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brainstem responses in guinea pigs
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Abstract Objectives To investigate changes in evoked potentials and structure of the guinea pig cochleae
during whole cochlear perfusion with glutamate. Methods CM, CAP, DPOAE, and ABR were recorded as
indicators of cochlear functions during whole cochlear perfusion. The morphology of the cochlea was
studied via transmission electron microscopy. Results There were no significant changes in DPOAE am-
plitude before and after glutamate perfusion. CM I/O function remained nonlinear during perfusion. ABR
latencies were delayed following glutamate perfusion. The average CAP threshold was elevated 35 dB
SPL following glutamate perfusion.. The OHCs appeared normal, but the IHCs and afferent dendrites
showed cytoplasmic blebs after glutamate perfusion. Conclusions While being a primary amino acid neu-
rotransmitter at the synapses between hair cells and spiral ganglion neurons, excessive glutamate is neu-
rotoxic and can destroy IHCs and spiral ganglion neurons. The technique used in this study can also be
used to build an animal model of auditory neuropathy.
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Introduction

Glutamate is thought to be the primary amino acid
neurotransmitter at the synapses formed by co-
chlea hair cells and spiral ganglion neurons. How-
ever, excessive glutamate shows excitotoxicity
and can damage inner hair cells (IHCs) and affer-
ent neurons. Studies have shown that the neuro-
toxic effect of glutamate analogs results in mas-
sive swelling and degeneration of IHCs and audito-
ry afferent dendrites '
searchers demonstrated that the input/output func-
tion of cochlear microphonics (CM) maintained a
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nonlinear pattern, while the compound action po-
tential (CAP) threshold and amplitude changed, in
response to glutamate instillation * Few studies
have simultaneously observed the effects of gluta-
mate on both cochlear potentials and morphology.
In this study, we investigated changes of distortion
product otoacoustic emissions (DPOAEs) and au-
ditory brainstem responses (ABRs) during whole
cochlear perfusion with glutamate. Transmission
electron microscopy (TEM) was used to examine
the morphology of the cochleae. Understanding
the nature of cochlear excitotoxicity can conceiv-
ably contribute to the prevention and management
of certain types of hearing deficits.
Materials and methods

Thirty healthy guinea pigs of both sexes, weigh-
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ing 300~400g each and free of middle ear infection,
were randomly selected into the following 3
groups with 10 in each group: 1) artificial peri-
lymph (APL) group, with CM and CAP monitored;
2) 10mmol/L glutamate group, with DPOAEs and
ABRs monitored; and 3) 10mmol/L glutamate
group, with CM and CAP monitored.

The animal was anesthetized with sodium pento-
barbital (40mg/kg, i.p.), intubated and maintained
on a positive pressure ventilator. The external
acoustic meatus was examined and cleaned.
Whole cochlear perfusion was conducted as previ-
ously reported (Yu et al., 1999)°. The right cochlea
was exposed via a dorsal approach. One window
(0.2 mm in diameter) to the scala tympani and an-
other to the scala vestibuli were carefully opened
in the basal turn with a drill. A glass pipette filled
with either APL or glutamate (Sigma, USA) and
connected to a microinfusion pump previously
filled with the same solution was advanced into
the scala tympani using a micromanipulator.

DPOAESs were recorded using the ILO92 system
(Otodynamics, UK) from the ear canals. The 2
was set at 1001, 2002, 4004 and 6006Hz, and pre-
sented at 656 dB SPL, while the level of fl was set
at 70 dB SPL with an f2/f1 ratio was of 1.22. The
2f1-f2 amplitudes were plotted as DPgrams.

ABRs were recorded via subdermal electrodes in
a standard vertex to postaural configuration on a
SmartEP2.22 system (Intelligent Hearing System,
USA). Acoustic click stimuli were used and the
evoked potentials were band-pass filtered (80 Hz
to 3 kHz) and amplified in a conventional manner.

For CAP and CM recordings, an electrode was
placed at the round window. The electrode for the
reference was placed in the neck. CAP was evoked
by click stimuli and CM by 4 kHz tone bursts (rise/
fall 2 ms and plateau 20 ms). CAP thresholds and
CM amplitude were determined before and after

perfusion. The entire test procedure lasted about 2
hours.

