma Al.
Therefore we focus our attention on s, and the corresponding ¥y C2 n*n?
from Lemma Al.

We know s, = ZT C.(t) pa(x) where

Cut) = [ Ful®) oualt — v) d.

~0
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Now if F(x, t) is an mdehmte integral in ¢ for almost every x then C(f) ==

F(0) vy,,(¢) + Jo (1) T (f — v} dr. Since fo F,'(#) Tpn(t — ) dv can be
written as [, e (VF, (L) t=ig, (1 — v) dv, an application of the Schwarz

inequality and the use of (A9) and (A10) yield

Yp2 ot
CIA(t) < 2K, 0) 2+ 2K [ e ) dv.
O

n2g?

Parseval’s equality, condition b and ¢ and the monotone convergence theorem
give us the following:

x ~1
Y nnF,0) = | F2(x,0)d
1 0

and

x oot vt n
Y| e R dv = | oY ) dv
10 0 1

o [ eattn J F(x, v) dx dv

0

AT #1
| ' F(x,v) dx dv.
Y00

Therefore 3, C%(t) n*n? converges uniformly and

5]

(Z C(1) n‘%ﬁ)”2
1
< (\/5 ke=at | Fo(x, 0)|, + v/ 2 k ( J't ¢-2att-») [IF;(,V, v) dx du)llz
0 0

After similar calculations on 37 C/2n7% and 37 C,2n®n® are completed the
fact that v € B and the inequalities (A13) and (A14) follow from Lemma Al.
Since the series for v and v, converge uniformly it is an easy matter to verify
that 2(x, 0) = ay(x), v(x, 0) = ay(x) and (0, t) = o(1, ¢) = 0. Thus v e M.

A good reference for the type of calculation used in the proof of this lemma
1s Weinberger [13].

2.2b. Existence and Uniqueness on [0, T

DerFintTION A4, M (8) = {ujuecM,|u'] < 8}
Recall from definitions (A1)~(A3) that 37 depends on T.
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DEFINITION AS5. f(u, ty, e, Uy . Uy, %, 1) = F(x,t) is a Lipschitz
function on M,(8) if there exist L,(8) and L,(3) such that
(@) | Feglm + | Fylom < Ly(8) for every ue M, ,

(b) |Flau: - Fzmc ILm + IFlt —F2t ILm g L2(8) H Uy — Uy ” fOI‘ every u, ,
u, € M, where

Fi(xy t) == f(uz s Uig s Wig s Uppy s Uigp y X, t)) 1= 1) 2.

In the Appendix we show that if # € B then u,, is an indefinite integral
in t for almost every x, #.,, and u,,, are indefinite integrals in x for every ¢
and these derivatives exist in the Lm norm. It follows that F, , F, and their
Lm norms make sense. A sufficient condition for f to be Lipschitz on M, is
that fe C3 on [—3, 3]% X &.

We now have the machinery to prove the following:

Tueorem Al (Existence and Uniqueness on a Finite Time Interval). Let

n be an arbitrary number in (0, 1) and let f, a; and a, satisfy the following
conditions:

(a) fis Lipschitz on M,(3),
(b) F(0,t) = F(l, t) =0,
(C) K1(| Ay rxxx |L + I Aorrr IL + IFac(x’ ONL) 5; 778)

(d) a,ay, ay,, and ayy, vanish at x — 0 and x = 1.

If T2 < min((1 — 9)8/K,L,, 1/K,L,) then there exists a unique classical
solution of (A1)-(A3) for t€[0, T]. Recall that K, and K, are defined in
Lemma A2.

Proof. 'To prove this it is sufficient to prove that A (see (15) and (Al)-
(A7)) maps the complete metric space M, into itself and is a contraction
on M, .

Let v = Au; we want to prove that if # € M, then v € M, . If we make the
identification F(x,t) = f(u, uy, 4y, 4y, , 4, %, t) then conditions a —d
of this theorem assure that the conditions of Lemma A2 are satisfied. It
follows that v € M and that

” v “ < Kl(l Aixrer IL + l Aorrx lL + |Fx(xv O)IL)
T 1/2 T 1/2
2 2
K [([ 1P tide) ([ 1) ]
< 78 + KL T)2L, )
But (T2 < (1 — 1)8/K,L, implies || v || < 8, therefore v e M, .

