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Abstract Transgenic (Tg) mice carrying four extra octapeptide
repeats (OR) in the bovine PrP gene (10OR instead of 6) have
been generated. In these mice, neuropathological changes were
observed depending upon the level of transgene expression. These
changes primarily involved a slowly advancing neurological dis-
order, characterized clinically by ataxia, and neuropathologi-
cally, by vacuolization in different brain areas, gliosis, and loss
of cerebellar granule cells. Accumulation of insoluble bovine
10OR-PrP (bo10OR-PrP) was observed depending on the level
of expression but no infectivity was found associated with this
insoluble form. We also compared the behavior of bo6OR-PrP
and bo10OR-PrP Tg mouse lines in response to BSE infection.
BSE-inoculated bo10ORTg mice showed an altered course of
BSE infection, reflected by reduced incubation times when com-
pared to bo6ORTg mice expressing similar levels of the wild type
6OR-PrP. In BSE-inoculated mice, it was possible to detect
PrPres in 100% of the animals. While insoluble bo10OR-PrP
from non-inoculated bo10ORTg mice was non-infectious, brain
homogenates from BSE-inoculated bo10ORTg mice were highly
infectious in all the Tg mouse lines tested. This Tg mouse model
constitutes a new way of understanding the pathobiology of
bovine transmissible spongiform encephalopathy. Its potential
applications include the assessment of new therapies against
prion diseases.
� 2005 Published by Elsevier B.V. on behalf of the Federation of
European Biochemical Societies.
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1. Introduction

Transmissible spongiform encephalopathies (TSEs), also

termed prion diseases, comprise a group of neurodegenerative

disorders in which spongiosis, astrocytosis, microglial activa-

tion and neuronal loss are common pathological events of

the central nervous system (CNS). Prion diseases of infectious

aetiology have been described in animals, i.e., BSE and Scrapie
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[1–3] as well as in humans, i.e., kuru and vCJD [4,5]. Sponta-

neous and familial TSE aetiology have been only described in

humans including Creutzfeldt–Jakob disease (CJD) [6], Gerts-

mann–Sträussler–Scheinker syndrome [7,8] and fatal familial

insomnia [9–13]. It is generally accepted that misfolding of

the cellular prion protein (PrPC) leads to the accumulation in

the brain of an insoluble, toxic PrP isoform (PrPSc). PrP is

the product of the Prnp gene constitutively expressed in the

brain as a cell-surface, GPI anchored, glycoprotein containing

a region of octapeptide repeats (OR) close to the N-terminus.

Point mutations and extra octapeptide insertions in the PrP

protein have been found in familial TSEs. Several lines of

transgenic (Tg) mice have been developed to model the patho-

physiology of these mutation-associated TSE disorders [14,15].

In these mice spontaneous neurological illness develops, resem-

bling common features of prion disorders. In addition, the

severity of the spontaneous prion disease is influenced by the

number of extra OR inserted [16].

A pathogenic insertion has never been described in cattle. Tg

mice expressing bovine PrP with one extra OR insertion (7OR-

PrP) show reduced incubation and survival times after BSE

prion inoculation compared to boTg mice with the wild type

(wt) 6OR-PrP [17], yet no neuropathological disorders have

been related to natural cases of cows with 7OR-PrP or ob-

served in Tg mice [18,19].

In this study, we show the generation of a Tg mouse carrying

a transgene encoding bovine PrP with four extra OR insertion

(10OR-PrP) as a model of ‘‘genetic’’ bovine encephalopathy. A

slowly progressive neurological disorder characterized by atax-

ia and neuropathological changes was observed when the level

of 10OR-PrP expression was high. A new insoluble and weakly

proteinase-K resistant bovine 10OR-PrP form was found but

no infectivity could be associated to it. Tg mice expressing

low levels of 10OR-PrP, did not show any neurological sign

but showed reduced incubation and survival times after BSE

prion inoculation compared to Tg mice expressing the wt

bovine 6OR-PrP. These results confirm that human PrP-asso-

ciated insertional mutations confer identical neuropathological

phenotypes within the context of a bovine PrP. In addition,

these findings suggest a role for the OR gene region in

toxicitypathology and in efficiency of prion conversion and

propagation.
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2. Materials and methods

2.1. Plasmid constructs
The open reading (ORF) of the bovine PrP gene was isolated by

PCR amplification from bovine DNA using primers that create a XhoI
restriction enzyme site adjacent to the translation start codon (5 0-
CCGCTCGAGGCCATCATGGTGAAAAGCCATATAG-3 0) and
to the stop site (5 0-CGGCTCGAGCTATCCTACTATGAG-3 0). The
5 0 primer also included Kozak sequences [20]. The PCR fragment
was subcloned into a T-tailed vector and the insert was sequenced, con-
firming six copies of the OR sequence and no changes in the inferred
amino acid sequence with respect to previously sequenced bovine
PrP genes (GenBank Accession No. AF455119). The four extra octare-
peats were introduced into the six octarepeat bovine PrP gene as
follows: 5 0-CATGGAGGTGGCTGGGGCCAGCCC-3 0 and 5 0-CAT-
GGGGCTGGCCCCAGCCACCTC-3 0 primers were used to obtain a
tandem of 4 artificial octarepeats containing ends compatible with the
NcoI restriction enzyme site. The PrP ORF was partially cut with NcoI
to avoid eliminating the constitutive OR, and the tandem of 4 artificial
octarepeats containing extremes compatible with NcoI was inserted
(supplemental figure 1). The six (6OR) and ten (10OR) octarepeat
PrP ORFs were excised from the T-tailed vector with the restriction en-
zyme XhoI and inserted into MoPrP Æ Xho [21], also digested with
XhoI. This vector contains the murine PrP promoter and exon 1, intron
1, exon 2 and 3 0 untranslated sequences.

2.2. Generation of Tg mice
MoPrP Æ Xho bovine transgene (6OR and 10OR) containing frag-

ments were excised from the plasmid vector with the restriction endonu-
clease NotI to give rise to a 12.1 kb DNA fragment that was
subsequently purified using sodium chloride gradients as previously
described [39]. Finally, the DNA for microinjection was resuspended
in TE (10 mM Tris, pH 7.4, 0.1 mM EDTA) at a final concentration
of 2–6 lg/ml and used to microinject 350 or 257 pronuclear stage ova
for the 6OR or 10OR constructs, respectively. One-cell embryos were
obtained from superovulated B6CBAf1 females mated to 129/Ola males
carrying a null mutation in endogenous PrP [22] and were microin-
jected. Homozygous Tg lines were established in two steps. Founders
were backcrossed to homozygous null animals muPrP�/� (Prnp�/�)
to obtain homozygosity for the null mutation. Interbreeding within
the same Tg line was performed to obtain homozygosity for the bovine
PrP constructs. Hybrids B6CBA · 129/Ola mice and Prnp�/� mice were
used as controls in all the infectivity studies.

