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Standard Clocks in the primordial epoch leave a special type of features in the primordial perturbations, 
which can be used to directly measure the scale factor of the primordial universe as a function of time 
a(t), thus discriminating between inflation and alternatives. We have started to search for such signals 
in the Planck 2013 data using the key predictions of the Standard Clock. In this Letter, we summarize 
the key predictions of the Standard Clock and present an interesting candidate example in Planck 2013 
data. Motivated by this candidate, we construct and compute full Standard Clock models and use the 
more complete prediction to make more extensive comparison with data. Although this candidate is 
not yet statistically significant, we use it to illustrate how Standard Clocks appear in Cosmic Microwave 
Background (CMB) and how they can be further tested by future data. We also use it to motivate more 
detailed theoretical model building.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

Our understanding on the origin of the Universe has advanced 
considerably in recent years through interactions between experi-
ments and theories. We have a large number and variety of ongo-
ing and upcoming experiments that are mapping the entire observ-
able universe. One of the most important achievements of these 
experiments is to produce, one way or the other, different and 
complimentary maps of the distributions of large scale structures, 
including various spectra and objects, in our Universe. These maps 
are the gold mines to advance our knowledge in cosmology. All 
these large scale structures originated from some tiny fluctuations 
in the very early universe, the primordial perturbations. One of the 
most beautiful ideas in modern cosmology is that these perturba-
tions are seeded by quantum fluctuations of fields present in an 
early epoch responsible for the Big Bang. By studying properties of 
these maps, we learn properties of this epoch, as well as funda-
mental physics in conditions that are inaccessible for experiments 
on Earth.

In the past two decades, the data from CMB and Large Scale 
Structures (LSS) strongly support the inflationary paradigm [1–5]
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as the leading candidate for this primordial epoch. The simplest 
inflationary models predict the primordial perturbations to be su-
perhorizon, approximately scale-invariant, adiabatic and Gaussian 
[6–10]. All of these have been verified to some extent by the 
results from the Wilkinson Microwave Anisotropy Probe (WMAP) 
[11] and the Planck satellite [12,13]. The properties of these per-
turbations are summarized quantitatively by two of the six param-
eters in the Standard Model of Cosmology, the �CDM model.

On the other hand, other possibilities have also been specu-
lated as alternative theories to the inflationary scenario. From the 
perspective of theoretical model building, none of them has been 
as successful as inflation. See Refs. [15–18] for the current status. 
Nonetheless, models may be improved or become complicated to 
fit the data. This is possible because there are only two parameters 
in the Standard Model that are relevant to the primordial epoch, 
leaving rooms for theoretical freedoms. Therefore an equally im-
portant approach in cosmology is to search for beyond-Standard-
Model signals in data that can be used to distinguish different 
scenarios.

Phenomenologically one can distinguish four different kinds of 
primordial epochs, classified by the time dependence of the scale 
factor a(t) ∼ t p : the fast-expanding or fast-contracting scenarios, 
and the slowly-expanding or slowly-contracting scenarios. (The 
contracting scenarios require a bounce to match the Big Bang.) 
Each of them has a different fingerprint index in terms of the pa-
rameter p [19,20]. The acceleratedly-expanding scenario, namely 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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inflation, has |p| > 1; the fast-contracting scenario [21,22] has 
p ∼O(1) < 1; the slowly-expanding scenario has −1 � p < 0; and 
the slowly-contracting scenario [23] has 0 < p � 1.1 For p > 1, t
runs from 0 to +∞; for all other p, t runs from −∞ to 0. The 
choices of t are based on the requirement that the quantum fluc-
tuations in this epoch exit the horizon, so that they can give rise 
to the acoustic oscillations in the CMB after reentry during the Big 
Bang.

The primordial perturbations, which are seeded by quantum 
fluctuations in these epochs, consist of scalar and tensor modes. 
While the scalar mode determines the density perturbations at the 
beginning of the Big Bang as the source of the large scale struc-
tures, the tensor mode corresponds to the gravitational quantum 
fluctuations and records the magnitude of the Hubble parameter 
during the epoch. Therefore the tensor mode serves as a good dis-
criminator between the scenarios with fast-evolving scale factor 
and those with slowly-evolving scale factor. In particular, if the 
tensor mode origin of the recent CMB B-mode detection by the 
BICEP2 experiment [14] is confirmed, both the slowly-expanding 
and slowly-contracting scenarios will be ruled out. Nonetheless, 
phenomenologically, the tensor mode does not distinguish the in-
flation from the fast-contracting scenarios. For example, both the 
inflation and the matter contraction can give rise to observable 
tensor mode with approximately scale-invariant spectra [21,22].

In this Letter, we consider a different type of observables. 
A main reason the degeneracy of scenarios could exist is that 
the observables we mentioned so far (namely the approximately 
scale-invariant scalar and tensor modes) are all convoluted conse-
quences of the scale factor a(t), the defining property of different 
scenarios. A direct measurement of a(t) would provide an inde-
pendent and direct evidence for a scenario, as was done for the 
late-time accelerated universe using the Standard Candles [24,25]. 
This turns out to be possible: oscillating massive fields in the pri-
mordial epoch can serve for this purpose as the Standard Clocks 
[19,20,26]. The massive field oscillates with a frequency that can 
be thought of as ticks of a clock. This Standard Clock imprints its 
ticks as a special type of features in the primordial perturbations, 
thereby letting some imprints in the CMB angular power spectra, 
the non-Gaussianities and the distribution of large scale structures. 
The patterns of these ticks are a direct record of a(t) of the primor-
dial universe.