409/51/1-2
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To prove that 4 is a contraction we must show there exists a positive
v << | such that || du; — Hu,|| =< r||u, — u,| for every uy, u,€ M, . The
inequality (Al4) can be used here with 4, = a, = 0 and F replaced by
F, — F, ; it becomes:

| Auy — Auy || < K, [(’OT Fow — Fone 2 dt) | + ( fof Fo— Bl dt)l,.zJ
< Ky (T Fray — Foes lim + | For — Fat |1

Using a, || Auy — Auy || < KL,G)VT |l uy — uy|l. But K,L(8)VT < L.
Theorem Al follows by applying the contraction mapping theorem described
in Section 1.2.

2.2c. Existence and Uniqueness on [0, c0) and Asymptotic Stability
DErINITION A6, My(8,a) ={u|uc M, |ul, < de-ot},

Lemma A3, My(8, a) is complete.

Proof. Let {u,} be a Cauchy sequence in M, C M. Since M is complete
there exists a u € M such that u,, — u. The Lemma is proved if || u ||, << d¢=*.
From the triangle inequality

fuly, <lw—u,lly -+ o,y <lu—u,ll + S,

for n large
luly < e+ dee,
for every € > 0. Therefore || u ||; < 8¢9
DEerINtTION A7, f(u, 80, , 4, Upy s 4y, ¥, 1) = F(x, t) is an exponential
Lipschitz function on M,(8, a) if there exist L(8) and Ly(8) such that
() |Feelpand [Fy, < 3L u |} < 3Ly [ ully Se=* for every u & M,

(b) | Fioe — Foup |y and |Fyy —Fo |, < 4Ly [luy — 4, ] for every
u, , Uy € M, where

Fz'(xy t) :f(uz' s Wig s Uity Uign > Uizt s X t)a 1= 1: 2.
TueoreM A2 (Existence and Uniqueness for every £ > 0 and Asymptotic

Stability). Let n be an arbitrary number in (0, 1) and let f, a, and a, satisfy
the following conditions:
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(a) fis exponential Lipschitz on My(8, a),
(b) F(0,t) =F(1,t) =0,
(C) K1(| alx.'cxx |L + ! a‘.:ac:tw IL + lFx(:‘a 0)1L) < 778,

AN i aanich

a o~ o and o N o d
\u} Uy s Wo 5y Ugpp WILK Ugpy VUILIIT v unu

a — 1
A& = 1.

If & is such that the inequalities

L) < (1 — n)Qa)#/K,
and
L,(8)8 < (2a)*2|K,

are satisfied, then there exists a unique classical solution of (Al1)~(A3) in M,
Jor every T > 0.

Remarks. (a) The exponential Lipschitz condition implies that # = 0
is an equilibrium solution. The nature of M, insures the asymptotic stability
of the zero solution.

(b) Condition a of Theorem A2 can be weakened; however, for exposi-
tory purposes we feel the above statement of the theorem is the most instruc-
tive. For example, a form of Theorem A2 can be proved under the condition
that | Fy, |, and | Fy | << 3L4(8) || u |3* for € > 0.

Proof. To prove the theorem it is sufficient to prove that 4 maps the
complete metric space }M, into itself and is a contraction on M, .

Let v = Au; we want to prove that if u € M, then ve M, . It follows
from conditions a~d and Lemma A2 that v € M and that

” v ”1 < Kle_at(, Aegrx ’L + , Ayrax ’L + ’Fz(x’ 0),L)

+ K, [( "t 20t | Foo |7 d,,)l/z N (’: 2a(t—» P12 dv)l/z]

*0

< mde~?t 4 K,L,8%(2a)~1/2 ¢~at.

But L(8)6 < (1 — n)(2a)t/?/K, implies | v |, < 8e~of, therefore ve M,.