2.3. Screening of founders
DNA was prepared from tail biopsies as previously described [23].

The MoPrP Æ Xho bovine transgenes were identified by a PCR assay
using specific primers for the mouse PrP exon 2 and the bovine PrP
open reading frame. The primers used were 5 0-CCAGCCTCCAC-
CACCATGTGGC-3 0 and 5 0-CATTCTGCCTTCCTAGTGGTACC-
3 0. The presence of PCR amplified products of 315 and 411 nucleotides
was indicative of MoPrP Æ Xho 6OR and 10OR bovine transgenes,
respectively. The absence of murine PrP ORFs in Tg mice was con-
firmed by PCR using the primers 5 0-ATGGCGAACCTTGGC-
TACTGGC-3 0 and 5 0-GATTATGGGTACCCCCTCCTTGG-3 0.

2.4. Source of BSE inoculum – Preparation of brain homogenates
A pool of BSE material (TSE/08/59) obtained from the brainstem of

49 BSE infected cattle and supplied by the Veterinary Laboratory
Agency (VLA) (New Haw, Addlestone, Surrey, UK) was used for most
of the experimental inoculations and was denoted BSE1. A different
BSE inoculum (RQ 225:PG1199/00), BSE2, obtained from one BSE
infected brainstem supplied by the VLA was used for comparative
infection studies along with BSE1. The BSE2 inoculum contains 8- to
16-fold more PrPres than BSE1, as detected by immunoblot analysis
[18]. Pools of brain homogenates from a non-inoculated bo10ORTg
mouse line sacrificed 150 days after birth containing high amounts of
insoluble 10OR-PrP were used in infectivity experiments and denoted
bo10ORTg006. Finally, pools from a first passage of BSE1 inoculum in
the mouse line bo10ORTg012 were used for some experiments and
referred to as bo10ORTgBSE1. The BSE2 inoculum also contains a
greater amount of PrPres than the bo10ORTgBSE1 inoculum, as
detected by immunoblot analysis (supplemental figure 2). In all the
experiments, phosphate buffered saline (PBS) was used as a negative
inoculation control and brain homogenates (10% wt/vol) were pre-
pared in sterile PBS lacking Ca2+ or Mg2+ by mechanical homogeniza-
tion (OMNI International, Warrenton, VA, USA). To minimize the
risk of bacterial infection, all inocula were preheated for 10 min at
70 �C before being used to inoculate mice.

2.5. Infection experiments
Groups of 4–13 mice (six to seven weeks old, weighing approxi-

mately 20 g) were inoculated in the right parietal lobe using a 25 gauge
disposable hypodermic syringe. 20 ll of 10% brain homogenate were
delivered to each animal. To evaluate the clinical signs appearing after
inoculation, mice were observed daily and their neurological status was
assessed twice-weekly. The presence of two or three signs of neurolog-
ical dysfunction (using 10 different diagnostic criteria) [24,25] was nec-
essary to score a mouse positive for prion disease. When progression of
the disease was evident, animals were culled for ethical reasons and
their brains harvested for analysis. These specimens were used to deter-
mine PrPres deposits in brain preparations by either Western blot or
immunohistochemistry (IHC) a for histopathology and IHC studies.

2.6. Histopathology and IHC
Brains were fixed by immersion in 10% buffered formalin for 1 week

and then cut into four and placed in 98% formic acid for 1 h before
routine processing and paraffin wax embedding. 5 lm-thick sections
were cut and stained with hematoxylin and eosin (HE) or Nissl�s stain
for routine histopathological examination and for immunohistochem-
ical techniques. Sections were examined from: (a) the medulla oblon-
gata at the level of the obex and the pontine area; (b) the
cerebellum; (c) the diencephalon including thalamus; (d) the hippo-
campus and (e) the cerebral cortex. We assessed spongiform changes,
astrocytosis, eventual neuronal changes and PrP deposits at any level.
All histological changes were graded semi quantitatively on a 0–3 scale
basis.
The avidin–biotin–peroxidase complex technique was used for the

immunohistochemical study of PrPres and glial fibrillary acid protein
(GFAP). After dewaxing and dehydration, endogenous peroxidase
was quenched by incubation with 3% hydrogen peroxide in methanol
for 30 min at room temperature. Samples for PrPres labeling were rehy-
drated, pretreated with 98% formic acid for 15 min at room tempera-
ture, 4 M guanidine isothiocyanate for 2 h at 4 �C, and proteinase K
(Roche, Germany) treated (4 lg/ml in Tris–HCl, pH 7.8) for 15 min
at 37 �C. Tissue sections were rinsed in phosphate buffered saline
(PBS, pH 7.4, 0.01 M) and blocked with 10% normal goat serum (Sig-
ma Chemical Co.) for 30 min at room temperature. Samples were incu-
bated overnight at 4 �C with primary 6H4 monoclonal antibody (mAb)
(Prionics, Switzerland) or 2A11 mAb [26] diluted 1:400 in PBS. A sec-
ondary biotinylated goat anti-mouse Ig G (Dako, Glostrup, Denmark)
antibody diluted 1:20 in PBS and an avidin–peroxidase complex (Vec-
tor, Burlingame, UK) were used. Sections were developed using a 3,3 0-
diaminobenzidine tetrahydrochloride substrate (Sigma). The slides
were then counterstained with Mayer�s hematoxylin for 1 min, dehy-
drated and routinely assembled.
Samples for GFAP labeling were rehydrated without pretreatment

and blocked as described above. Sections were incubated overnight
at 4 �C with the primary anti-bovine GFAP polyclonal antibody
(Dako) diluted 1:500 in PBS. Goat anti-rabbit Ig G (Vector) diluted
1:200 in PBS was used as the secondary antibody and the rest of the
technique was continued as described above. As negative controls, spe-
cific primary antibodies were replaced with PBS, and non-immune
mouse serum or non-immune rabbit serum were used in tissue sections.

2.7. Insolubility and PK resistance studies of PrPC and PrPres from non-

inoculated or BSE-inoculated bo6ORTg and bo10ORTg mouse lines
For the insolubility studies, brain homogenates from non-inoculated

bo6ORTg and bo10ORTg mouse lines were homogenized in 10%
Sarkosyl in PBS, pH 7.4 and the complete� cocktail of protease inhib-
itors (Roche). 100 ll of the samples were pre-cleared by centrifugation
at 2000 · g. Soluble (S) and insoluble (P) fractions were obtained by
ultracentrifugation at 100000 · g for 1 h. Insoluble fractions were
washed exhaustively in 5% Sarkosyl in PBS, pH 7.4 and subjected to
a further ultracentrifugation step. For PK resistance studies, non-inoc-
ulated and BSE-inoculated brain homogenates from bo6ORTg110 [27]
or bo10ORTg012 mouse lines and from cattle were digested with 0,
7.5, 15, 30, 60, 125, 250, 500 and 1000 lg/ml of PK for 60 min at
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37 �C. An equal volume of 2· SDS sample loading buffer was then
added to all the samples and each was boiled for 5 min before loading
onto a SDS/12% polyacrylamide gel. The Mab 2A11 was used at a 1/
1000 dilution for immunoblotting. Immunocomplexes were detected
using a horseradish peroxidase conjugated anti mouse IgG (Sigma
Chemical Co.) antibody. Immunoblots were developed according to
enhanced chemiluminescence protocols.
2.8. Western blots
The analysis of PrPC expression in Tg mice was performed as fol-

