
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Physics Letters B 634 (2006) 106–110

www.elsevier.com/locate/physletb

Chaplygin gas may prevent big trip
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Abstract

This Letter deals with the study of the accretion of a generalized Chaplygin gas with equation of state p = −A/ρα onto wormholes. We have
obtained that when dominant energy condition is violated the size of wormhole increases with the scale factor up to a given plateau. On the regime
where the dominant energy condition is satisfied our model predicts a steady decreasing of the wormhole size as generalized Chaplygin gas is
accreted. Our main conclusion is that the big trip mechanism is prevented in a large region of the physical parameters of the used model.
© 2006 Elsevier B.V.
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Several astronomical and cosmological observations, rang-
ing from distant supernovae Ia [1] to the cosmic microwave
background anisotropy [2], indicate that the universe is cur-
rently undergoing an accelerating stage. It is assumed that this
acceleration is due to some unknown stuff usually dubbed dark
energy, with a positive energy density ρ > 0 and with negative
pressure p < −(1/3)ρ.

There are several candidate models for describing dark en-
ergy, being the cosmological constant, Λ, by far, the simplest
and most popular candidate [3]. Other interesting models are
based on considering a perfect fluid with given equation of state
like in quintessence [4], K-essence [5] or generalized Chaply-
gin gas [6–10] models. Note that there are also other candidates
for dark energy based on brane-world scenarios [12] and mod-
ified 4-dimensional Einstein–Hilbert actions [13], where a late
time acceleration of the universe may be achieved, too.

One of the peculiar properties of the resulting cosmological
models is the possibility of occurrence of a cosmic dooms-
day, also dubbed big rip [14]. The big rip appears in models
where dark energy particularizes as the so-called phantom en-
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ergy for which the dominant energy condition is violated, so
that p + ρ < 0. In these models the scale factor blows up in a
finite time because its cosmic acceleration is even larger than
that induced by a positive cosmological constant. In these mod-
els every component of the universe goes beyond the horizon of
all other universe components in finite cosmic time. It should
be noted that the condition p + ρ < 0 is not enough for the oc-
currence of a big rip, i.e., if one considers an universe filled
with phantom generalized Chaplygin gas, one can avoid the big
rip [15] (see also [16]). Other peculiar properties of phantom
energy are that it can make the exotic substance that fuel worm-
holes [17], triggering the possibility of occurrence of a big trip
[18–20], i.e. if there is a wormhole in an universe filled with
phantom energy, due to processes of phantom energy accretion
onto the wormhole, the size of this wormhole increases in such
way that the wormhole can engulf the universe itself before it
reaches the big rip singularity, at least relative to an asymptotic
observer. Then, the following question arises: Does an universe
filled with generalized phantom Chaplygin gas which avoids the
big rip singularity also escape from the big trip? We have found
in the present Letter that for a large range of the Chaplygin pa-
rameters no big trip is predicted by our model, though there
still exists sufficient room in the physically allowed parameter
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space to not exclude the possibility for the occurrence of such
a strange causality disruption. Thus, generalized Chaplygin gas
can be seen to have several interesting potential properties, as
it avoids big rip [15], it may be used as the stuff to construct
wormholes [21], it prevents the universe to be engulfed by a
black hole [23], and, finally it may also circumvent the big trip
problem.

We start by first reviewing the accretion formalism first
considered by Babichev, Dokuchaev and Eroshenko [22] (see
also [24]), generalizing it to the case of wormholes. Through-
out this Letter we shall use natural units so that G = c = 1.
The Morris–Thorne static space–time metric of one wormhole
is given by [25]

(1)ds2 = −eΦ(r) dt2 + dr2

1 − K(r)
r

+ r2(dθ2 + sin2 θ dφ2),
where Φ(r) is the shift function and K(r) is the shape function.
We model the dark energy in the wormhole by the test perfect
fluid with a negative pressure and an arbitrary equation of state
p(ρ), with the energy–momentum tensor

(2)Tμν = (p + ρ)uμuν + pgμν,

where p is the pressure, ρ is the energy density, and uμ =
dxμ/ds is the 4-velocity with uμuμ = −1. The zeroth (time)
component of the energy–momentum conservation law T μν ;ν =
0 can then generally be written as

0 = d

dr

[
eΦ(r)(p + ρ)

dt

ds

dr

ds

]

(3)+ eΦ(r)(p + ρ)

[
Φ ′(r) + K ′(r)r − K(r)

2r2
(
1 − K(r)

r

) + 2

r

]
dt

ds

dr

ds
.

This expression should now be integrated. The integration of
Eq. (3) gives then,

(4)uM−2r2
(

1 − K(r)

r

)−1

(p + ρ)

√
u2 + 1 − K(r)

r
= C,

where u = dr/ds, and M is the exotic mass of the wormhole
which, following the procedure of Ref. [22], has been intro-
duced to render the integration constant C to have the dimen-
sions of an energy density (note that we are using natural units),
and, without any loss of generality for our present purposes, we
have adhered to the case where Φ ′ = 0.