To prove that 4 is a contraction we must show there exists a positive
r <1 such that || Auy — Au, || < 7| uy — u,|| for every u;, u,€ M, . The
inequality (A13) can be used here with @, = a, = 0 and F replaced by
F, — F, ; it becomes:

iy = |y < K ([ | Py — P )

+(/

0

t 1/2
g2 [ Frp — Fyy fid") ] .
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Condition @ and the inequality L,(6)8 << (2a)'/%2/K, imply
Hduy — duyly - - Kolwd(2a) 172 | 1y — us |y < rfuy — u,
with r < 1. Therefore
ihduy, — Auy || < v uy — ug).

Theorem A2 follows by applying the contraction mapping theorem described
in Section 1.2 and noting that there is no restriction on T in the proof of the
theorem.

TrEOREM A3. Suppose all the conditions of Theorem A2 are satisfied, then
luly < V298 exp[(l — 7)* (L — e*)]e,
where u ts the fixed point of (A1)—(A3).

Proof. Lemma A2, condition @ of Theorem A2 and the fact that « is a
fixed point of (Al)-(A3) imply that

| 2lly < Kye™(| @rpquz |+ | Gorza |2+ [ Fol, 0)[1)
ot 1/2
+ Kol ([ el )
Yo
Condition ¢ of Theorem A2, the fact that ||# ], <{ 8e=*" and the fact that
L8 < (1 —9)(2a)'2/K, imply that

st 1/2
Ul <7 (1= ) Qo) ([ i)

Let y(¢) = e® || u ||, , then
ot 172
) < b+ (1 — ) Q0 ([ o) (a15)
)
If we square both sides and use the fact that (p + ¢)* < 2p? 4 2¢® we find

t
(1) < 29282 + da(l — n)? f e-2avy? g, (A16)
0
An application of Gronwell's inequality to (A16) gives the desired result:
[ ]ff €2 = 3° < 29%% exp[2(1 — 7)* (1 — €]
or
Null, < V278 exp[(1 — n)2 (1 — e 2et)Jet.
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Remark. 'The step (ALS) to (A16) is unfortunate as (A15) gives a better
bound than (A16); however, it appears to be necessary in order to get a
closed form solution of the inequality. If the approach used in the derivation
of Gronwall’s inequality is attempted on (Al5) a differential inequality is
derived which cannot be solved in closed form.

2.2d. Construction of a Liapunov Functional for Special f's.

We consider two specific types of nonlinearities f, f = —g(x) and f =
(¢/éx)g(u,) where g has the properties

28(2) > 02 #0, (A17)
g'(z) > 0. (A18)

The Liapunov functional for each type of nonlinearity will be of the form
V(t) = Vi(t) + V,(t) where I, is defined in (24)

1
Vi) = 3 | [2 + (n — o) + o®udi] . (A19)
0
From (25)

1 1
Vo) = —o [ [+ 02, fufld + [ wfds.  (A20)
0 0

Notice that V/(#) is positive definite and that for the f’s we are considering
f(l, u,, fdx is nonnegative. The basic idea in constructing F(¢) is to find a
V() which is nonnegative such that V,(f) cancels out the last term in (A20).
It must be remembered that u satisfies (A2).

THEOREM Ad4. Let f = —g(u) where g satisfies (A17)~(A18). Then V(t) =
Vi(2) + Volt) where

[«’2(t) _ fol (fou(x.t) g(f) df) dx, (A21)

is a Liapunov functional for (A1)~(A2). It follows from the Liapunov stability
theorem that the zero solution of (A1)}~(A2) is asymptotically stable in the large.

Proof. Differentiation of (A21) yields
. 1
Vilt) = [ wg() ds,
0
which leads to

V=1 ' b (s — ce)? + o, +2 f: £(8) dfg A (A22)

0
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and

. 1
I'(t) = —a JO (e + 12y -+ u%g' (1)) d. (A23)

The theorem follows once we show (A22) and (A23) satisfy conditions (a)—(d)
of the Liapunov stability theorem with

PR
P = Jo [+ u® -+ u® + ul] dx. (A24)

The following inequalities will be useful in our proof. Since u is such that
#(0, t) = u(1, t) = 0 and u,, exists,

1 a1
[ u(x, 1)) < f |, )] ds = 0 < | w2 dx < p? (A25)
0 0
and
1 1 N 5
0, O < [ ol O v = w2 < [ adod <% (A26)
0 0

Inequality (A26) is based on the fact that for each #, u,(x, ¢) has a zero for
some x (by Rolle’s theorem).