lows. Brains from mice were homogenized in extraction buffer (0.5%
NP40, 1% sodium deoxycholate, 10 mM EDTA in PBS, pH 7.4) and
the complete� cocktail of protease inhibitors (Roche) or in 10% Sarko-
syl in PBS and the complete� cocktail of protease inhibitors (Roche).
Samples were pre-cleared by centrifugation at 2000 · g for 5 min and
either treated with 20 lg/ml of proteinase K (Roche) for 60 min at
37 �C or left untreated. An equal volume of 2· SDS reducing sample
loading buffer was added to all samples and each one was boiled for
5 min before loading on a SDS/12% polyacrylamide gel. MAbs 6H4
and 2A11 were used at 1/5000 and 1/1500 dilutions, respectively, for
immunoblotting. Immunocomplexes were detected with horseradish
peroxidase conjugated anti mouse IgG. Immunoblots were developed
by enhanced chemiluminescence.
2.9. Statistical analysis
The statistics SPSS 10.0 package was used to generate all the Kap-

lan–Meier curves and statistical data. Data were analyzed using the
Student�s t test for non-paired variants. Incubation times were ana-
lyzed after testing for normality (Kolmogorov–Smirnow test) and for
equal variance (Levene Median test) by one way ANOVA followed
by multiple pair wise comparison using Fisher�s LSD test. The level
of significance was set at P < 0.05.
Fig. 1. Expression of bovine 10OR-PrP proteins in heterozygous (mo+/�

bo10ORTg mouse lines 006, 010, 012 and 029 using the monoclonal antibody
(A). Serial dilutions of heterozygous (mo+/� bo+/�) bo10ORTg (006, 012 an
Western blotting using monoclonal antibody 2A11 (B). Bo, cow brain ext
kilodaltons.
3. Results

3.1. Bo10ORPrPC expression in Tg mice

We obtained four different lines (founders) carrying bovine

(bo) 10OR-PrPC (bo10ORPrPC). All these lines also bore wt

murine (mo) PrPC with 5 octarepeats (mo5ORPrPC). The

expression of PrPC in these lines carrying both murine 5OR-

PrPC and bovine 10OR-PrPC transgenes (PrP mo+/� bo+/�)

was evaluated by subjecting brain homogenates to Western

blot analysis using the 2A11 mAb (Fig. 1A), which recognizes

both boPrPC and moPrPC (9). It was possible to distinguish

between wt murine (5OR) and bovine (10OR) PrP according

to their relative electrophoretic mobility. As shown in

Fig. 1A, the increased number of OR corresponds to an in-

creased relative molecular mass.

Bo10ORTg010 mice died in their fourth week of life and

failed to breed. The remaining Tg mouse lines (PrP mo+/�

bo+/�), bo10ORTg006, bo10ORTg012 and bo10ORTg029

were bred to homozygosity in a murine PrP null background

(PrP mo�/�). This was achieved by crossing the selected lines

with PrP null mice to obtain heterozygous transgene lines

(PrP mo�/� bo+/�). Then, by crossing heterozygous animals,

we obtained the transgene genotype (PrP mo�/� bo+/+). The

absence of the murine PrP gene in these animals was confirmed

by PCR using specific primers (data not shown). Next, we

established transgene expression levels in each mouse line by

serial dilution of brain homogenates and compared these to

PrPC levels in bovine brain homogenates. PrPC expression
bo+/�) boTg mouse lines. Immunoblotting of brain extracts from
2A11. Equivalent amounts of total protein were loaded onto each lane
d 029 mouse lines) and bovine brain homogenates were analyzed by
ract; Mo, B6CBAx129/Ola brain extract. Relative molecular mass in
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levels for the three one-month-old heterozygous Tg lines

bo10ORTg006, bo10ORTg012 and bo10ORTg029 were found

to be 4·, 0.5· and 0.25·, respectively (Fig. 1B). Further, all the

homozygous transgene lines tested showed double the PrP

expression levels detected in their heterozygous counterparts

(data not shown).

The behavior and phenotype of the homozygous bo10ORTg-

012 and bo10ORTg029 mouse lines showing 10OR-PrP expres-

sion levels of 1·, 0.5·, respectively, were identical to those

of normal mice. Mean survival times of bo10ORTg012

and bo10ORTg029 were 685 ± 42 (mean days ± S.E.M.)

and >600, respectively. However, the bo10ORTg010 and

bo10ORTg006 lines, with PrP expression levels of around

4–8· showed extensive neurological damage. Bo10ORTg010

mice died within the first month of life presenting severe atax-

ia and bo10ORTg006 mice showed motor impairment with

ataxia mainly affecting the hind limbs and also had breeding

difficulties. This line was unable to yield homozygous individ-

uals for the bovine 10OR-PrP transgene. The lifespan of this

Tg mouse line was only 180 ± 10 (mean days ± S.E.M.) and

the onset of clinical signs occurred on day 118 ± 6.
Fig. 2. Histological changes in the cerebellum of bo10ORTg compared
to bo6ORTg mice. (A1) Low-power view of atrophy of the cerebellar
folia, showing white matter (WM) and cortex (Cx) (H/E, 4·). (A2)
Nissl staining reveals the intense loss of granular cells (G), with
preservation of Purkinje cells (P) (Nissl, 10·). (C1) Specific severe
degeneration of cerebellar granular cells is not associated with
conspicuous vacuolation (H/E, 10·). (C2) Immunostaining for GFAP
shows a band of astrocytosis defining the granular cell layer (GFAP,
10·). (B1) Low-power view demonstrating the normal size of the
cerebellar layers (H/E, 10·). (B2) Nissl staining shows a normal
granular layer and Purkinje cells (Nissl, 20·). (D1) H&E staining
reveals a normal granular layer and Purkinje cells and lack of
vacuolation (H/E, 20·). (D2) Immunostaining for GFAP shows
several astrocytes mostly in the cerebellar white matter (GFAP, 10·).
Bo10ORTg and bo6ORTg mice were sacrificed a 180 after birth.
3.2. Neuropathological alterations in bo10ORTg mouse lines

The bo10ORTg010 and bo10ORTg006 lines with PrP

expression levels of around 4–8· showing extensive neurolog-

ical damage were used to characterize the genetic/spontaneous

prion-related disease observed. Although for these two lines

the clinical signs were visually apparent and used for the diag-

nosis of the disease, the most important features were the his-

tological changes in the cerebellum, characterized by atrophy

of cerebellar folia with an intense loss of granular cells, but

with preservation of the Purkinje cells (Figs. 2A(1) and

A(2)). This specific severe degeneration of cerebellar granular

cells was not associated with conspicuous vacuolation

(Fig. 2C(1)). GFAP immunostaining detected a band of astro-

cytosis outlining the granular cell layer (Fig. 2C(2)). Other

morphological changes such as spongiosis associated with

the dentate gyrus were observed in the hippocampus but there

was no evidence of neuronal loss at this level. In this area, the

dentate gyrus, spongiosis was also related to several intraneu-

ronal vacuoles (Fig. 3).

The bo10ORTg006 mouse line showed a highly consistent

neuropathological phenotype, with intense loss of granular cell

layer neurons and relative preservation of Purkinje cells, but

no PrP deposits could be detected through IHC. Moreover,

Gallyas and tau immunostaining (data not shown) indicated

no neurofibrillary pathology.