In this Letter, after summarizing the main results of the the-
oretical proposal of the Standard Clock, we compare its key pre-
dictions with the Planck 2013 residual data. A full-scale compari-
son will be the subject of the next paper [27]. Here we focus on 
one interesting candidate emerging from this comparison, although 
it is still not statistically significant. Motivated by this candidate 
we construct explicit Standard Clock models and compute the full 
power spectrum. This is a completion of the above key predictions, 
under the same number of model parameters. We again see en-
couraging signs after this prediction is compared with the Planck 
data.

2. Standard Clocks

We start with a summary of the key requirements and proper-
ties of the Standard Clock [19,20,26]. There are two requirements 
to have a Standard Clock in a primordial scenario:

1. We need an extra massive field with mass much larger than 
the event-horizon mass-scale of the corresponding primordial 
epoch. For example, for inflation this mass scale is the Hub-

1 The case p ∼O(−1) > −1 (−∞ < t < 0) is also acceleratedly expanding.
ble parameter. This massive field is excited classically by some 
sharp features and oscillating.

2. This massive field starts to oscillate at least several efolds af-
ter the beginning of the observable primordial epoch. For ex-
ample, for inflationary scenario, the observable scales include 
approximately 60-efolds towards the end of inflation; the mas-
sive field has to start oscillating at least a few efolds within 
the 60-efolds, but not at or before the beginning of these 
60-efolds.

Standard Clocks generate two qualitatively different types of 
signals in the primordial perturbations, which are connected to 
each other and contain different properties. It is important to clas-
sify them and sort out which properties can be most robustly used 
to measure a(t), which are less robust but can be auxiliary, and 
which cannot [19,20].

The first type of signal is generated by the sharp feature that 
excites the massive field. Like all sharp feature signals, this signal 
has a characteristic sinusoidal running as a function of scales,

∼ cos(K/k0 + phase), (2.1)

where k0 is both the K -location of the sharp feature and the 
wavelength of the oscillation. Here K ≡ k1 + k2 = 2k1 for power 
spectrum, K ≡ k1 + k2 + k3 for bispectrum and so on. In infla-
tion models, examples of various sharp features have been stud-
ied in e.g. Refs. [28–33]. But we emphasize that the statement 
here is stronger – this leading order behavior also applies to non-
inflationary scenarios [19,20]. The sinusoidal running itself cannot 
be used to measure a(t) because it is qualitatively the same for all 
scenarios. This can be intuitively understood – the sharp feature 
has only one click and it does not contain any clock information.

The second type of signal is generated by the oscillation of mas-
sive field after it is excited. The most important property of this 
signal is its characteristic resonant running, which we shall ex-
plain more with explicit examples shortly. The pattern between 
successive oscillations is determined by the ticks generated by the 
Standard Clock and the scale factor a(t), which is unique for each 
scenario.

Overall, in the full Standard Clock signals, the following are the 
two most robust properties that can be used to distinguish differ-
ent scenarios.

A. The clock signal. The fingerprint resonant running signal gener-
ated by the Standard Clock, as a fractional correction to the 
leading order approximately scale-invariant power spectrum, 
�Pζ /Pζ0, or as the leading order non-Gaussianities, is given 
by

C

(
K

kr

)α

sin

[
p2

1 − p
ω

(
K

kr

)1/p

+ ϕ

]
. (2.2)

This profile contains the fingerprint of different scenarios, 
specified by the index p. K is as defined above; ω is the 
frequency of the background oscillation induced by the Stan-
dard Clock in unit of the Hubble parameter H0 (H0 is eval-
uated at the time of sharp feature t0); kr denotes the first 
resonant K -mode at t0; C is the amplitude; ϕ is a constant 
phase, whose value depends on different correlation functions 
and models. For expanding scenarios, K > kr ; for contracting 
scenarios, K < kr . The fingerprint resonant running refers to 
sin[. . .], of which the functional form of the argument is sim-
ply the inverse function of a(t). By measuring this functional 
form, we know a(t) directly, so this is the most important part 
of the clock signal. The envelop behavior specified by the pa-
rameter α can be model-dependent even within a scenario, 
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Fig. 1. A qualitative illustration of the full Standard Clock signals for different scenarios. Green/light lines represent the sharp feature sinusoidal running signals; blue/dark 
lines represent the clock signal with two different masses. Here the envelop behaviors are somewhat different from those in Refs. [20,26], because we plot the direct coupling 
case here. Both key properties remain the same. Also see text for explanations.
but its overall scale-dependent trend can be used as a useful 
auxiliary evidence for a specific scenario.2 In the examples in 
this Letter we will take α = −3/2 + 1/(2p) for power spec-
trum for reasons that we will explain.