To verify conditions a and d of the Liapunov stability theorem we make
use of (A25) and the inequality | u, | < | u, — oy | + | 4y, | to find

~1
P’ < -‘0 [2u,? + 2(u, — otty,)® + 2022, + uZ,] dx
K 2(2 + 1/a?) Vi) == K, 1,(8) < K V(8).

Therefore V(t) = p?/K, = By(p) and clearly B, satisfies the appropriate
conditions.
To verify condition ¢ we notice that there exists a K, such that

sl
Vi) <3| [ + 202 + 30%u2] dx < Kyp*.
Yo

Now consider V() = [o (s &(£) d¢) dx and let h(] u 1) = max(J; g(£) d¢,
o g(£) d€). This implies that A(0) = 0. From (A17) we see % is a nonde-
creasing function of | # | and fz 2(&) dé < h(Jul). By (A25) | u| < p, therefore,

u

v = [ [ e deas < [ 1) de = i)
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Combining this with the result for V, yields V(2) < K, p* + A(p) = B(p)
and clearly f, satisfies the appropriate conditions.
Condition b will be satisfied if we find a y such that

1
vo) <o [ [+ uds o+ g @) dx.
0
Using (A25) and (A26) we find
1 o o 1
o= [0t bl de < [ [l 4wl
0 0
but g'(x) is positive; therefore,
2 ! 2
P <3 [ [+ + W]
0

It we take v(p) = «p?/3, condition b is satisfied.
This completes the proof of Theorem A4.

THEOREM AS. Let f = (8/0x)g(u,) where g satisfies (A17)~(A1R). Then
V(t) = Vi(t) + Vyt) where

1, ugle,t)

ro=1'(]

ts a Liapunov functional for (A1)-(A2). It follows from the Liapunov stability
theorem that the zero solution of (A1)~(A2) is asymptotically stable in the large.

£(8) d¢) dx (A27)

Proof. The proof of this theorem follows the proof of Theorem A4, with
the appropriate modifications in the construction of 8,(p).

Remark. It is interesting to note that in the case where f = 0, V(t)
is a Liapunov functional and there exists a positive constant ¢ such that
V() < V(0)e~=t/e. So, not only do we have asymptotic stability in the
large but we have an estimate on the rate of decay of the Liapunov functional.
Similar bounds can be obtained in Theorems A4-A5 by making further
restrictions on g.

2.3 Case B

2.3a. Preliminaries
The differential equation is
Uyt + Zaut — Uy :f(u, Up , Ug 5 X, t)

(B1)
xef0,1], t>0, >0,
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with boundary and initial conditions
(0, t) = u(l, t) = 0, (B2)
u(x, 0) = ay(x), u,(x, 0) = ay(x). (B3)

We shall give neither the lemmas nor proofs of the theorems which are
parallel to those in Case A; an understanding of Case A should be sufficient
for filling these in.

DeriNiTION Bl. € = {u(x, 1) | u € C3(12)} where 2 = [0, 1] x [0, T] and
(3 denotes the class of 3 times continuously differentiable functions.

DeriNiTiON B2. B is the completion of € under the norm

2
Jull= Y |DUlw+ Y. [DU|rpm, (B4)
lo}=0 lo|=3
where
o = (oy, 03), lo| =0y + 03, D° = "2 on"101™
and | |, and | |, are the same as in Case A.

The properties of B can be discussed in exactly the same way as in the
Appendix.

DeriniTioN B3, M = {u|u € B, u(x, 0) = a;(x), ux, 0) = a,(x),
u(0, 1) = u(l, t) = 0}.

2.3b.  Existence and Uniqueness on [0, T']
DerFINITION B4, M (8) = {u|ue M, |u] < &}.
DerinttioN BS. f(u, 4, , u,, x,t) = F(x,t) is a Lipschitz function on

D, (8) if there exist L,(8) and L,(8) such that

(a) iF.z‘a‘ ILm + ]Ftt ‘Lm <L1(8) fO[' CVCI'y ue 11[1 ’
(b) | Frag — Foug lom + [ Fras — Fops lpm < Lo(8) |4y — uy]| for every
#, , uy € M, where

Fx,t) = f(u;, t;z g, %, 1), i=1,2.