In order to establish the kinetics of neuropathological alter-

ations, as well as the earliest time point at which they can be

detected, we used bo10ORTg006, bo10ORTg012 and

bo10ORTg029 mouse lines expressing 4-, 1- and 0.5-fold

PrPC levels, respectively. Animals were grouped according

to pre-established culling times (60, 90, 120, 150, 180, 240,

300 and 400 days after birth). Mice were sacrificed at the

indicated time points independently of the onset of neurolog-

ical signs. As shown in Table 1, neuropathological alterations

were assessed at different time points. Neurological diagnosis

was achieved using lesion profiles including alterations in the

cerebellum, brainstem, thalamus, striatum and hippocampus.

Animals carrying the PrP-10OR insert mutation from the

bo10ORTg006 mouse line mainly showed the lesion profile
scored as 3 (Table 1), and in most cases, pathological changes

were confined to the cerebellum and the hippocampus.

Although clinical signs and neurological alterations deter-

mined by IHC were well correlated, at early times such as

60–90 days after birth, individual animals from the

bo10ORTg006 mouse line showed the first histopathological

changes consistent with slight cerebellar and hippocampal

damage. At 120 days after birth, when clinical signs were evi-

dent, the cerebellar cortex showed a moderate to intense loss

of granule cells, with signs of karyorrhexis in several cases,

and preservation of Purkinje cells. GFAP staining demon-

strated a band of astrocytosis outlining the atrophic granular

layer. However, there were no spongiform changes observed

at this level. The hippocampal formation showed mild to se-

vere focal spongiosis involving the dentate gyrus, not associ-

ated with conspicuous neuronal loss or astrocytosis. No PrP

deposits in the brain tissue of any of the three groups of ani-

mals were observed using immunohistochemical stains.



Fig. 3. Morphological changes observed in the hippocampus of
bo10ORTg compared to bo6ORTg mice. (A1) Low-power image
shows focal spongiosis associated with the dentate gyrus (DG) (Nissl,
4·). (A2) Intermediate-power image shows spongiosis with no evidence
of neuronal loss at this level (Nissl, 10·). (C1) High-power view of a
similar area shows spongiosis along with several hypertrophic astro-
cytes (H/E, 20·). (C2) A similar area of the dentate gyrus shows
spongiosis and several intraneuronal vacuoles (V) (Nissl, 20·). (B1)
Normal structure of the dentate gyrus (Nissl, 10·). (B2) Nissl staining
shows no evidence of neuronal loss or vacuolation (Nissl, 20·). (D1)
H&E staining shows a normal dentate gyrus, absence of vacuolation
and no hypertrophic astrocytes (H/E, 20·). (D2) Immunostaining for
GFAP shows normal astrocytes in the dentate gyrus and other layers
of the hippocampus (GFAP, 10·). Bo10ORTg and bo6ORTg mice
were sacrificed a 180 after birth.
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Despite carrying the 10OR-PrP transgene, the bo10ORTg-

012 and bo10ORTg029 mouse lines, however, failed to show

any histopathological signs at least up to 400 days after birth

(Table 1). These observations indicate that the rate at which

the illness progresses is strongly related to the expression level

of bo10OR-PrPC.

3.3. Insolubility and proteinase-K sensitivity studies on

10OR-PrPC

Since 10OR-PrPC contents in the brain of Tg mice produced

neurological alterations even at levels where wt 6OR-PrPC

does not cause these signs [27], we then tried to establish

whether the insertion of four extra octarepeats would modify

the biochemical properties of the bo10OR-PrP protein, in rela-

tion to the wt bo6OR-PrP protein. To this end, brain homog-

enates from bo6ORTg and bo10ORTg (line 006) mouse lines

were solubilized in extraction buffer and ultracentrifuged at

100000 · g for 1 h as described in Section 2. Subsequent Wes-
tern blotting of the soluble and insoluble proteins indicated

differential biochemical behavior of the bo6OR-PrP and

bo10OR-PrP proteins (Fig. 4A). While the addition of one ex-

tra octarepeat did not alter the biochemical properties of PrP

[17], the presence of four extra octarepeats rendered a more

insoluble protein. This insolubility was detected early on (30

days after birth) in the lifespan of the mouse, indicating that

quantification of the 10OR-PrP could reflect a cumulative

effect (data not shown).

To evaluate the protease sensitivity of the mutant 10OR-

PrPC compared to wt 6OR-PrPC, brain homogenates were

treated with different concentrations of proteinase-K (PK)

(see Section 2). While all bovine 6OR-PrPC was completely di-

gested at PK concentrations higher than 7.5 lg/ml, bovine

10OR-PrPC was slightly more resistant to lower concentrations

of PK (Fig. 4B). However, the degree of resistance was much

lower than the one shown by the pathogenic isoform 10OR-

PrPSc obtained after BSE inoculation (Fig. 4B).

3.4. Brain homogenates from spontaneously ill bo10ORTg

mice do not contain detectable infectivity

To test the infectivity in the brain of bo10OR-PrP Tg mice,

brain homogenates were prepared from bo10ORTg006 mice

sacrificed after spontaneous development of clinical signs.

These homogenates were intracerebrally inoculated in five dif-

ferent Tg mouse lines: three lines expressing different levels of

wt 6OR-PrPC as well as bo10ORTg012 and bo10ORTg029

mouse lines. The PrP expressed by the bo10ORTg lines 012

and 029 should be a particularly efficient substrate for assess-

ing infectivity, because it has the same amino acid sequence

as the PrP present in the inocula. The inoculum used showed

a high amount of insoluble bo10OR-PrPC (supplemental figure

2). After inoculation, mice were weekly observed for the

appearance of neurological signs and at the end of their life-

span survival times were determined. The brains were removed

and checked for the presence of PrPres by Western blotting and

IHC. None of the inoculated animals showed any change in

survival times (Table 2) compared to PBS-inoculated control

mice (Table 3). PrPres was not detected neither by Western

blotting nor by IHC indicating the absence of PK resistant

PrP in the inoculated (n = 28) animals (data not shown). These

data demonstrate that bo10ORTg mice do not spontaneously

generate detectable levels of infectious prions in their brains

indicating that the spontaneous disease observed in these mice

is not transmissible at least in a first passage. Re-inoculation

studies using brain homogenates from these PrPres negative

animals are currently underway.

3.5. Intracerebral inoculation of bo10ORTg mice with BSE

prions cause BSE

We next investigate the susceptibility of the bo10ORTg mice

to infectious BSE prions. Two different inocula (BSE1 and

BSE2) were intracerebrally inoculated (see Section 2 and sup-

plemental figure 2) in the bo10ORTg012 and bo10ORTg029

mouse lines. The bo10ORTg006 mouse line could not be used

in infectivity studies due to its shorter lifespan (180 ± 10 days),

compared to more than 600 days for the rest of the bo10ORTg

mouse lines used (Table 3).