B. A relation between two scales. Although the sharp feature signal 
(2.1) itself cannot be used to measure a(t), its relative loca-
tion to the clock signal is determined by p and distinctive for 
different scenarios. As define above, let us denote k0 as the 
starting K -location of sharp feature signal (2.1) and kr as the 
starting K -location of the clock signal (2.2). We have the fol-
lowing relation,

kr

k0
= |p|

|1 − p|ω. (2.3)

Note that this relation relies on the knowledge of the value 
of ω, p and kr which would be determined by fitting (2.2) to 
data, so it is closely connected to Property A. Once the param-
eters in (2.2) are determined, the relation (2.3) can be used to 
predict the location of the sharp feature k0.

As we explain below, both key properties are simple and direct 
consequences of the scale factor evolution a(t). We also illustrate 
this in Fig. 1.

We start with Property A. We first note that the oscillating 
massive field sets a background frequency that is approximately 
constant.3 The amplitudes of the oscillations also have different 
characteristic time-dependent trends in different scenarios.

Let us first compare inflation with fast-contracting scenarios, 
such as the matter contraction [21,22]. The physical frequency 
of quantum fluctuations scales inversely proportional to the scale 
factor. When this frequency passes through the background fre-
quency, the mode resonates with the background and generates a 

2 Take the inflationary scenario for example. If some multi-field couplings in the 
model have certain strong scale-dependence, they can cause complicated scale-
dependence in this envelop. But since the oscillation of the massive field quickly 
decays away for all inflationary models, the overall behavior of this envelop is a 
specific decaying behavior towards shorter scales.

3 In realistic models, the mass usually has some reasonable time dependence. 
This does not change the qualitative features we emphasize here.
large signal [34]. For inflation the following is the evolutionary se-
quence for each mode: the physical frequency decreases, hits the 
resonance, and then the mode exits the horizon. So longer modes 
resonate first, the resonance starts from K = kr and runs towards 
larger K . The ticks in the resonant running are created by the ticks 
of the Standard Clock. Note that for inflation the relative distance 
between the ticks in the K -space increases as K increases. For 
fast-contracting scenario, the situation is the opposite. The physical 
frequency of modes increases before hitting the resonance. Modes 
are still exiting the horizon because the horizon contracts faster 
than the scale factor. So shorter modes resonate first. The reso-
nance starts from K = kr and runs towards smaller K . Note that 
the relative distance between ticks increases as K decreases, in 
contrast to the inflationary case.

Next let us compare inflation with slowly-varying scenarios, 
such as the Ekpyrosis [23]. For inflation, the horizon size is ap-
proximately constant, so all modes resonate sooner or later. We 
see many oscillations in the resonant signals. For Ekpyrosis, the 
scale factor is evolving very slowly, so different modes hit the res-
onance in a very slow one-by-one fashion. However, the horizon 
size contracts fast. Once the modes exit the horizon, it can no 
longer resonate. So very few modes resonate, and that is why we 
see very few oscillations in the clock signal.

Property B is also a direct consequence of a(t). The ratio be-
tween the mode k0 (which crosses the horizon at the time of 
sharp feature t0) and the mode kr (which is deep inside the hori-
zon and is the first mode to resonate at t0) is determined by the 
ratio between the physical clock frequency Ω , which we define 
as Ω ≡ ωH0, and the horizon-mass-scale. The horizon-mass-scale 
((p − 1)/t0) and H0 = |p|/|t0| are determined by the index p. So 
this leads to the relation (2.3) which depends on p and ω degen-
erately.

These two properties are very robust and do not depend on 
many of the model details. For example, the inflation models can 
be either small field or large field; the massive fields can be ex-
cited by different kinds of sharp features; the coupling between 
the Standard Clock and the density perturbation source field can 
be gravitational or direct.

From (2.2), we can also understand Requirement 2 for the 
model-building. Using (2.3), at K = kr , the period of (2.2) is given 
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Fig. 2. Residuals of Planck 2013 binned temperature power spectrum from 	 = 100
to 	 = 1600, taken from [12].

by �K = 2πk0. If the massive field starts to oscillate at or before 
the beginning of the observable epoch, in terms of the CMB multi-
pole, 	0 � 1, then the period of (2.2) falls within �	 � 2π , which 
is at or below the CMB resolution threshold. For inflation, �	 in-
creases for K > kr but the amplitude decays.

3. A Standard Clock candidate in CMB

Standard Clock signals show up as fine structures in the primor-
dial perturbations and has better chance to be detected in high 
resolution maps measuring high multipoles, such as the Planck 
data. Motivated by the theoretical predictions, we first search for 
the presence of the most important clock signal (2.2) in the Planck 
data. A detailed analysis will be presented elsewhere [27]. Here in 
this Letter, we focus on an interesting candidate with a relatively 
low frequency, which is visible in the binned Planck data (Fig. 2).

We investigate if the oscillatory feature around 	 ∼ 800 can be 
a viable candidate. Using the clock signal profile (2.2), we perform 
a Markov-Chain-Monte-Carlo analyses using Planck unbinned data 
varying all five model parameters in the neighborhood of this re-
gion; the ones with p > 1 are preferred than the other values, and 
can improve the fit by 2� lnL ≈ −9 comparing to �CDM [27]. In 
Fig. 3, we plot an example in comparison with the Planck residu-
als.4 The improvement is statistically insignificant so far. Nonethe-
less, we have several encouraging observations from this result.