TueoreM Bl (Existence and Uniqueness on a Finite Time Interval). Let
v be an arbitrary number in (0, 1) and let f, a, and a, satisfy the following
condrtions:
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(a) fis Lipschitz on M,(5),
(b) F(0, %) = F(1, t) = 0.
(C) K1(| Ay apx |L + [ Aoy |L + lFx(x: O)IL + IFt(x’ 0)|L) < 7]8)

(d) a,, ay,, and a, vanish at x = 0 and x = 1.

If T2 < min((1 — 7)8/K,L,, 1/K,L,) then there exists a unique classical
solution of (B1)~(B3) for t € [0, T'].

Remark. K, and K, are positive constants which can be determined as in
Lemma A2.

2.3c. Existence and Uniqueness on [0, oo0) and Asymptotic Stability

Derinition B6. M8, @) = {u|ue M, | ul, < de o}, where

luly= X [DUlm,+ X |Dul (B3)

lo|=0 lo]=3

and | |,,, and | |, are the same as in Case A,

DrriNiTION B7.  f(%, 2, , 4;, %, 1) is an exponential Lipschitz function on
DMy(8, a) if there exist L,(8) and Ly(3) such that
(@) [Fuplpand |Fooly < Lyl ul? < 3Ly [y Se=a for every ue M,

(0) | Frap — Fope | and [Fyyy — For |y < §Lo ||y — 4y ]| 8 for every
Uy, u, € M, , where F, and F, are as in Definition BS.

THEOREM B2 (Existence and Uniqueness for every ¢t = 0 and Asymptotic
Stability). Let » be an arbitrary number in (0, 1) and let f, a, and a, satisfy the
Jollowing conditions:

(a) fis exponential Lipschitz on My(8, a),
(b) F(O,1) =F(1,1) =0,
(©) K| @raza [z -+ | Gz [ + | Falx, O)|L + | Fy(x, 0)]1) < 73,

(d) a,, ay,, and a, vanish at x = 0 and x = 1.

If 8 is such that the inequalities
L3 < (1 — n)2a)'?K,

and
Ly3)8 < (2a)P|K,

are satisfied then there exists a unique classical solution of (B1)-(B3) in M,
for every T > 0.
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The remarks made after Theorem A2 are appropriate here.

TueoreM B3. Suppose all the conditions of Theorem B2 are satisfied, then
the inequality of Theorem A3 holds where u is the fixed point of (B1)-(B3).

2.3d. Liapunov Functional for Stability for Special f’s

We consider the same two specific types of f as in Case A, but let
1
Pt = l [#? + u2 + u,?] dx.
0
THEOREM B4. Let f = —g(u). Then
1 U
V(t) =1} f [u; 4 (- ou) - o2u? + 2 f 2(&) dg] dx  (B6)
0 0
is a Liapunov functional for (B1)~(B2), where
~1
V(t) = —a ’ [u? -+ u,? + ug(u)] dx.
o
Tueorem BS5. Let f = (0/ox)g(u,). Then
.1 MUy
F(t)=1% | [uf + (u; -+ om)? 4 oPu? 42 ’ () dE] dx, (B7)
Jo Yo
is a Liapunov functional for (B1)~(B2).

(Notice the existence theorems do not apply to nonlinearities of this type.)
The remark after Theorem AS is appropriate here.

2.4 Casg C

2.4a. Preliminaries

The differential equation is

guzut_umz:f(uvuz"xst)

xe[0,1], t =0, (€D
with boundary and initial conditions
2(0, 1) = u(l, ) =0, (C2)

u(x, 0) = a,(x). (C3)
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We discuss this case in the same way as Case B except we briefly consider

the mapping since it differs from (15).
The mapping of # into v defined by

Ut — Upg :f(u(x) t)v uac(x’ t)) ®, 1) = F(.X', t))

can be written in a form similar to (15) as

v=M=§%MNWMHiNﬂ&®%N—AWhM) (C3)

where
V(1) = e_n2,,2t,
Pa(¥) = V2 sin nmx,
1
a1 = | (@) gu(x) ds, (C6)
and

Fu) = [ P 1) pula) .