Recently, we reported that Tg mice expressing bovine PrP

bearing an additional octapeptide insertion with respect to

the wt (7OR instead of 6) showed an altered course of

BSE infection, reflected as reduced incubation times when



Table 1
Histopathological studies in non-inoculated bolOORTg mice

Tg line Days after
birth

Neurological
diagnosis ±(n/n0)

b
Lesion
profilec

Cerebellum Brainstem Thalamus Striatum Hippocampus Clinical
signs

bo10ORTg006+/� (4·)a 60 +(4/4) 3 1d 0d 0d 0d 1d �
90 +(5/5) 3 2 0 0 0 1 �
120 +(6/6) 3 2–3 0 0 0 1–2 +e

150 +(9/9) 3 2–3 0–1 0 0 2 +e

180 +(16/16) 3 2–3 1–2 0–2 0–2 2 +e

bo10ORTg012+/+ (1·)a 90 �(0/6) 0 0 0 0 0 0 �
120 �(0/4) 0 0 0 0 0 0 �
150 �(0/6) 0 0 0 0 0 0 �
180 �(0/6) 0 0 0 0 0 0 �
240 �(0/8) 0 0 0 0 0 0 �
300 +(3/10) 1 1 0–1 0 0 0 �

bo10ORTg029+/+ (0.5·)a 120 �(0/4) 0 0 0 0 0 0 �
180 �(0/6) 0 0 0 0 0 0 �
240 �(0/8) 0 0 0 0 0 0 �
300 �(0/6) 0 0 0 0 0 0 �
400 �(0/6) 0 0 0 0 0 0 �

+/+ or +/� Homozygotic or heterozygotic for the 10OR bovine prnp gene. All Tg animals are murine prnp�/�.
aRelative to cattle PrP expression.
bNumber of animals considered as positive for histopathological changes with respect to the total of animals.
cThe lesion profiles observed were categorized descriptively as follows: 0, no pathological changes; 1, spongiform change and astrocytosis in
cerebellum (both cortex and white matter), brainstem, striatum and thalamus; 2, changes limited to cerebellum and brainstem; 3, marked changes in
cerebellum, with intense loss of granule cells, and lesser changes in hippocampus.
dThe intensity of pathological changes was graded semi quantitatively as: 0, absent; 1, mild; 2, moderate; 3, severe.
eNeurological signs characterized by motor impairment.

Fig. 4. Insolubility and PK resistance studies of PrPC and PrPres from non-inoculated or BSE-inoculated bo10ORTg and bo6ORTg mouse lines. (A)
Western blot analysis of the soluble (S) and insoluble (P) fractions obtained from non-inoculated bo6ORTg and bo10ORTg brain extracts (10%
Sarkosyl in PBS, pH 7.4 previously pre-cleared by centrifugation at 2000 · g) after ultracentrifugation at 100000 g for 1 h. Insoluble fractions were
washed exhaustively with 5% Sarkosyl in PBS, pH 7.4 and subjected to a further ultracentrifugation step. (B) Western blotting of non-inoculated or
BSE2-inoculated brain homogenates from bo6ORTg110 or bo10ORTg012 mouse lines and cattle were digested with 0, 7.5, 15, 30, 60, 125, 250, 500
and 1000 lg/ml of PK for 60 min at 37 �C. An equal volume of 2· SDS sample loading buffer was added to all samples and each was boiled for 5 min
before loading onto a SDS/12% polyacrylamide gel. Mab 2A11 was used at a 1/1000 dilution for immunoblotting. Relative molecular mass in
kilodaltons.
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compared with mice expressing similar levels of the wt six-

octapeptide protein [17]. To explore if the number of OR influ-

ences the propagation of BSE prions, we also inoculated the
same inocula in mice previously described [27] expressing sim-

ilar or higher levels of the wt six octapeptide protein. When

disease progression was evident the animals were sacrificed



Table 3
Susceptibility of bovine 6OR and 10OR Tg mice to BSE prions

Recipient Inoculum Transgene expressiona Death (days ± S.E.M.) n/n0
b

Non-Tg (B6xCBAx129Ola) BSE1 1· (endogenous mouse PrP) 656 ± 30 5/12
Non-Tg (prnp�/�) BSE1 0· 688 ± 35 0/6
bo6ORTg110+/+d BSE1 8x 326 ± 18 13/13
bo6ORTg110+/�d BSE1 4· 359 ± 15 11/11
bo6ORTg113+/+d BSE1 3· 410 ± 7 10/10
bo6ORTg078+/+d BSE1 2· 436 ± 14 10/10
bo6ORTg022+/+d BSE1 0.5· 513 ± 29 9/9
bo10ORTg012+/+ BSE1 1· 276 ± 14 10/10
bo10ORTg029+/+ BSE1 0.5· 320 ± 20 7/7

bo6ORTg110+/+d BSE2 8· 308 ± 5 5/5
bo6ORTg113+/+d BSE2 3· 377 ± 12 7/7
bo10ORTg012+/+ BSE2 1· 261 ± 8 10/10
bo10ORTg029+/+ BSE2 0.5· 260 ± 22 13/13

bo6ORTg110+/+d bol0ORTgBSE1 8· 342 ± 15 11/11
bo10ORTg012+/+ bol0ORTgBSE1 1· 327 ± 15 6/6
bo10ORTg029+/+ bol0ORTgBSE1 0.5· 378 ± 33 5/5

bo6ORTg110+/+d PBS-inoculated 8· >600 0/4
bo6ORTg113+/+d PBS-inoculated 3· 581 ± 39 0/4
bo6ORTg078+/+d PBS-inoculated 2· >500 0/6
bo6ORTg022+/+d PBS-inoculated 0.5· 707 ± 18 0/6
bo10ORTg006+/� PBS-inoculated 4· 180 ± 10c 0/13
bo10ORTg012+/+ PBS-inoculated 1· 685 ± 42 0/9
bo10ORTg029+/+ PBS-inoculated 0.5· >600 0/13

+/+ or +/� Homozygous or heterozygous for the bovine 6OR or 10OR prnp gene. All Tg animals are murine prnp�/�.
aRelative to cattle PrP expression.
bNumber of animals with PrPres with respect to the number of inoculated animals.
cAnimals were sacrificed for ethical reason.
dThese bovine PrP Tg mouse lines have been described previously [17,18,27].

Table 2
Infectivity studies of bovine 10OR Tg mice brain homogenates

Recipient Inoculum Transgene expressiona Death (days ± S.E.M.) n/n0
b

bo6ORTg110+/+c Non-inoculated bo10ORTg006 8· >600 0/6
bo6ORTg135+/+c Non-inoculated bo10ORTg006 6· >600 0/5
bo6ORTg113+/+c Non-inoculated bo10ORTg006 3· 617 ± 78 0/3
bo10ORTg012+/+ Non-inoculated bo10ORTg006 1· 633 ± 33 0/7
bo10ORTg029+/+ Non-inoculated bo10ORTg006 0.5· 632 ± 23 0/7

+/+ or +/� Homozygous or heterozygous for the 6OR or 10OR bovine prnp gene. All Tg animals are murine prnp�/�.
aRelative to cattle PrP expression.
bNumber of animals with PrPres with respect to the number of inoculated animals.
cThese bovine PrP Tg mouse lines have been described previously [17,18,27].
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and their brains used for Western blotting (Fig. 5A) or IHC

studies (Fig. 5B).