• The oscillation in the data seems to decay very quickly as 	
increases. But this behavior is well recovered by (2.2) through 
the transfer function, although the decay speed in the primor-
dial profile (2.2) naively does not appear to be that fast.

• The inflation case with p � 1 in (2.2) has a very specific run-
ning pattern which seems to be favored on the posteriors. The 

4 Note that all the figures illustrated in this paper are close to but not ex-
actly the same as the rigorous best-fit examples. We leave the full data analyses, 
using MCMC search and vary all parameters including both the �CDM and Stan-
dard Clock parameters, to a forthcoming publication [27]. The best-fit examples 
found by fine-tuning the parameters in the full analyses can increase the statis-
tical significance slightly compare to the ones here. For example [27], one can get 
2� lnL ≈ −10.6, by comparing the best-fit with the clock signal χ2 = 9792.2 to the 
�CDM χ2 = 9802.8, by choosing ω = 29.6, C = 0.058, kr = 0.1075 Mpc−1, p = 105, 
ϕ = 0.684π (using the Planck and WMAP polarization data). Fig. 4 shows the trian-
gle plot of the MCMC search.

Also note that, although there are five parameters in the clock signal, if we 
were only interested in the inflation scenario, the number of effective parameters 
are four, because all p � 1 give the same result in practice, hence p is no longer a 
parameter.
Fig. 3. A fit to a Standard Clock candidate using the clock signal profile (2.2) alone. 
The parameters are ω = 30, C = 0.075, kr = 0.1015 Mpc−1, p = 100, ϕ = −0.263π .

statistical improvement is mostly due to the fit to the wiggle 
at 	 ∼ 800, and also due to the fact that the prediction in the 
region 	 > 800 does not contradict with the data. If we were 
to take a sinusoidal wave with constant amplitude as a naive 
extension to the feature at 	 ∼ 800, the fit would be worse in 
terms of both the amplitude and running pattern.

• As we emphasized, the Standard Clock consists of two types of 
signals. Plugging the best-fit parameters for this clock signal in 
the relation (2.3) with p � 1, we can predict the k1-location 
of the sharp feature signal k1 = k0/2. This turns out to be at 
	0 ∼ 23. As we know since the WMAP data [35], at 	 ∼ 20–30
there is a well-known sharp feature candidate. We knew that 
it may be fit by a feature with sinusoidal running [29], al-
though this was never conclusive due to the marginal statisti-
cal significance.

These observations suggest that the two well-separated features 
in the CMB angular power spectrum may have the common ori-
gin associated with the Standard Clock effect. Encouraged by these 
observations, we proceed to construct an explicit Standard Clock 
model and work out the full theoretical prediction on the power 
spectrum, as a completion of the existing results summarized in 
Section 2. In particular, we would like to see the complete predic-
tion in the region between k0 and kr , and use it to jointly fit both 
features. We will focus on the exponential inflationary case below. 
Full predictions for other scenarios are left for future works.

4. A full model of Standard Clock

Although sharp feature plays an important role in the Standard 
Clock models, we find its model-building identity may be quite 
flexible without affecting many important properties, as long as it 
excites massive fields. In fact such processes may be present in 
many existing models in the literature, even though their roles as 
Standard Clocks were not realized.

The case most studied is the sharp bending trajectory [19,20,
36,37]. In this case, it is found that, if we only consider the grav-
itational coupling between the Standard Clock field and inflaton 
for the clock signal [19], the leading resonance contributions from 
the background oscillation and massive field quantum fluctuation 
cancel each other, leaving a signal with a small amplitude [36,37]. 
However, the leading resonance in bispectrum [19] does not get 
cancelled and remain large [37]. For this case, one has to first look 
into the non-Gaussianity in data. As mentioned in Ref. [19], while 
the gravitational coupling is the minimal case, direct couplings 
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Fig. 4. The triangle plot of the MCMC search for the clock signal. This figure is contributed by Y. Wang and more details will appear in [27].
between the Standard Clock and inflaton are of course possible. 
The direct coupling case is simpler to compute but much more 
model-dependent. Nonetheless most importantly, it should be clear 
that both Property A and B of the Standard Clock do not depend 
on these details. Examples of the direct coupling case are studied 
in Refs. [38,39].

