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INTRODUCTION

As the title indicates, we are concerned in this paper with abelian groups
that are projective as modules over their endomorphism rings. We will in
fact limit our attention to those groups that are finitely generated over their
endomorphism rings. The abelian groups that are cyclic as modules over
their endomorphism rings play a central role in this study. Some general
results concerning these are derived in Section 2 and a basic invariant of
such groups, here called K, is introduced and studied. This object K is a
subgroup of the group G in question which admits a ring structure in a
natural way and G becomes a K-module. K becomes the “natural” ring of
operators for the groups in question. In Section 3 we characterize the
abelian groups that are cyclic projective over their endomorphism rings.
For such groups, K is an E-ring in the sense of Schultz [6] (definition in
Section 2). The results of Section 3 establish an intimate connection
between the theory of such rings and the groups cyclic projective over their
endomorphism rings. Their theory is reduced to the cyclic case by use of
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an appropriate Morita equivalence. Finally in Section 5 we give some fairly
general examples and make a few remarks connecting our work with other
results in the literature.

Our terminology is, we think, standard, but we might refer to Fuchs [3]
as a basic reference for abelian groups and Jacobson [4] for module
theory. The unadorned symbols Hom and ® are understood to be taken
over Z, which of course denotes the ring of integers. All groups mentioned
are understood to be abelian with G the generic symbol. We denote by E
the ring of endomorphisms of G. When necessary, we write E(G) for E. The
center of E is denoted by z(E).

2. E-CycLric GROUPS

Let A be a ring with identity 1. Then A, viewed as a module over itself,
is a cyclic module with 1 as generator; hence the additive group of A4 is
cyclic, again with 1 as generator, when viewed as a module over its
endomorphism ring E. More generally, il A is any ring and if M is a cyclic
A-module, then the additive group of M is cyclic as a module over its
endomorphism ring. We consider in this section the general situation.

DErFINITION. Let G be an abelian group with endomorphism ring E.
We say that G is E-cyclic if G is generated as module over E by a single
element.

Let G be E-cyclic and choose a generator ¢ for G. Then we have the
exact sequence of E-modules

0—L—FE%SG—0, (N

where ¢ is defined by ¢(a) =ae for a € E, and
L={feFE|fe=0)}.

Having chosen e, we also have
K.=K={xeG|L =0}.

Properties of K will play an important role in our discussion. We derive
some of them here. First observe that in the exact sequence (1), L is a left
ideal of E. We recall that there is a largest subring, W, of E containing L
as two-sidel ideal, the idealizer of L in E,

W={aecE|Lac L}
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PROPOSITION 1. Let @ be the map defined in the exact sequence (1). Then
W=¢ 'Kand K=oW.

Proof. Letxe Wand fe L. Then ¢(a)=ae and we have fi(ae)=(fae)=0
since faxe L. Hence, xee K so xe ¢ 'K. Conversely if e 'K and fie L
then 0= B(xe)=(Pa)e so Lx < L as required. Clearly now K=oW.

COROLLARY. K admits a ring structure in which multiplication is given by

xy =afle if x=ue, y = fle. (2)

Proof. By definition of W, W/L is a ring, whose additive group is
isomorphic to K, via ¢, by the result above. Transferring the multiplication
on W/L to K results, as is easy to see, in (2).

A consequence of this corollary is the fact that the operation defined by
(2) is in fact well defined. We note a second relation between W and K.

ProposITION 2. W= {axe E|aK<SK}.

Proof. 1f aK < K for some « € E then in particular xe € K so that fae =0
for all e L. This yields La = L so that ae W. Conversely if ae W, xe K
and fe L, then B(ax)=(fa)x=0 since fae L. Thus Lax=0 so axe K.

The operation defined in (2) does not extend to G. However, we have

ProproSITION 3. The group G is a right K-module under the action
defined by

yx = fae, where y=PfeeG, x=oaeek.
Proof. The only question is whether this operation is well defined. Let
xe=a'¢cK, fpe=PecG for a, o', B, B’'e E. Then ae W by Proposition |

and f—p'eL so that (f—p')ae L. Similarly a —a’e L so f'(a—a')e L.
Hence

Par—fa'=(f—F)oa+ B(x—a')el

as required.

COROLLARY. Denote the K-module G defined above by Gg. Then
E=Hom,(Gg, Gg).
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Proof. letyeE, y=feecG, and x=aeec K. Then

7(yx)=y(Pae)
= (yB)(ae)
= [(yB) e1(xe)
= [y(Be)(oe)
=) x.

PROPOSITION 4. The ring K is isomorphic to the center, z(E), of E. In

fact,
W=L®:z(E), K=:z(E)e.