Upon completion of recording, animals were sac-
rificed and the cochleae was removed and pre-
pared for TEM examination. Small openings were
made at the apical end of the cochlea and at the
round window. The cochlea was fixed with perfu-
sion of 2.5% glutaraldehyde and rinsed with 0.1mol/
L phosphate buffer solution (PBS). This was fol-
lowed by decalcification in 10% of EDTA. The spec-
imen was then post-fixed with 1% osmium tetrox-
ide and gradually dehydrated with ethyl alcohol
followed with acetone. The specimen was subse-
quently embedded, dissected and dried.

Statistical analysis was performed using Strata
4.0. The rank sum test was used to compare
DPOAEs before and after glutamate perfusion.
Changes of ABRs were analyzed using paired
t-test. One way analysis of variances was used to
assess the statistical significance of CAP variation.
The criterion for statistical significance was set at
P <0.05.

Results

DPOAE:s

Little changes in of DPOAE amplitude were no-
ticed after 10 mmol/L glutamate perfusion(Tab.1).

Changes in ABRs

Clicks at 100 dB SPL were used to elicit ABRs

and latencies of waves and were measured. .
ABR responses were lost in 2 ears following gluta-
mate perfusion, Latencies of waves and  were
delayed in the remaining 8 ears after glutamate per-
fusion, with no significant changes in - inter-

vals(Tab.2).

CM input/output (1/0) function
After artificial perilymph perfusion, the CM rela-
tive amplitude and I/O function were similar to

Table1 DPOAE amplitude before and after glutamate perfusion(x + SD, dB SPL)

ears 1kHz 2kHz 4kHz 6kHz
Pre-perfusion 10 10.29+6.70 15.23+9.04 16.29+3.37 20.78+4.39
Post-perfusion 10 10.24+5.72 17.1+5.28 16.6+3.34 21.05+2.03

P>0.05
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Table 2 ABR latencies before and after glutamate perfusion ( x +SD, ms)
ears Latencies in wave Latencies in wave - intervals
Pre—perfusion 10 1.75+0.22 3.44+0.20 1.68+0.16
Post-perfusion 8 1.97£0.17 3.81+0.34° 1.82+0.30

" P<0.05; P>0.05

pre—perfusion measures (Fig.1), The CM I/O func-
tion remained nonlinear after 10mmol/L glutamate
perfusion, although the relative amplitude de-
clined (Fig. 2).

Changes in CAP

The CAP threshold shift after 10mmol/L gluta-
mate perfusion was higher than after APL perfu-
sion[30.00+3.33(SD) 2.00 + 2.58 dB SPL, P<0.05].
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Figure 1 CM I/O functions before and after APL perfusion(n=10)
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Figure 2 CM L/O functions before and after glutamate perfusion
(n=10)

TEM

TEM showed normal IHCs and afferent nerve end-

ings(Fig. 3) and intact OHCs (Fig. 4) after APL per-
fusion.

Cytoplasmic blebs were seen in IHCs and affer-
ent dendrites (Fig.5), but not in OHCs (Fig.6) af-
ter 10mmol/L glutamate perfusion.

Discussion

Glutamate selectively damages the IHC and/or the affer-

ent nerve system

Various electrophysiological measures have been
used to study different aspects of cochlear func-
tion. CM mainly reflects OHC activities and CAP
can be used to monitor IHC transduction and co-
chlear afferent neuronal activity “ °. This study
shows that the CM I/O function maintains its non-
linear pattern while the CAP threshold is elevated,
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Figure 3 Normal-appearing IHC after APL perfusion
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Figure 4 Normal-appearing OHC, afferent nerve fibers (AF),
efferent nerve fibers (EF) and a Deiter cell (D) after APL perfu-

sion

Figure 5 Vacuoles in the IHC and afferent nerve endings

after glutamate perfusion(A)

Figure 6 Intact OHC, AF, and EF after glutamate perfusion

indicating selective damage to IHC synapses and
type 1 afferent dendrites by glutamate. DPOAEs
are believed to reflect OHC functions. The wave I
in ABRs, as well as CAP, come from auditory affer-
ent nerve fibers. Our study shows that DPOAE am-

plitudes show little change in response to gluta-
mate perfusion, while ABRs are either lost or the
wave I and III latencies are delayed. This observa-
tion confirms dysfunction of the IHC and/or co-
chlear nerve and preserved OHC function. Our
TEM results are also consistent to the electrophysi-
ological findings.