For simplicity, in this Letter we consider another type of sharp 
feature, namely the tachyonic falling, and we consider the direct 
coupling case. In this type of models, the inflaton is slow-rolling 
on its potential all the time; and the Standard Clock field starts to 
oscillate simply because it falls tachyonically into a potential dip 
and settles down. To satisfy the model building Requirement 2, we 
have to put the Standard Clock field on the plateau of the potential 
dip and let it (slow-)roll for at least a few efolds. This period corre-
sponds to the density perturbation regime 	 � 30. The Lagrangian 
of the full model is
L = −1

2
(R̃ + σ)2 gμν∂μθ∂νθ − V sr(θ) − 1

2
gμν∂μσ∂νσ

− Vσ (σ ), (4.4)

where the potential

Vσ = V 0
[
1 − exp

(−σ 2/σ 2
f

)]
(4.5)

models the potential dip for the clock field σ . V sr can be any slow-
roll potential for the inflaton field θ . For example, for small field 
inflation we can approximate its total magnitude by a constant and 
the slope by a linear term, V sr = V 1 − βθ ; for large field, it can be 
simply the chaotic inflation potential V sr = m2 R̃2θ2/2 [40]. R̃ is 
approximately the final stable location of the massive field up to 
a small displacement due to a centrifugal force. This Lagrangian is 
very similar to the quasi-single-field inflation model [41,42] with 
a large mass term [43,44], except that we now include an earlier 
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Fig. 5. A Standard Clock full numerical prediction using a small field example 
(top) and its comparison with the Planck residuals using the template (4.7) (kr =
0.106 Mpc−1, A = 0.07) and CAMB [45] (bottom).

phase describing how the σ field slowly rolls and then drops and 
settles down in the potential dip. The curving of the trajectory in-
troduces a direct coupling between the two fields.

Such a model is also natural from the model building point 
of view. It is known that some finetuning is required to have 
60-efolds of inflation, hence many scalar fields fall down to their 
potential minima after a few efolds of rolling.

The background evolution can be solved numerically, and we 
denote it as θ0(t) and σ0(t). Similar to the bending trajectory case, 
the feature effect on the inflaton fluctuations δθ (including both 
sharp feature and resonance effect) includes the contribution from 
the background oscillation and the contribution from the quantum 
fluctuations of the clock field δσ . The coupling of the latter is pa-
rameterized by θ̇0/R̃ . In the parameter space where this coupling 
is small, the dominant contribution simply comes from the back-
ground oscillation,

δ̈θ +
[

3H + 2σ̇0

R̃ + σ0

]
δ̇θ +

[
k2

a2
+ V ′′

sr

(R̃ + σ0)2

]
δθ = 0. (4.6)

Setting Bunch–Davies vacua for both fields, we can solve the equa-
tion numerically [27]. An example is presented in Fig. 5. In this 
example we use the small field inflation model, with parame-
ters MP = 1, V 1 = 1.66 × 10−13, V 0 = 5.33 × 10−15, σ f = 0.0164, 
R̃ = 2.05, β = 1.38 × 10−16. We always choose parameters so that 
ω = 30 to reproduce the partial result in Fig. 3.

Notice, for the clock signal (2.2), there are some differences 
between the direct coupling case here and the gravitational cou-
pling case [19,20]. In the gravitational coupling case, the inflaton 
couples to the background slow-roll parameters, whose oscillating 
frequency is determined by the oscillating frequency of the energy 
density of the Standard Clock field. At the leading order, the en-
ergy is conserved, so ω = 2m/H0 is given by the next order term. 
The value α = −3 + 5/(2p) ≈ −3 reflects the rate the density of 
the massive field gets diluted in the inflationary background. Here 
in the direct coupling case, the massive field σ directly couples to 
the inflaton, instead of through the energy–momentum tensor. As 
a consequence, ω = m/H0 and α = −3/2 + 1/(2p) ≈ −3/2. Again 
none of these affects Property A and B.

To compare with data, we use the following template to repre-
sent the numerical result. Differences between the numerical result 
(the upper panel in Fig. 5) and the template are negligible on the 
scales of interest.

�Pζ

Pζ0
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
[
7 × 10−4

( 2k
k0

)2 + 0.5
]

cos
[ 2k

k0
+ 0.55π

]
,

k < ka,

14
13 A

( 2k
kr

)−3/2
sin

[
ω ln 2k

kr
+ 0.75π

]
,

kb > k ≥ ka,

19
13 A

( 2k
kr

)−3/2
sin

[
ω ln 2k

kr
+ 0.75π

]
,

k ≥ kb,

(4.7)

where

k0 = kr

1.05ω
, ka = 67

140
kr, kb = 24

35
kr, ω = 30. (4.8)

As we can see, the transition from the sharp feature sinusoidal 
running to the clock resonant running illustrated in Fig. 1, and the 
Property A and B – all with the inflationary characters – are man-
ifest in this template.

Unlike (2.2), for the full result, we have not figured out a way 
to write down the analytical template with varying ω. So to com-
pare with data, we simply choose and fix one of the best-fit values 
from Section 3, ω = 30. There are only two free parameters in this 
template, the scale kr and the amplitude A. Visually a fit is demon-
strated in Fig. 5. It is worth to emphasize that, the total number 
and the value of parameters for the full prediction are the same 
as those of the clock signal in Fig. 3. No new parameters are intro-
duced while the amount of the prediction is increased significantly. 
Therefore, it is encouraging that, between the two scales 	0 ∼ 30
and 	r ∼ 700, the full theoretical prediction not only does not con-
tradict with the data, but also shows some fitting behavior to the 
otherwise noise-looking residual data.5

The full theoretical result also predicts the highly correlated sig-
nals in the EE and ET polarization residuals that can be tested by 
future Planck data, see Fig. 6.