Proof. Clearly z(EY2s W and Lnz(E)=0, since G is cyclic with e as
generator. Let xe K. Then right multiplication by x in G determines a
central endomorphism, say y € z(E), by Proposition 3 and its corollary. Let
x=ae. Then ae=(1-e)}ae)=ex=ye. Thus x=neez(E)e and it follows
that ¢ takes z(E) onto K. This completes the proof.

A certain special kind of ring will play an important role in what follows.
We follow Schultz [6] in

DEFINITION. An associative ring R with identity is an E-ring if every
endomorphism of the additive group, R™*, of R is given by left multiplica-
tion by some element of R.

Examples of F-rings are the subrings of Q and their quotients modulo
ideals, and pure subgroups of the p-adic integers. It is easy to see that
E-rings are commutative and that a ring R is an FE-ring if and only if the
only endomorphism of R* that annihilates 1 is 0 (cf. [2, 6]). We use this
criterion in

PrOPOSITION 5. Let G be E-cyclic. Then z(F) is an E-ring if and only if
every endomorphism of K extends to an endomorphism of G.

Proof. Suppose z(E) is an E-ring. Then K is an E-ring and if « € E(K),
ae=0, then a=0. Given ae E(K), define @ on G by a(y)= yxa(e). This
makes sense by Proposition 3 and we have aK < K. Hence (& — a)| x € E(K)
and

(d—a)e=d(e)—ale)=exa(e)—a(e)=0

since e is the identity for K. Since K is an E-ring we obtain & =« on K, so
« extends to G.
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Conversely if every a e E(K) extends to an endomorphism & of G, then
ae =0 implies that &KX =0 by definition of K. Then x =0 as well. Hence K,
and with it z(E) is an E-ring.

COROLLARY. If K is a direct summand of G then z(E) is an E-ring.

3. CycLic E-PrROJECTIVE GROUPS

We retain the hypothesis that G is cyclic over its endomorphism ring £,
with generator ¢, and with K defined as above.

THEOREM 1. Let G be cyclic over E. Then G is projective over E if and
only if K is a summand of G.

Proof. Suppose that G is E-projective. We have the exact sequence of
E-modules

0—L—E-5G—0

as in the previous section, and this splits now, so L is a summand of E as
E-module. Thus there exists an idempotent A€ E such that L=E4
Then L(1—4)=0 so that (1 —4) G < K by definition of K. On the other
hand, since ielL, we have AK=0 and (1 —4)|x=1,. In particular,
K=(1—2)K<=(1—-4)YG< K. Therefore, K=(1—4)G, hence is a sum-
mand of G.

Conversely, suppose that G = K@ H for some subgroup H of G and let
¢ be the projection of G onto K with kernel H. Define a map p: ¢ — E as

plg)=ac if g=uae

If xe =g = fe we have a— e L so (x —ff) £=0 since ¢G =K. Thus p is
an E-map of G into F and we have, with ¢ as in the sequence (1), pp(g)=
@(ag) = ace = ae =g, where g =ae. Thus the sequence (1) splits and G is
projective since it is isomorphic to the summand p(G) of E.

CoroLLARY. If G is cyclic projective over its endomorphism ring E then
the center of E is an E-ring.

Proof. Theorem 1 and Corollary to Proposition 5.

Any E-ring, being commutative and equal to its own endomorphism
ring, is the center of its endomorphism ring on the one hand, and is cyclic
projective over that ring on the other. Hene, by the corollary above, the
E-rings are precisely the centers of the endomorphism rings of those
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abelian groups that are cyclic projective over their endomorphism rings.
This would not be very illuminating from either point of view if the E-cyclic
projectives were just the additive groups of the E-rings. The following
theorem adds some insight into the situation. In this regard as well as in
providing examples, it is helpful to have at hand the following

LEMMA. Let G be E-cyclic with generator e. Let H be a subgroups of G
containing e. Suppose that

(1) Hom{H/Ze, G)=0 and
(2) H=\ker B for some set of endomorphism { B} of G.
Then H=K,.

Proof. By (1), H is annihilated by every endomorphism of G that
annihilates e, so H< K. By (2), should xe K and x ¢ H then there would
exist an endomorphism f such that SH =0 and fx #0. Since e H, this
would contradict the definition of K. Hence K< H and we are done.

COROLLARY. [If H is summand of G containing e and if Hom(H/Ze, G) =
0 then H=K.

We can now construct all groups that are cyclic projective over their
endomorphism rings—provided that we know all E-rings.

THEOREM 2. Let R be any E-ring and let M be an R-module such that
Hom(R/Z -1, M)=0, where 1 is the identity of R. Then G=R@® M is cyclic
projective over its endomorphism ring with generator e=(1,0) and with
K=~ R. Conversely every group cyclic projective over its endomorphism ring
has this form for a suitable E-ring R and R-module M.