In these experiments, the bo10ORTg mice consistently

showed reduced survival times compared to the bo6ORTg

expressing similar or higher levels of the wt PrPC (Table 1). This

reduction in survival times was observed in all the lines express-

ing different amounts of bo10ORPrPC and for both the inocula

used. For instance, the bo6ORTg022 mouse line (0.5·) inocu-
lated with BSE1 showed a survival time of 513 ± 29 days, while

this time was 320 ± 20 days for the bo10ORTg029 mouse line,

which expresses identical levels of the 10OR bovine prion pro-

tein (Table 3). Similarly, the bo6ORTg113 (3·) and

bo10ORTg012 (1·) mouse lines inoculated with BSE2 showed

incubation times of 377 ± 12 and 261 ± 8 days, respectively,

although the bo6ORTg113 mouse line expresses 3 times more

bo6OR-PrP than the bo10ORTg012 mouse line (Table 3).
3.6. Characterizing the new bo10OR-PrPSc

After intracerebral BSE1 inoculation in bo10ORTg012 and

bo10ORTg029 mouse lines, a new 10OR-PrPSc was obtained.

We named this new prion bo10ORTgBSE1 and then tried to

determine if the four extra octarepeat insert mutation modifies

the biochemical properties and the infectious character of the

new bo10OR-PrPSc protein compared to the wt bo6OR-PrPSc

by assessing insolubility and PK sensitivity as described in Sec-

tion 2. In these studies, the mutant bo10OR-PrP from brains

of spontaneously ill (non-inoculated) bo10ORTg mice was also

assayed. The two PrPSc (bo6OR-PrPSc and bo10OR-PrPSc)

and the bo10OR-PrPC showed similar degree of insolubility

(data not shown). However, while PrPSc from both BSE1 inoc-

ulated bo6ORTg and bo10ORTg mouse lines showed identical

PK resistance, bo10OR-PrPC from non-inoculated bo10ORTg

mouse lines showed reduced PK resistance (Fig. 4B).



Fig. 5. Detection of the PrPres protein in bo6ORTg and bo10ORTg mice after BSE inoculation. (A) Western blot of bo6ORTg brain extracts from
mice intracerebrally inoculated with different inocula. (B,C) PrPres immunodetection using mAb 2A11 in the deep layers of the cerebellum (1, 2 and
3), hippocampus (4, 5 and 6) and thalamus (7, 8 and 9) of bo6ORTg (B) or bo10ORTg (C) mice inoculated with BSE2 and bo10ORTgBSE1 inocula
(�250 days postinoculation). Monoclonal antibody 2A11 was used at a 1:1500 dilution. Relative molecular mass in kilodaltons.
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In a further set of experiments, we analyzed the new gener-

ated PrPres by Western blotted detergent extracts of infected

Tg mice brain homogenates after standard proteinase-K treat-

ment. The band patterns for the different BSE inocula were

identical for the two different passages, regardless of the trans-

gene (data not shown).

In addition, the bo10ORTgBSE1 (bo10OR-PrPSc) inoculum

containing similar amounts of PK resistant protein to the

BSE2 inoculum (supplemental figure 2) was intracerebrally

inoculated in bo10ORTg mouse lines bo10ORTg012 and

bo10ORTg029 and in mice expressing the wt six octapeptide

protein (bo6ORTg110), to compare the course of BSE infec-

tion. In all cases, the new bo10OR-PrPSc was able to infect

100% of the Tg mice independently of the type of bovine

PrP expressed (Table 3), and developed identical signs of

CNS dysfunction after BSE inoculation. Moreover, western

blotting (Fig. 5A) and IHC studies (Fig. 5B) revealed the iden-

tical behavior of the new bo10OR prion used as inoculum.

However, the onset of signs was slightly delayed when these

studies were compared to the standard BSE2 inoculum in the

three different lines. Bo10ORTg mice consistently showed re-

duced survival times (Table 3) compared to the bo6ORTg

mouse line. For instance, the bo6ORTg110 mouse line inocu-

lated with BSE2 showed a survival time of 308 ± 5 days, while

this time was 342 ± 15 days when the animals were inoculated

with bo10ORTgBSE1, indicative of a slower propagation. Sim-

ilarly, the bo10ORTg012 and bo10ORTg029 mouse lines inoc-

ulated with BSE2 showed incubation times of 261 ± 8 and

260 ± 22 days, respectively, while these figures were 327 ± 15

and 378 ± 33 days when bo10ORTgPrPSc was used (Table 3).

In line with the biochemical data, histopathological and

immunohistological studies revealed PrPres deposition in brain
sections of mice injected with each of the three types of BSE

inoculum. The histological pattern observed for the BSE inoc-

ulum or first passage BSE in bo6ORTg and bo10ORTg mice

(Fig. 5B) was indistinguishable from that of classic BSE in cat-

tle; mainly vacuolization of the neuropil mostly in the brain

stem, hippocampus and cerebellar white matter (Fig. 5B and

C). However, we observed several patterns indicating immu-

nopositivity and correlating Western blot patterns for PrPres.

The most common were fine granular and punctate neuropil

labeling, and stellate labeling foci, which apparently associated

with glial cells. However, we also observed granular staining in

neuronal cytoplasm and around neurons, occasionally as pla-

que-like deposits. These labeling patterns were mostly ob-

served in the neuropil of the rostral brain stem, in cerebellar

nuclei and both in the deep layers of cerebral cortex and in

the hippocampus. This pattern was identical for the bo6ORTg

and bo10ORTg lines, irrespective of the inoculum used

(Fig. 5B and C). Severe vacuolization and PrPres deposition

were accompanied by astrocytic gliosis, as observed by the

immunohistochemical detection of GFAP in different struc-

tures of the encephalic area. Vacuoles were often enveloped

by astrocytic prolongations, and astrocytosis was also ob-

served as an enlarged astrocyte cytoplasm. No histopatholo-

gical changes in PrPres deposition (Fig. 5B1, 4 and 7 and

C1, 4 and 7) or in astrocyte reactions (data not shown) were ob-

served in the non-inoculated mice used as negative controls.
4. Discussion

Although an infectious origin is the most likely cause of

BSE, other explanations such as a spontaneous/genetic origin,
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cannot be ruled out. Spontaneous and inherited prion diseases

have been characterized, mainly in humans, associated with

the presence of an increased number of OR within the PrP

ORF [16,28,29]. Tg mice models over-expressing PrP contain-

ing extra octarepeats confirmed the pathogenicity of this muta-

tion [15,30].

Although bovine PrP with a four extra octarepeat inser-

tional mutation has not yet been naturally found in bovines

it is interesting to assess whether or not this mutation could

potentially manifest as a neurodegenerative syndrome in a bo-

vine PrP context. For this purpose we analyzed the phenotype

of a Tg mouse model expressing a ten octarepeat bovine PrP

gene.

Herein we show that the four extra repeat mutation in the

bovine PrP gene triggers a spontaneous neurodegenerative dis-

ease. Tg mice showed motor impairment with ataxia affecting

mainly the hind limbs but, although clinical signs were visually

manifest, the most important features were the histological

changes in the cerebellum, characterized by atrophy of cerebel-

lar folia with an intense loss of granular cells but preservation

of Purkinje cells. The results also showed that the rate at which

the illness progresses is strongly related to the expression level

of bo10OR-PrPC. These data correlate well with clinical obser-

vations in patients with a four extra repeat mutation in the PrP

gene who are initially affected by progressive cerebellar and

brain stem signs [31]. This neuropathology, with astrogliosis

and massive damage to cerebellar granule cells, is common

in other Tg mice models expressing PrP containing extra oct-

arepeats [15,30] or other point mutations [32]. Most of these

Tg mice models have confirmed that the presence of these

mutations triggers spontaneous disease.