The solution of (C1)~(C3) can be viewed as a fixed point of the mapping A
in (C5).

DeriNiTION Cl. € = {u | u, uy, %y, Uy, Uy , Uy € C(82)} where Q =
[0, 1] x [0, T].

DEerFiNiTION C2. B is the completion of € under the norm

”uH:|u|m+|ux|m+|ut|m+|uwxlm+|uxt|Lm+|uxza:|Lm

where | |,, and | |,,, are the same as in Case A.
The properties of B can be discussed in exactly the same way as in the
Appendix.

Dermarion C3. M = {u|ue B, u(x,0) = ay(x), {0, t) = »(1, t) = 0}.
2.4b. Existence and Uniqueness on [0, T

DerINTION C4. M) ={u|ue M, | u| <38}
DeriniTION C5. f(w, 1, , x,¢) = F(x, t) is Lipschitz on M;(8) if there

exist L;(8) and L,(8) such that
A,
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(a) ]Fau ‘Lm + |Ft JLm = Ll(s) for every v € 1111 *
(b) 1 Frer — Fowe lom + | Fro — For | K Ly(8) luy — | for every
U, , Uy € M, where

Fix, t) = f(u;, u;,, x, 1), i=1,2

Tuaeorem Cl (Existence and Uniqueness on a Finite Time Interval). Let

n be an arbitrary number in (0, 1) and let f and a,(x) satisfy the following
conditions:

(a) f is Lipschitz on M, (3),

(b)y F(O,t) =F(,t) =0,

(C) Kl(l Ay |L + |F£(x, 0)|L) < 7)8

(d) a, and ay,, vanishat x =0andx = 1.
If T2 < min((1 — 3)8/KsLy, VK,Ly) then there exists a unique classical
solution of (C1)—~(C3) for t€ [0, T1].

Remark. K, and K, are positive constants which can be determined as in
Lemma A2,

2.4c. Existence and Uniqueness on [0, co) and Asymptotic Stability

DerINITION C6. My(8,a) = {u|uec M, |ul; < 8¢ %}, where | qu =

|ulm + Ium |m _’_ ,ut]m + |u.m'|nz + ‘uxt‘L_i" Iumcx |Lv and ‘ ‘m
1 . 1 1 1 1
| 1. are as in Case A.

DerinitioNn C7. f(u,u,, x,t) = F(x,t) is an exponential Lipschitz
function on M, if there exist L,(8) and L,(8) such that
(a) |Fuplpand|Fel, <3y llull] <3L| ), S for every uy , upe M,,
(b) |Fiee — Fopp | and [Fyy — Fy |, << 3Ly {4y — 4]0 for every
uy, Uy € M, , where F; and F, are as in Definition C5.

TueorREM C2 (Existence and Uniqueness for every ¢ > 0 and Asymptotic
Stability). Let v be an arbztrary number in (0, 1) and let f and a, satisfy the
Jollowing conditions:

(2) f1is exponential Lipschitz on My(3, a),
(b)y F(O,t) =F(,t) =0,
(©) Kyl Grpee L -+ | Fulx, 0)lL) <nd

(d) a, and a,,, vanish at x = 0 and x = 1.
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If 8 is such that the inequalities
Li(3)3 < (1 — n)(2a)2)/K,
and

L) < (2al®)K,

are satisfied, then there exists a unique classical solution of (C1)-(C3) in M,
for every T > 0.
The remarks made after Theorem A2 are appropriate here.

TueorReM C3. Suppose all the conditions of Theorem C2 are satisfied, then
the inequality of Theorem A3 holds for Case C where u is the fixed point of
(C1)(C3).
2.4d. Liapunov Functional for Stability for Special f's

We consider the same two specific types of f as in Case A, but let

1
p? = j (#* + u,?) dx.
0
TueorEM C4.
1
V(t) =} f (2 + u,2) dx
0

is a Liapunov functional for (C1)-(C2) for both nonlinearities.