Proof. Clearly G=R® M 1is cyclic over its endomorphism ring with
e¢=(1,0) as generator. By the corollary to the lemma above, R =K here
(more precisely K= {(r,0)|re R}). Since K is summand of G, G is
projective over its endomorphism ring by Theorem 1. The converse follows
from Theorem 1, its corollary, and the corollary to Proposition 3.

4. FINITELY GENERATED E-PROJECTIVE GROUPS

We consider now abelian groups G that are finitely generated over
their endomorphism rings E; we will reduce the study of those that are
projective over their endomorphism rings to the cyclic case. Thus let G be
generated over E by (g, .., g,} and let X = G”", the product of n copies of
G. Then the endomorphism ring, E(X), if X is the ring, E,, of nxn
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matrices over E. Let e=(g,, .., g,) be the element of X given by the
generators of G. Then it is clear that X is cyclic over E(X) with e as a
generator. In this way we obtain an E-cyclic group X from the group G.
The fact that E and the matrix ring E, are Morita equivalent allows us to
reduce the finitely generated case to the cyclic case. We provide some
details.

As above let G be finitely generated over its endomorphism ring £, with
a set {g,..,g,} of generators, and let X=G" so X is cyclic over
E(X)=E,. Let P be the free left E-module of rank » viewed as row vectors
so P is an E— E, bimodule. Let Q be the free right E-module viewed as
column vectors over E£so Q is an £, — E bimodule. Let ¢ € E,, be the matrix
with 1 in the upper left and O elsewhere. Then it is clear that we may
identify P with ¢E, and that E ¢E,=E,; ie., Pis a cyclic progenerator for
E, (cf. [4], for example, for details concerning this, and Morita theory in
general). Now it is easy to see that

0R@Gz X as left £,-modules,
PRy X=G as left E-modules.

In fact we have

LemMa. With the notation above, G xeX= P®, X.

Proof. The first isomorphism is clear since
eX={(x,0,.,0)]| xeG}.

We establish the second isomorphism assuming only that P=¢E, is a
cyclic progenerator for the endomorphism ring £, of X. We have a bilinear,
E,-balanced map of Px X to &X given by (ex, x)—exx, thus a map
P® X — ¢X of abelian groups. On the other hand, if ex=¢y for x, ye X
then ¢e®@x=e¢®y so we have the obvious map of eX into P®JX.
Composition in both directions is the identity so eX =~ P®, X as abelian
groups. Now if we identify £ with the subring ¢E ¢ of E,, then eX becomes
an E-module and it is clear that the maps above are F-maps.

We can now prove

THEOREM 3. If G is finitely generated over its endomorphism ring E, with
{g1s g, as a set of generators, then X = G" is cyclic over E(X). Moreover
G is E-projective if and only if X is E(X) projective.

Conversely, if X is cyclic projective over its endomorphism ring E(X) and
E is any ring Morita equivalent to E(X) via a cyclic progenerator P of E(X),
then EAP®y, X)=E and P® X is finitely generated projective over E.
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Proof. We have seen that X =G" is cyclic over E(X) if G admits n
generators over E=FE(G) and that E(X)=FE,. Moreover, G and X
correspond under the standard Morita equivalence of E with E, described
above and since Morita equivalence preserves projectivity, X is E(X)=E,
projective if and only if G is E-projective.

Conversely suppose X is cyclic projective over its endomorphism ring
E(X) and let P be a cyclic progenerator, so P =¢E(X) for some idempotent
¢ of E(X) with E(X) ¢E(X)= E(X). The ring equivalent to E(X) under the
equivalence induced by P is Hom (P, P)=¢E(X) e. We denote this by E
here. We must show that if G is the abelian group P®g, X, then G is
finitely generated over its endomorphism ring £{(G), and G is projective
over E(G). Since Morita equivalence preserves both projectivity and the
property of being finitely generated, it suffices to show that E(G)= E.

By the lemma above (cf. the remarks in its proof) we may identify
G=¢X, so G is a summand of X, say X=G®H. Let a be any
Z-endomorphism of G. We may extend x to an endomorphism of X,
denoted by &, such that aH=0. Then ¢ E(X) so

d=cede+ed(l —e)+ (1l —eyae+ (1 —¢)a(l —e).

Now (l—¢)X=H so ed(l—¢)=(1—¢&)a(1 —¢)=0. Similarly, since
eX=G and ¥G=G we have (Il —¢)ac=0. Thus d=caee E as desired.
Conversely any element of E yields, by restriction, an endomorphism of
G=¢X. Since X=¢X® (1 —¢) X and E(1 —¢)=0, restriction of E to act in
G is a monomorphism. Thus we may identify £ with E(G). This proves the
theorem.