We suggest that the addition of octarepeats generates differ-

ent protein conformations with a varying capacity for patho-

genic conversion and specific biochemical properties. Hence,

whereas 7OR-PrPC shows similar protease sensitivity and sol-

ubility in non-denaturing detergents to homologous 6OR-PrPC

[17], the addition of four extra octarepeats rendered a

bo10OR-PrPC showing both a reduced protease sensitivity

(Fig. 4B) and a reduced solubility (Fig. 4A) in the same condi-

tions. An increased number of OR has also been related to en-

hanced aggregation and PK resistance of the mutant PrP

protein in hamster [19].

The four extra OR insertion mutation in the PrP could give

rise to a different PrP structure with respect to wt PrP. This

conformation, denoted PrPtoxic by other authors [33], show

special biochemical properties, are difficult to degrade and

are prone to build up, triggering a spontaneous disease when

expression levels exceed the clearance threshold. The en-

hanced aggregation and/or protease-resistance properties of

the mutant PrP could in some way affect the appearance of

the disease associated with these mutations. It is clear that

a greater understanding of PrP structure and the effects of

adding octarepeats to its coding region is required. In effect,

it has been proposed that the special properties (toxicity,

insolubility and high aggregation capacity) of PrPs with more

than 7OR could be directly related to their increased number

of OR. The mechanisms through which extra copies of the

OR may influence the aggregation properties of PrP are un-

clear. However, it has been suggested that the repeat region

of the protein may itself act as a site promoting PrP self-

aggregation or aggregation between PrP and other cell fac-

tors [14,34].
On the other hand, Tg mice expressing bovine PrP with ten

octarepeat do not spontaneously generate detectable levels of

infectious prions in their brains (Table 1) indicating that the

spontaneous disease observed in these mice is not transmissi-

ble. While several mutant PrPres like molecules have been gen-

erated in Tg mice and some of these can acquire several

biochemical properties of PrPres, so far none have been shown

to be infectious [14,35] and the transmissibility of these new

pathogenic isoforms is questionable. These data reinforce the

idea that PrP can induce neurodegeneration without being

converted to conventional PrPSc.

Insertional mutation-derived spontaneous human TSEs

show different phenotypes and behavior related to the number

of additional OR within the PrP region. Thus, the number of

OR has been shown to affect the severity of symptoms and

the time of onset of clinical signs in humans [29]. Although

it is known that the region comprising the OR is not essential

for mediating the pathogenesis of prions, it does modulate the

incubation time leading to disease [36–38].

In the present study, we also evaluated the effects of the four

extra octarepeats insertion mutation in the bovine PrP on the

efficiency of BSE prion propagation. Results showed that BSE

transmission was highly efficient in bo10OR Tg mice, in agree-

ment with the lack of an effective species barrier. In addition,

bo10ORTg mice show an altered course of BSE infection,

resulting in highly reduced survival times when compared to

bo6ORTg mice expressing similar or higher levels of the wt bo-

vine PrP (Fig. 5 and Table 3). Consistent with the lack of a spe-

cies barrier to BSE infection all inoculated mice showed the

typical signs of CNS spongiform degeneration (data not

shown) and PrPres deposits in brain (Fig. 5). The histological

and Western blot patterns observed in both bo6ORTg and

bo10ORTg mice for the different BSE inocula used were indis-

tinguishable from those of classic BSE in cattle. These findings

correlate well with previous observations in Tg mice expressing

bo7OR-PrP [17], in which significant differences in the times of

onset of clinical signs and survival were also reduced after BSE

inoculation.

Despite the BSE agent being considered a slow prion when

propagated in bovine Tg mice requiring models that overex-

press the PrP protein, here we report a bovine PrP Tg mouse

line (bo10ORTg012) with half the normal expression level

(0.5·) and reduced incubation times to disease onset of around

250 days (Table 3). These data suggest that the 10OR-PrP

shows a new conformation that is more efficiently converted

into a pathogenic conformation than its 6OR-PrP homologue

(wt). Although, we can not rule out that the new generated

10OR-PrPSc could be more toxic than its homologue 6OR-

PrPSc at equivalent molarity. The existence of seeding mecha-

nisms could explain the fact that low levels of PrP expression

yield reduced incubation times after prion inoculation.

10OR-PrP, a molecule with an evident tendency to aggregate,

could be a good initiator of the conversion–propagation event

triggered by an exogenous prion.

Although the infectivity of the newly formed 10OR-PrPSc

was patent in both bo6ORTg and bo10ORTg inoculated

mice, the survival times of both Tg mice after 10OR-PrPSc

inoculation were slightly longer than the survival times after

6OR-PrPSc inoculation. This once again suggests that the

new pathogenic isoform with 10OR might have a different

conformation with respect to the wt isoform bearing 6OR.

These infectivity differences could be modulated by the initial
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PrP conformations, as shown by their different biochemical

properties. Our histopathological studies, on the other hand,

revealed the identical behavior of both bovine prions (6OR-

PrPSc and 10OR-PrPSc).

In summary, the addition of OR could give rise to a different

PrP structure with respect to wt PrP, capable of acquiring

properties according to the number of OR added. The presence

of four extra OR seems to generate a new 10OR-PrP structure

that can be transformed more efficiently than its 6OR-PrP

homologue and has a tendency for aggregation. This ability

could induce a seeding process, or the new conformation could

intrinsically be more susceptible to be transformed into an-

other pathogenic isoform. However, this new conformation

was in no case able to transmit the disease to other mice, even

to homologous 10OR-PrP Tg mice. Thus, if BSE had a genetic

origin, it is unlikely that the causal mutation would be related

to the number of OR.

Acknowledgments: This work was supported by two national grants
from Spain (SC00-055 and OT02-008). The authors thank J.C. Man-
son for supplying the Prnp�/� mice, D.R. Borchelt for providing
MoPrP Æ Xho plasmid and the Veterinary Laboratory Agency (Wey-
bridge, UK) for BSE brain material.
Appendix A. Supplementary data

Supplementary data associated with this article can be found,

in the online version, at doi:10.1016/j.febslet.2005.09.099.
References

[1] Adams, D.H. (1986) The nature of the scrapie agent. Med.
Hypoth. 20, 37–50.

[2] Prusiner, S.B. (1998) Prions. Proc. Natl. Acad. Sci. USA 95,
13363–13383.

[3] Alpers, M. and Rail, L. (1971) Kuru and Creutzfeldt–Jakob
disease: clinical and aetiological aspects. Proc. Aust. Assoc.
Neurol. 8, 7–15.

[4] Will, R.G. et al. (1996) A new variant of Creutzfeldt–Jakob
disease in the UK. Lancet 347, 921–925.

[5] Hill, A.F. et al. (1997) The same prion strain causes vCJD and
BSE. Nature 389, 448–450, 526.

[6] Beck, E. et al. (1969) Creutzfeldt–Jakob disease. The neuropa-
thology of a transmission experiment. Brain 92, 699–716.