25 Case D

The differential equation and auxiliary conditions are:

PLu=uy — 20V%; — Viu = f(u,u, , 1, ,u;,%,9,1)

(O
x,ye, t =0, a >0,
where Z = [0, 1],
u(x, v, t) =0 on ¢4, (D2)
where 02 is the boundary of 2, and
u(x, 3, 0) = ay(, y), ux, 3, 0) = ax(*, y). (D3)

Results for this case can be obtained just as in the other cases, but because
of space limitations we shall just indicate some points which may not be
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obvious simply from a study of the previous cases. This case was selected to
illustrate that the ideas in this paper are applicable to problems containing
more than one spatial dimension.

(1) Definitions of ¢ and B.

€C =iu|DucC),0 < |o| =4 DueC(2),0 < |0, L3
Deuy e C(82), 0 <X | o | < 1} where

o= (01 ’ 02)7 |o | = o; + 0y, Do = rul+02/;8x018},02

and 2 =2 x [0, T].
B is the completion of € under the norm

3 2
HuH: Z lDau|'m+ Z IDautlm %‘Iutt|m

|lo]|=0 |lo|=0
+ Z ID"u le + Z IDoutle "I_ Iuacttle"I' luyttILm
lo|=4 le|=3
where
l g(’\") y’ t)l’"l - m{?x I g(x) ,'y’ t)l b

and

, 1/2
| g(x7 s t)ILm = 12[10%%] (J:@g (.X, ¥s t) d’C dy) .

The modifications needed in the Appendix in order to discuss the properties
of the space B in this case are not as trivial as in Cases B and C.

(2) The Lemma corresponding to Lemma Al is not as good in this case
because of the divergence of the series Yy 3 1/(m? -+ n2). (Notice the role
of the convergence of 37 1/n% in the proof of Lemma Al.) The result of
this is that the nonlinearity in (D1) can contain the derivatives u, , u, and
u#, but not higher order ones.

(3) The Lemma corresponding to Lemma A2 requires smoothness

conditions on V2F and F; (compare a. of Lemma A2) and the integrability of
| V(V2F)| and | VF,; | (compare c. of Lemma A2).

With the understanding of 1-3, the proofs of existence, and uniqueness
go through much the same as in the other cases.

(4) A Liapunov functional for f = —g(u) subject to the conditions
(A17-18) is

Fit)=43 ' [ll]jz 4o w2 A (u, — aV2u)E - o2(V)? + [ * g(é) dg] dx dy.
7, Yo

r s
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APPENDIX: PROPERTIES OF SPACE B IN Case A

Recall the definition of B (Al and A2) and notice the structure of the
norm defined there. It is clear that the continuity of the derivatives which
are completed under the | |, norm is preserved, i.e., if € B then u, u,,
Upy Upy s Upp , U, Uyyy and u,,, are continuous on 2 = [0, 1] x [0, T']. The
question we consider here is: what happens to the x derivatives of u,, , u,
and wu,;; and the ¢ derivatives of u,, and u,, under the | |,,, norm in the
completion of €(£2)?

Consider two spaces B, and B, where B, is the completion of €,(2) =

{w(x, t) | w, w, € C(2)} under the norm ||w| = |w|, + | @, |.» and B,
is the completion of () = {w(x, )| w, w,€ C(2)} under the norm
lewll = | |m + | @ lpm - The properties of the x derivatives of u,,, %y,

and u,,, and the t derivatives of u,, and u_,, follow from the properties of w
in B, and B, , respectively.
To discuss the properties of B; and B, we need Lemma 1.

Lemma 1. Let {v,} be a Cauchy sequence in C($2) under the norm | |.,,
(i.e, | vy — Ty Iz — 0). Then there exists an f(x, t) such that

(a) lirrlnlfvn — [l =0 for each t [0, T,

(b) ]f'Lm exists and ll'Ill'l ] Uy ]Lm = }f’Lm
and
(C) hf””n —f,Lm =0.

Proof. Since | v, — v, |p <12 — Un lom > {©n} is 2 Cauchy sequence in
L,[0, 1] for every te {0, T]. The Riesz—Fischer theorem (see Korevaar [8,
391]) asserts the existence of an f(x, t) €L,[0, 1] for each #e[0, T'] such
thatlim,, [, — f|, = 0.