Another integral of motion can be derived by using the pro-
jection of the conservation law for energy–momentum tensor
along the four-velocity, i.e. the flow equation uμT μν ;ν = 0. For
a perfect fluid, this equation reduces to

(5)uμρ,μ + (p + ρ)uμ;μ = 0.

The integration of Eq. (5) gives the second integral of motion
that we shall use in what follows

(6)M−2r2u

(
1 − K(r)

r

)−1/2

e

∫ ρ
ρ∞

dρ
p+ρ = −A,

where u < 0 in the case of a fluid flow directed toward the
wormhole, and A is a positive dimensionless constant. Eq. (6)
gives us the energy flow induced in the accretion process. From
Eqs. (4) and (6) one can easily get

(7)

(p + ρ)

(
1 − K(r)

r

)−1/2
√

u2 + 1 − K(r)

r
e
− ∫ ρ

ρ∞
dρ

p+ρ = C2,

where C2 = −C/A = Ã(p(ρ∞) + ρ∞), with Ã a positive con-
stant.

The rate of change of the exotic mass of wormhole due to
accretion of dark energy can be derived by integrating over the
surface area the density of momentum T0

r , that is [26]

(8)Ṁ = −
∫

T0
r dS,

with dS = r2 sin θ dθ dφ. Using Eqs. (2), (6) and (7) this can be
rewritten as [20]

(9)Ṁ = −4πDM2

√
1 − K(r)

r

[
p(ρ∞) + ρ∞

]
,

with the constant D = AÃ > 0. For the relevant asymptotic
regime r → ∞ where the big trip occurs, the rate Ṁ reduces
to

(10)Ṁ = −4πM2D(p + ρ).

We see then that the rate for the wormhole exotic mass due
to accretion of dark energy becomes exactly the negative to
the similar rate in the case of a Schwarzschild black hole, as-
ymptotically. For current quintessence models, the use of a
scale factor R = R0(1 + √

6πρ0(1 + w)(t − t0))
2/[3(1+w)] for

w < −1 (which corresponds to the solution of the general equa-
tion −3H(1 + w) = 2Ḣ /H , with ˙ = d/dt and H = Ṙ/R for
w = const [11]), gives arise to a singular behaviour of the size
of the wormhole before reaching the big rip, that is the big trip.

We shall derive now the expression for the rate Ṁ in the
case of a generalized Chaplygin gas. This can be described as a
perfect fluid with the equation of state [10]

(11)p = −Ach/ρ
α,

where Ach is a positive constant and α > −1 is a parameter. In
the particular case α = 1, the equation of state (11) corresponds
to a Chaplygin gas. The conservation of the energy–momentum
tensor implies

(12)ρ =
(

Ach + B

R3(1+α)

)1/(1+α)

,

with B ≡ (ρα+1
0 − Ach)R

3(α+1)
0 , R ≡ R(t) is the scale factor

and the subscript “0” means initial value. Now, from the Fried-
mann equation we can get

(13)Ṙ =
√

8π

3
R

(
Ach + B

R3(1+α)

)1/[2(1+α)]
.

Hence, from Eqs. (10)–(13) we obtain

(14)M = M0

1 − DM0

√
8π
3

[
ρ1/2 − ρ

1/2
0

] .

For the case where the dominant energy condition is preserved,
i.e. B > 0, we obtain that M decreases with time and tends to a
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constant value. On the other hand, M is seen to decrease more
rapidly as parameter α is made smaller. If the dominant energy
condition is assumed to be violated, i.e. B < 0, as phantom en-
ergy is assumed to require [15], then M increases with time,
with M tending to maximum, nonzero constant values. Making
|B| or α smaller, makes the evolution quicker.

When time goes to infinity, then the exotic mass of worm-
hole approaches to

(15)M = M0

1 − DM0

√
8π
3

(
A

1
2(1+α)

ch − ρ
1/2
0

) ,

that is a generally finite value both for B > 0 and B < 0. Thus,
at first sight it could be thought that, unlike what happens in
phantom quintessence models, the presence of a generalized
Chaplygin gas precludes the eventual occurrence of the big trip
phenomenon. However, such a conclusion cannot be guaran-
teed as the size of the wormhole throat could still exceed the
size of the universe during its previous evolution. Note that for
e.g. wormholes with zero tidal force, one can consider that the
exotic matter is confined into an arbitrarily small region around
the wormhole throat, then the radius of wormhole throat be-
comes roughly proportional to its mass. That is to say, the
question remains whether the wormhole would grow eventually
rapidly enough or not to engulf the universe during the evolu-
tion to its final classically stationary state. That question should
be settled down before reaching a conclusion on the possibility
of the big trip in these models. Actually, in order for avoiding
a big trip, the following two conditions are also required: (i)
R �= M along the entire evolution, and (ii) that N(R) = Ṙ/Ṁ

be always an increasing function along that evolution. The first
of these conditions implies that the function

f (M) = M − MM0D

√
8π

3

[(
Ach + B

M3(1+α)

) 1
2(1+α) − ρ

1/2
0

]
(16)− M0,

be nonvanishing everywhere. We analyze this question by tak-
ing the zeros of the second derivative

f ′′(M) ≡ d2f (M)

dM2

= √
6πDB

M0

M3(1+α)+1

(
Ach + B

M3(1+α)

)−2α−1
2(1+α)

×
[

1 − 3(1 + α)

(17)+ 3B(2α + 1)

2M3(1+α)

(
Ach + B

M3(1+α)

)−1
]
.