[7] Bendheim, P.E. (1984) The human spongiform encephalopathies.
Neurol. Clin. 2, 281–298.

[8] Collinge, J. et al. (1989) Diagnosis of Gerstmann–Straussler
syndrome in familial dementia with prion protein gene analysis.
Lancet 2, 15–17.

[9] Goldfarb, L.G. et al. (1992) Fatal familial insomnia and familial
Creutzfeldt–Jakob disease: disease phenotype determined by a
DNA polymorphism. Science 258, 806–808.

[10] Manetto, V. et al. (1992) Fatal familial insomnia: clinical and
pathologic study of five new cases. Neurology 42, 312–319.

[11] Medori, R. et al. (1992) Fatal familial insomnia, a prion disease
with a mutation at codon 178 of the prion protein gene. N. Engl.
J. Med. 326, 444–449.

[12] Goldfarb, L.G. et al. (1994) Molecular genetic studies of
Creutzfeldt–Jakob disease. Mol. Neurobiol. 8, 89–97.

[13] Dormont, D. (1994) Human transmissible subacute spongiform
encephalopathy. Bull. Acad. Natl. Med. 178, 887–903.

[14] Chiesa, R. et al. (1998) Neurological illness in transgenic mice
expressing a prion protein with an insertional mutation. Neuron
21, 1339–1351.

[15] Chiesa, R. et al. (2000) Accumulation of protease-resistant prion
protein (PrP) and apoptosis of cerebellar granule cells in
transgenic mice expressing a PrP insertional mutation. Proc.
Natl. Acad. Sci. USA 97, 5574–5579.

[16] Campbell, T.A. et al. (1996) A prion disease with a novel 96-base
pair insertional mutation in the prion protein gene. Neurology 46,
761–766.

[17] Castilla, J. et al. (2004) Different behavior toward bovine
spongiform encephalopathy infection of bovine prion protein
transgenic mice with one extra repeat octapeptide insert mutation.
J. Neurosci. 24, 2156–2164.

[18] Castilla, J. et al. (2004) Subclinical bovine spongiform encepha-
lopathy infection in transgenic mice expressing porcine prion
protein. J. Neurosci. 24, 5063–5069.

[19] Priola, S.A. and Chesebro, B. (1998) Abnormal properties of
prion protein with insertional mutations in different cell types. J.
Biol. Chem. 273, 11980–11985.

[20] Kozak, M. (1989) Context effects and inefficient initiation at non-
AUG codons in eucaryotic cell-free translation systems. Mol.
Cell. Biol. 9, 5073–5080.

[21] Borchelt, D.R. et al. (1996) A vector for expressing foreign genes
in the brains and hearts of transgenic mice. Genet. Anal. 13, 159–
163.

[22] Manson, J.C. et al. (1994) 129/Ola mice carrying a null mutation
in PrP that abolishes mRNA production are developmentally
normal. Mol. Neurobiol. 8, 121–127.

[23] Hogan, B. and Williams, J. (1981) Integration of foreign genes
into the mammalian germ line: genetic engineering enters a new
era. Nature 294, 9–10.

[24] Scott, M. et al. (1989) Transgenic mice expressing hamster prion
protein produce species-specific scrapie infectivity and amyloid
plaques. Cell 59, 847–857.

[25] Scott, M. et al. (1993) Propagation of prions with artificial
properties in transgenic mice expressing chimeric PrP genes. Cell
73, 979–988.

[26] Brun, A. et al. (2004) Proteinase K enhanced immunoreactivity
of the prion protein-specific monoclonal antibody 2A11. Neuro-
sci. Res. 48, 75–83.

[27] Castilla, J. et al. (2003) Early detection of PrPres in BSE-infected
bovine PrP transgenic mice. Arch. Virol. 148, 677–691.

[28] Krasemann, S. et al. (1995) Prion disease associated with a novel
nine octapeptide repeat insertion in the PRNP gene. Brain Res.
Mol. Brain Res. 34, 173–176.

[29] Cochran, E.J. et al. (1996) Familial Creutzfeldt–Jakob disease
with a five-repeat octapeptide insert mutation. Neurology 47,
727–733.

[30] Chiesa, R. et al. (2001) Primary myopathy and accumulation of
PrPSc-like molecules in peripheral tissues of transgenic mice
expressing a prion protein insertional mutation. Neurobiol. Dis.
8, 279–288.

[31] Yanagihara, C. et al. (2002) Rapidly progressive dementia syn-
drome associated with a novel four extra repeat mutation in the
prion protein gene. J. Neurol. Neurosurg. Psychiatry 72, 788–791.

[32] Hsiao, K. et al. (1991) Spontaneous neurodegeneration in trans-
genic mice with prion protein codon 101 proline–leucine substi-
tution. Ann. N.Y. Acad. Sci. 640, 166–170.

[33] Chiesa, R. and Harris, D.A. (2001) Prion diseases: what is the
neurotoxic molecule?. Neurobiol. Dis. 8, 743–763.

[34] Jarrett, J.T. and Lansbury Jr., P.T. (1993) Seeding one-dimen-
sional crystallization’’ of amyloid: a pathogenic mechanism in
Alzheimer�s disease and scrapie?. Cell 73, 1055–1058.

[35] Lehmann, S. and Harris, D.A. (1996) Two mutant prion proteins
expressed in cultured cells acquire biochemical properties remi-
niscent of the scrapie isoform. Proc. Natl. Acad. Sci. USA 93,
5610–5614.

[36] Goldmann, W. et al. (1998) The shortest known prion protein
gene allele occurs in goats, has only three octapeptide repeats and
is non-pathogenic. J. Gen. Virol. 79 (Pt 12), 3173–3176.

[37] Flechsig, E. et al. (2000) Prion protein devoid of the octapeptide
repeat region restores susceptibility to scrapie in PrP knockout
mice. Neuron 27, 399–408.

[38] Beck, J.A. et al. (2001) Two-octapeptide repeat deletion of prion
protein associated with rapidly progressive dementia. Neurology
57, 354–356.

[39] Fink, P.S. (1991) Using sodium chloride step gradients to
fractionate DNA fragments. Biotechniques 10, 446, 448, 450.

http://dx.doi.org/10.1016/j.febslet.2005.09.099

	Transgenic mice expressing bovine PrP with a four extra repeat octapeptide insert mutation show a spontaneous, non-transmissible, neurodegenerative disease and an expedited course of BSE infection
	Introduction
	Materials and methods
	Plasmid constructs
	Generation of Tg mice
	Screening of founders
	Source of BSE inoculum  ndash  Preparation of brain homogenates
	Infection experiments
	Histopathology and IHC
	Insolubility and PK resistance studies of PrPC and PrPres from non-inoculated or BSE-inoculated bo6ORTg and bo10ORTg mouse lines
	Western blots
	Statistical analysis

	Results
	Bo10ORPrPC expression in Tg mice
	Neuropathological alterations in bo10ORTg mouse lines
	Insolubility and proteinase-K sensitivity studies on �10OR-PrPC
	Brain homogenates from spontaneously ill bo10ORTg �mice do not contain detectable infectivity
	Intracerebral inoculation of bo10ORTg mice with BSE prions cause BSE
	Characterizing the new bo10OR-PrPSc

	Discussion
	Acknowledgments
	Supplementary data
	References