Since f(x, t) € Ly[0, 1], | f |, exists for every ¢ € [0, T'] and the existence of
| f |om follows if | f|, is a continuous function of ¢. To prove this we show
that lim, [ 2, |, = | f|, uniformly in ¢ for t€[0, T]: The result || v, |, —
| flol <|v,—fl.—0 implies lim, | v, |, = |f|, pointwise in ¢ Let
hn(t) = l Un |L then

l h'n(t) - hm(t)‘ g I Up — Un |L < | Up — O |Lm - 0

Therefore | f|; is the uniform limit of a sequence of continuous functions
which assures the continuity of | f|; and the existence of | f|;,, -
To prove (c) we notice that for every ¢ > 0 there exists an # such that

| Ppop — Un lim < 3e for every p = 0.
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But

-
m
m

1 e 20 PO .
hlr’n [ Cousry ™ CnoLin = lf“’ Cop L V-t
therefore

lim | 2, — £l = O.

Consider the spaces B, and B, .

Lemma 2 (Properties of B,). Let we B,y . Then w is an indefinite integral
in x for every t.

LEmMma 3 (Properties of B,). Let we B, . Then w is an indefinite integral

in t for almost every x.

Proof of Lemma 2. For every w in Bj there exists an associated Cauchy
sequence {w,}, w, € €, such that
W, is a Cauchy sequence in C(£2) under the norm | |,,, i)

and

w,x, 1) = w,(0,) + | " v, 1) dv. (i)

We know from Lemma 1 and (i) that there exists a g(x, t) such that
lim, | @, — £ |t = 0. The equality

lim | “ v, ) dv = [ g, ) v, (iii)
0 Y0

n

for every x [0, 1] and for every t [0, T], follows from the inequalities

x 1
’ f (0,4, £) — g(v, 1) dv | < [0 | w,alv, ) — g(v, 2)| dv
S J
< lwn:c_’g!L < I wnx_gle“—’O-

If we make use of (iii) and the uniform convergence of {w,(x, t)}, the pointwise
limit of equation (ii) yields

w(x, 1) = w(0, 1) + fo " o(v, 1) dv. (iv)

Therefore w(x, #) is an indefinite integral in x for every 7.
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Proof of Lemma 3. For every w in B, there exists an associated Cauchy
sequence {w,}, w, € €, such that

2w, is a Cauchy sequence in C(2) under the norm | |, )

and

.t
Wo(x, 1) = wy(x, 0) + J W, v) dv. (vi)

0
We know from Lemma | and (v) that there exists a g(x, t) such that
lim,, | w,;, — g | = 0. We now show there exists a subsequence 7, such that

t ¢
lim [ w, {x, v)dv = f g(x, v) dv, (vii)
n; Jy ’ 0

for every t € [0, T] and almost every x € [0, 1].
The inequalities

[ (i) — gt ) o

T
< [ el 1) — gl 1) dt = G
and
T
| Ga(¥)L < _[0 [wp —glodt < T|%wny —glim—0
give
lim | G,(®)], =

The Riesz-Fischer theorem asserts the existence of a subsequence n; such
that G, (x) — 0 almost everywhere. Therefore (vii) is true. The subsequence
{wnj} satisfies (vi), that is

w"i(x’ t) = w"j(x’ 0) -+ [ wn,-t(x> V) dV, (Vlll)

¢
‘o
so, if we make use of (vii) and the uniform convergence of 'w,,j(x, 1), the
pointwise limit of (viii) yields

i
w(x, ) = w(x, 0) + f g(x,v) dv (ix)
0
for almost every x in [0, 1]. Therefore w(x, f) is an indefinite integral in ¢
for almost every x.

The properties of # € B can now be stated as a theorem.

409/51[1-3
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TueOREM (Properties of B). If u € B, then

(a) w,u, , uy Uy, Upyy Uy s Uy, QR U,y e CONLIRUOUS,

(b) uy, u.., and u, ., are indefinite integrals in x for every t,

(c) wu, and u,,, are indefinite integrals in t for almost every x.

Proof. Lemma 2 asserts b and Lemma 3 asserts c.
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