We have also tested several large field inflation examples. As we 
increase the value of the slow-roll parameter ε towards large field 
models, the most significant change is the increasing amplitude of 
the envelop of the sharp feature signal. This modifies the relative 
amplitude sizes between the sharp feature signal and the clock 
signal, and can significantly affect the data fitting. We leave the 
detailed study to Ref. [27].

5. Conclusion

Following the theoretical proposal of Standard Clock, we have 
started to compare its predictions with the Planck data. We have 

5 However, the statistical improvement in addition to Fig. 3 gained in the majority 
portion of the range 	 ∼ 100–700 is cancelled (back to −2� lnL ≈ −7.8 [27]) by 
data from a specific scale, represented by the single binned data point at 	 = 538 in 
Fig. 5. This data point alone increases −2� lnL by ∼ 8. The future determination 
of this data point will be important for this candidate.
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Fig. 6. Predictions on EE and TE residuals correlated with Fig. 5.

constructed and worked out a Standard Clock model with full pre-
dictions on the power spectrum. We have presented an interesting 
candidate in the Planck data, characteristic of the Standard Clock 
in the inflationary scenario. Although this candidate is not yet sta-
tistically significant, we use this to motivate detailed theoretical 
model-building, and use it as an example to illustrate how Stan-
dard Clock appears in CMB and how they can be further tested by 
future data. Such a Standard Clock candidate is an extensive fea-
ture covering nearly the entire range of scales probed by Planck. It 
would potentially add at least four more parameters to the �CDM 
Standard Model. It has highly correlated predictions in the po-
larization map, non-Gaussianities and other large scale structure 
maps over the same wide range of scales, and so can be tested 
with further analyses and future data. The Standard Clock signal 
contains important information on the early universe, and in par-
ticular can be used to directly measure the time-dependence of 
the scale factor of the primordial universe. If any of these candi-
dates is verified, such a signal would provide an independent and 
direct evidence for the inflationary paradigm.

Acknowledgements

X.C. is supported in part by a NSF grant PHY-1417421. We 
would like to thank Christophe Ringeval and Yi Wang for valu-
able help on programming, data search and collaboration [27]. 
We thank Hassan Firouzjahi, Xian Gao, David Langlois, Shuntaro 
Mizuno and Misao Sasaki for helpful discussions. Part of this work 
was presented in the Mini-Workshop on Gravitation and Cosmol-
ogy (Feb. 6th, 2014) in Yukawa Institute of Theoretical Physics in 
Kyoto University [46]. X.C. would like to thank the organizers for 
the hospitality.

References

[1] A.H. Guth, The inflationary universe: a possible solution to the horizon and 
flatness problems, Phys. Rev. D 23 (1981) 347.

[2] A.D. Linde, A new inflationary universe scenario: a possible solution of the 
horizon, flatness, homogeneity, isotropy and primordial monopole problems, 
Phys. Lett. B 108 (1982) 389.

[3] A.J. Albrecht, P.J. Steinhardt, Cosmology for grand unified theories with radia-
tively induced symmetry breaking, Phys. Rev. Lett. 48 (1982) 1220.

[4] A.A. Starobinsky, A new type of isotropic cosmological models without singu-
larity, Phys. Lett. B 91 (1980) 99.

[5] K. Sato, First order phase transition of a vacuum and expansion of the universe, 
Mon. Not. R. Astron. Soc. 195 (1981) 467.

[6] V.F. Mukhanov, G.V. Chibisov, Quantum fluctuation and nonsingular universe, 
JETP Lett. 33 (1981) 532, Pis’ma Zh. Eksp. Teor. Fiz. 33 (1981) 549 (in Russian).
[7] S.W. Hawking, The development of irregularities in a single bubble inflationary 
universe, Phys. Lett. B 115 (1982) 295.

[8] A.A. Starobinsky, Dynamics of phase transition in the new inflationary universe 
scenario and generation of perturbations, Phys. Lett. B 117 (1982) 175.

[9] A.H. Guth, S.Y. Pi, Fluctuations in the new inflationary universe, Phys. Rev. Lett. 
49 (1982) 1110.

[10] J.M. Bardeen, P.J. Steinhardt, M.S. Turner, Spontaneous creation of almost 
scale – free density perturbations in an inflationary universe, Phys. Rev. D 28 
(1983) 679.

[11] E. Komatsu, et al., WMAP Collaboration, Seven-year Wilkinson Microwave 
Anisotropy Probe (WMAP) observations: cosmological interpretation, arXiv:
1001.4538 [astro-ph.CO].

[12] P.A.R. Ade, et al., Planck Collaboration, Planck 2013 results. XVI. Cosmological 
parameters, arXiv:1303.5076 [astro-ph.CO].

[13] P.A.R. Ade, et al., Planck Collaboration, Planck 2013 results. XXII. Constraints on 
inflation, arXiv:1303.5082 [astro-ph.CO].

[14] P.A.R. Ade, et al., BICEP2 Collaboration, BICEP2 I: detection of B-mode polariza-
tion at degree angular scales, arXiv:1403.3985 [astro-ph.CO].

[15] R.H. Brandenberger, The matter bounce alternative to inflationary cosmology, 
arXiv:1206.4196 [astro-ph.CO].