COROLLARY. If G is finitely generated and projective over its endomor-
phism ring E then the center, z(E), is an E-ring and Hom(z(E)/Z -1, G)=0.

Proof. Morita equivalent rings have isomorphic centers, so the first
statement follows from Theorem 3 and Corollary to Theorem I. The
second statement is clear.

5. EXAMPLES AND REMARKS

One of the early homological results on abelian groups as modules over
their endomorphism rings is the characterization by Richman and Walker
[5] of the E-projective p-groups as precisely the bounded p-groups. It is
interesting to see how this fits into our discussion. If G is a p-group with
p"G =0 for some n, which we choose to be minimal, then G has a cyclic
summand K with generator e of order p”. It is clear that K generates G over
E so e does too and it is well known that z(E) here is Z/(p"). This is an
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E-ring isomorphic to K and we have the situation of Theorem 1. (It is not
hard to see that conversely a p-group that is E-projective must be bounded
(51)

As a second example, let K be the ring of p-adic integers. Then X is an
E-ring and K/Z is a divisible abelian group. Hence any abelian group G of
the form K@® M with M a reduced p-adic module is, by Theorem 2, cyclic
projective over its endomorphism ring. On the other hand, K& Q® K is
cyclic but not projective.

It is interesting to observe, and perhaps surprising at first, that the
abelian groups that are cyclic projective over their endomorphism rings
form a class of groups structurally as complicated as those in the class of
all abelian groups. That is, for any abelian group 4 whatever, Z@® 4 is
cyclic projective over its endomorphism ring and, since Z is cancellable,
two such groups Z® A and Z® B are isomorphic if and only if 4 and B
are isomorphic. In special cases, of course, for example the case of p-groups
above, one can say significant things. For the case of torsion free groups of
finite rank, see [1].

Our results have reduced the study of abelian groups finitely generated
and projective over their endomorphism rings ro essentially two questions.
The first is to find all the E-rings. This appears to be difficult—cf. [2, 6].
The second question is to determine, for a given E-ring R, all modules M
over R satisfying (cf. Theorem 2) Hom(R/Z, M)=0. Such modules are
called R-groups in [2]. This second question is closely related to the
problem of determining the structure, or structural properties of, the
abelian group R/Z (more precisely the quotient of R* by the subgroup of
R generated by the identity of R). We content ourselves here with the
following remarks, which at least help in visualizing examples in the
general case.

DerinTION.  Let K be a commutative ring. Denote by € the class of
K-modules M satisfying

Hom (K, M)=Hom (K, M).

It is easily seen that M e ¥ if and only if Hom(KX/Z, M)=0, and it is
clear that K is an E-ring if and only if Ke¥. Thus if K is an E-ring then
% consists of all K-modules such that K@ M is cyclic projective over
its ring of Z-endomorphisms. These of course are the same as the
K-endomorphisms. If K is an E-ring then ¢ consists of the K-groups, in the
terminology of Bowshell and Schultz [27]. The following is an extension of
a result in [2].
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PROPOSITION 6. Let K be any commutative ring, let Ne€ and let M be
any K-module. Then

Hom (M, N)=Hom (M, N).

Proof. Choose ¢ € Hom_ (M, N). Then for any ae Hom (K, M), we
have pa e Hom (K, N)=Hom (K, N). Thus for &, xe K,

pka(x) = pa(kx) = k(px)(x).

If ye M is arbitrary then there exists a e Hom (X, M) such that a(/) = y.
Hence for ke K,

plky) = gka(l) =koau(1)=ke(y)

as above. Therefore ¢ is a K-map as required.

COROLLARY. € is closed under products.

Proof. If N,e¥, iel then
Hom,, (K, IT N,) =[] Hom (K, N,)
=[] Hom (K, N,)
=Hom, (K, I N,-).
COROLLARY. If Ne® and M is any K-module then Hom(M, N)e¥. In

particular M* =Hom (M, K)e € if K is an E-ring.

Proof. Hom(M, N) is a K-submodule of the product N™. It is clear
that ¢ is closed under taking submodules.

CoROLLARY. If K is an E-ring, M is any K-module and N=
Noecare ker @, then M/[Ne €.

Proof. MJ/N is isomorphic to a submodule of a product of ideals
(submodules) of K.

Finally, since € is closed under taking submodules, we have

PROPOSITION 7. Let Ne¥ and let xe N. Let ann(x) be the annihilator
ideal of x;

ann(x)= {ae K|ax=0}.

Then K/ann(x)e¥.
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It is clear, however, that € is not in general closed under homomorphic
images.
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