Glutamate is thought to be the neurotransmitter
for the IHC-auditory nerve synapsis. Cochlear
damage caused by noise, ischemia and hypoxia are
very similar to those seen after exposure to gluta-
mate receptor agonists. It has been suggested that
noise—, ischemia- and hypoxia-induced hearing
loss may be caused, in part, by glutamate excito-
toxicity ”. Tan et al ®. reported lessened non-linear-
ity in CM, elevated CAP threshold, and vacuoliza-
tions in the OHC and in the afferent nerve endings
underneath the IHC after noise exposure, as well
as significantly reduced immunogold particle den-
sities in the IHC. They suspected an over-load of
afferent neurotransmitter glutamate in IHCs noise
exposure and the the excitotoxicity of excessive
glutamate may be one of the injury mechanisms in
noise induced hearing damage.

Mechanisms of cochlea damages by excessive glutamate

Glutamate is the neurotransmitter acting at
IHC-primary auditory dendrite synapses. At least
three pharmacologically distinct types of iono-
tropic glutamate receptors mediate the depolariz-
ing effects of glutamate on the membrane poten-
tial of neurons. These ionotropic receptors can be
divided into N-methyl-D-aspartate (NMDA),

—amino-3-hydroxy-5-methyl-isoxazol-propio-
nate (AMPA ), and kainate subtypes. Exessive exci-
tation of these postsynaptic receptors, referred to
as excitotoxicity, can result in the destruction of
the neuron. Acute postsynaptic overload causes an
excessive influx of sodium into the auditory den-
drites, and the resulting osmotic imbalance then
provokes a massive water entry. In addition, it
causes an increase in the intracellular calcium con-
centration, which leads to destruction of the prima-
ry auditory dendrites and later on to neuronal
death '. The AMPA-induced damage to the affer-
ent dendrites was protected by the administration
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of glutamate antagonists 6, 7-dinitroquinoxa-
line-2, 3-dione (DNQX) prior to AMPA treatment
°. We further speculate that the fundamental dam-
aging effect on the IHC/cochlear afferents could
be ultimately mediated by glutamate excitotoxici-
ty.

Whole cochlear perfusion with glutamate for an animal
model of auditory neuropathy (AN)

Starr et al.” identified a group of patients with
hearing deficits who had normal otoacoustic emis-
sions but absent or severely abnormal ABRs. They
inferred that the disorder could be at the level of
the IHC, between the IHC and VIII nerve fibers,
the ganglion neurons, the nerve fibers, or any com-
bination of the above. Miyamoto et al. "' and Buss
et al. reported that cochlear implantation was a
feasible rehabilitation method for auditory neurop-
athy. Those clinical reports indicated the patient
of AN might still have certain proportion of normal
afferent nerve fibers. The pathological changes in
AN are possibly in the IHC, synapses, and afferent
nerve fibers.

After 10mmol/L glutamate perfusion for 2 hours,
there were no significant changes in DPOAE ampli-
tude. On the other hand, ABRs were lost in 2 and
ABR latencies delayed in 8 of the 10 test ears. The
differences in ABR changes in this study are possi-
bly related to each animal’ s unique physiology as
well as its sensitivity to glutamate. With glutamate
perfusion, the conditions resulting in IHC /cochle-
ar afferent system damage with relatively normal
OHC functions mimic many of the characteristic
symptoms seen in AN. The less severe changes of
ABR than seen in clinical AN are possibly related
to the glutamate concentration used in perfusion.
Theoretically, an axonal neuropathy should not al-
ter neural synchrony but only the number of con-
ducting fibers . We suggest that the failure to de-
tect an averaged auditory brainstem potential in
some of the animals reflects altered temporal syn-
chrony of the auditory brainstem pathway activity
due to the auditory nerve disorder. In these ani-

mals, the auditory nerve and brainstem discharges
are not precisely time-locked to the acoustic sig-
nal so that the short duration components are can-
celled in the averaging process, rendering them in-
distinguishable from the background -electrical
events. Excess extracellular glutamate may play a
role in the degeneration of the organ of Corti in ex-
citotoxic conditions.

In conclusion, we have demonstrated an animal
model that shows many of the characteristics re-
ported clinically in patients diagnosed with AN.
The neural representation of sensory events de-
pends upon neural synchrony, therefore a normal
ABR is recorded only when multiple neurons fire
synchronously at stimulus onset . We therefore
suggest that one possible underlying pathology for
AN is a scattered loss of IHCs and cochlear affer-
ent systems. We further propose that one of the
causes of such pathology is related to glutamate
excitotoxicity.
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