[16] A. Ijjas, P.J. Steinhardt, A. Loeb, Inflationary paradigm in trouble after 
Planck2013, Phys. Lett. B 723 (2013) 261, arXiv:1304.2785 [astro-ph.CO].

[17] A.H. Guth, D.I. Kaiser, Y. Nomura, Inflationary paradigm after Planck 2013, 
arXiv:1312.7619 [astro-ph.CO].

[18] A. Linde, Inflationary cosmology after Planck 2013, arXiv:1402.0526 [hep-th].
[19] X. Chen, Primordial features as evidence for inflation, J. Cosmol. Astropart. Phys. 

1201 (2012) 038, arXiv:1104.1323 [hep-th].
[20] X. Chen, Fingerprints of primordial universe paradigms as features in density 

perturbations, Phys. Lett. B 706 (2011) 111, arXiv:1106.1635 [astro-ph.CO].
[21] D. Wands, Duality invariance of cosmological perturbation spectra, Phys. Rev. D 

60 (1999) 023507, arXiv:gr-qc/9809062.
[22] F. Finelli, R. Brandenberger, On the generation of a scale invariant spectrum of 

adiabatic fluctuations in cosmological models with a contracting phase, Phys. 
Rev. D 65 (2002) 103522, arXiv:hep-th/0112249.

[23] J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, The ekpyrotic universe: colliding 
branes and the origin of the hot big bang, Phys. Rev. D 64 (2001) 123522, 
arXiv:hep-th/0103239.

[24] S. Perlmutter, et al., Supernova Cosmology Project Collaboration, Discovery of 
a supernova explosion at half the age of the Universe and its cosmological 
implications, Nature 391 (1998) 51, arXiv:astro-ph/9712212.

[25] A.G. Riess, et al., Supernova Search Team Collaboration, Observational evidence 
from supernovae for an accelerating universe and a cosmological constant, As-
tron. J. 116 (1998) 1009, arXiv:astro-ph/9805201.

[26] X. Chen, C. Ringeval, Searching for Standard Clocks in the primordial universe, 
J. Cosmol. Astropart. Phys. 1208 (2012) 014, arXiv:1205.6085 [astro-ph.CO].

[27] X. Chen, M.H. Namjoo, Y. Wang, in preparation.
[28] A.A. Starobinsky, Spectrum of adiabatic perturbations in the universe when 

there are singularities in the inflation potential, JETP Lett. 55 (1992) 489, Pis’ma 
Zh. Eksp. Teor. Fiz. 55 (1992) 477.

[29] J.A. Adams, B. Cresswell, R. Easther, Inflationary perturbations from a potential 
with a step, Phys. Rev. D 64 (2001) 123514, arXiv:astro-ph/0102236.

[30] X. Chen, R. Easther, E.A. Lim, Large non-Gaussianities in single field inflation, 
J. Cosmol. Astropart. Phys. 0706 (2007) 023, arXiv:astro-ph/0611645.

[31] A. Achucarro, J.-O. Gong, S. Hardeman, G.A. Palma, S.P. Patil, Features of heavy 
physics in the CMB power spectrum, J. Cosmol. Astropart. Phys. 1101 (2011) 
030, arXiv:1010.3693 [hep-ph].

[32] V. Miranda, W. Hu, P. Adshead, Warp features in DBI inflation, Phys. Rev. D 86 
(2012) 063529, arXiv:1207.2186 [astro-ph.CO].

[33] N. Bartolo, D. Cannone, S. Matarrese, J. Cosmol. Astropart. Phys. 1310 (2013) 
038.

[34] X. Chen, R. Easther, E.A. Lim, Generation and characterization of large non-
Gaussianities in single field inflation, J. Cosmol. Astropart. Phys. 0804 (2008) 
010, arXiv:0801.3295 [astro-ph].

[35] H.V. Peiris, et al., WMAP Collaboration, First year Wilkinson Microwave 
Anisotropy Probe (WMAP) observations: implications for inflation, Astrophys. 
J. Suppl. Ser. 148 (2003) 213, arXiv:astro-ph/0302225.

[36] X. Gao, D. Langlois, S. Mizuno, Oscillatory features in the curvature power spec-
trum after a sudden turn of the inflationary trajectory, J. Cosmol. Astropart. 
Phys. 10 (2013) 023, arXiv:1306.5680 [hep-th].

[37] T. Noumi, M. Yamaguchi, Primordial spectra from sudden turning trajectory, 
J. Cosmol. Astropart. Phys. 1312 (2013) 038, arXiv:1307.7110 [hep-th].

[38] R. Saito, M. Nakashima, Y.-i. Takamizu, J.’i. Yokoyama, Resonant signatures of 
heavy scalar fields in the cosmic microwave background, J. Cosmol. Astropart. 
Phys. 1211 (2012) 036, arXiv:1206.2164 [astro-ph.CO].

[39] T. Kobayashi, J. Yokoyama, Primordial spikes from wrapped brane inflation, 
J. Cosmol. Astropart. Phys. 1302 (2013) 005, arXiv:1210.4427 [astro-ph.CO];
T. Kobayashi, J. Yokoyama, J. Cosmol. Astropart. Phys. 1309 (2013) E02 (Erra-
tum).