Now, by taking into account that physically,

(18)M > M0 >

(
− B

Ach

) 1
3(1+α)

.

The second inequality meaning that, during its evolution, the ra-
dio of the universe should be larger than its initial size. Eq. (17)
can be reduced to imply for the zeros

(19)1 − 3(1 + α) + 3B(2α + 1)

2M3(1+α)

(
Ach + B

M3(1+α)

)−1

= 0,

whose solution would read M3(1+α) = −B/[2(2 + 3α)Ach].
Nevertheless, from condition (18) we have that 0 < 2(2+3α) <

1 which, in turn, implies that there could be at most three cross-
ing points, as this interval allows for values of α within the
range of the generalized Chaplygin gas models, i.e. α > −1.
For α-values outside the interval 0 < 2(2 + 3α) < 1, but still
inside the Chaplygin range, one might expect just two points at
most. It follows from this analysis that a big trip could in prin-
ciple happen.

As to condition (ii), we obtain from Eqs. (10) and (13) that

N(R) = − 1

BM2
0 D

√
6π

R3(1+α)+1ρ
2α+1

2

(20)×
{

1 − M0D

√
8π

3

[
ρ1/2 − ρ

1/2
0

]}2

.

From Eq. (20) it follows that N(R0) � 1 because the size of
the wormhole must be quite smaller than that of the universe
initially. Thus, an always increasing N(R) should necessarily
imply that the scale factor increased more rapidly than M did,
so preventing any big trip to occur. By differentiating N(R)

with respect to R and taking into account that B < 0 for Chap-
lygin phantom, it can be checked that N(R)/dR > 0 in the
general case that α does not reach values sufficiently close to
−1; that is, it follows from Eq. (15) that inside the interval

(21)−1 < α <
lnAch

ln
(√ 3

8π
1

M0D
+ ρ

1/2
0

)2
− 1,

a big trip would still take place.
On the other hand, the question still remains on what hap-

pens with the grown-up wormhole once it has reached its max-
imum, final size. Since the wormhole size tends to become
constant at the final stages of its evolution and it is rather a
macroscopic object, it would be subjected to chronology protec-
tion [27]. In fact, one expected that vacuum polarization created
particles which catastrophically accumulated on the chronology
horizon of the wormhole making the corresponding renormal-
ized stress–energy tensor to diverge and hence the wormhole
would disappear.

It would be quite interesting to probe the region of parameter
space (α,Ach,H0,ΩK,Ωφ) allowed by current observations in
order to determine whether there exist any allowed sections
leading to a big trip. However, all available analysis [28–31]
are restricted to the physical region where no dominant en-
ergy condition is violated. Therefore, the section described by
the interval implied by Eq. (21) necessarily is outside the an-
alyzed regions. One had to extend the investigated domains to
include values of parameter Ach > 1 to probe the parameters
space relative to the big trip. In any events the range of α values
compatible with a big trip has been seen to be extremely nar-
row and hence the occurrence of the big trip phenomenon in the
generalized Chaplygin gas model appears to be highly unlikely.
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In this Letter we have studied the accretion of a general-
ized Chaplygin gas onto a wormhole. First, we have reviewed
the accretion formalism originally considered by Babichev,
Dokuchaev and Eroshenko [22] for the case of a wormhole
[20]. We have then applied such a formalism to the generalized
Chaplygin gas model. The evolution of exotic mass with the ac-
cretion of Chaplygin dark energy has been first considered for
the case that the dominant energy condition is satisfied. It has
been seen that in that case the mass decreases with cosmic time.

If accretion involves Chaplygin phantom energy, then M

increases from its initial value, tending to reach a plateau as
cosmic time goes to infinity. It is obtained that for a wide region
of the Chaplygin parameters no big trip is predicted, contrary to
what happens in quintessence and K-essence dark energy mod-
els. However, as far as the Chaplygin regime tends to match the
quintessence regime, but presumably still within the Chaplygin
region, the possibility for a big trip at a finite time in the future
is not excluded. Finally, we also argued that the fate of the final
wormhole is to be destabilized by quantum vacuum processes.
To conclude, the generalized Chaplygin gas has several very
interesting features and may circumvent several singularities
that appear in the usual quintessence models. Whether or not
the above features can be taken to imply that Chaplygin gas is
a more consistent component than usual quintessential or K-
essence dark energy component with w < −1 is a matter that
will depend on both the intrinsic consistency of the models and
the current observational data and those that can be expected in
the future.
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