[40] A.D. Linde, Chaotic inflation, Phys. Lett. B 129 (1983) 177.

http://refhub.elsevier.com/S0370-2693(14)00804-1/bib477574683A313938307A6Ds1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib477574683A313938307A6Ds1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4C696E64653A313938316D75s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4C696E64653A313938316D75s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4C696E64653A313938316D75s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib416C6272656368743A313938327769s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib416C6272656368743A313938327769s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib537461726F62696E736B793A313938307465s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib537461726F62696E736B793A313938307465s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib5361746F3A31393830796Es1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib5361746F3A31393830796Es1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4D756B68616E6F763A313938317874s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4D756B68616E6F763A313938317874s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4861776B696E673A31393832637As1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4861776B696E673A31393832637As1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib537461726F62696E736B793A313938326565s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib537461726F62696E736B793A313938326565s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib477574683A313938326563s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib477574683A313938326563s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4261726465656E3A313938337177s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4261726465656E3A313938337177s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4261726465656E3A313938337177s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4B6F6D617473753A323031306662s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4B6F6D617473753A323031306662s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4B6F6D617473753A323031306662s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4164653A323031337A7576s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4164653A323031337A7576s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4164653A32303133756C6Es1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4164653A32303133756C6Es1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4164653A32303134786E61s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4164653A32303134786E61s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4272616E64656E6265726765723A323031327A62s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4272616E64656E6265726765723A323031327A62s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib496A6A61733A32303133766561s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib496A6A61733A32303133766561s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib477574683A32303133737961s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib477574683A32303133737961s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4C696E64653A323031346E6E61s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323031317A66s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323031317A66s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323031317475s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323031317475s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib57616E64733A313939387970s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib57616E64733A313939387970s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib46696E656C6C693A323030317372s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib46696E656C6C693A323030317372s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib46696E656C6C693A323030317372s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4B686F7572793A323030317766s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4B686F7572793A323030317766s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4B686F7572793A323030317766s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib5065726C6D75747465723A313939377A66s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib5065726C6D75747465723A313939377A66s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib5065726C6D75747465723A313939377A66s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib52696573733A313939386362s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib52696573733A313939386362s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib52696573733A313939386362s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323031326A61s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323031326A61s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib537461726F62696E736B793A313939327473s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib537461726F62696E736B793A313939327473s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib537461726F62696E736B793A313939327473s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4164616D733A323030317663s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4164616D733A323030317663s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A32303036786A62s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A32303036786A62s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib41636875636172726F3A323031306461s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib41636875636172726F3A323031306461s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib41636875636172726F3A323031306461s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4D6972616E64613A32303132726Ds1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4D6972616E64613A32303132726Ds1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib426172746F6C6F3A32303133657861s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib426172746F6C6F3A32303133657861s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A32303038776Es1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A32303038776Es1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A32303038776Es1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib5065697269733A323030336666s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib5065697269733A323030336666s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib5065697269733A323030336666s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib47616F3A323031336F7461s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib47616F3A323031336F7461s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib47616F3A323031336F7461s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4E6F756D693A32303133636661s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4E6F756D693A32303133636661s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib536169746F3A323031327064s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib536169746F3A323031327064s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib536169746F3A323031327064s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4B6F626179617368693A323031326B63s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4B6F626179617368693A323031326B63s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4B6F626179617368693A323031326B63s2
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4B6F626179617368693A323031326B63s2
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4C696E64653A313938336764s1


292 X. Chen, M.H. Namjoo / Physics Letters B 739 (2014) 285–292
[41] X. Chen, Y. Wang, Large non-Gaussianities with intermediate shapes from 
quasi-single field inflation, Phys. Rev. D 81 (2010) 063511, arXiv:0909.0496 
[astro-ph.CO].

[42] X. Chen, Y. Wang, Quasi-single field inflation and non-Gaussianities, J. Cosmol. 
Astropart. Phys. 1004 (2010) 027, arXiv:0911.3380 [hep-th].

[43] X. Chen, Y. Wang, Quasi-single field inflation with large mass, J. Cosmol. As-
tropart. Phys. 1209 (2012) 021, arXiv:1205.0160 [hep-th].
[44] S. Pi, M. Sasaki, Curvature perturbation spectrum in two-field inflation with a 
turning trajectory, J. Cosmol. Astropart. Phys. 1210 (2012) 051, arXiv:1205.0161 
[hep-th].

[45] A. Lewis, A. Challinor, A. Lasenby, Efficient computation of CMB aniso-
tropies in closed FRW models, Astrophys. J. 538 (2000) 473, arXiv:astro-ph/
9911177.

[46] http://www2.yukawa.kyoto-u.ac.jp/ws/2013/apc-yitp2014.ws/schedule.html.

http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323030397765s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323030397765s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323030397765s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323030397A70s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323030397A70s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323031326765s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4368656E3A323031326765s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib50693A323031326766s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib50693A323031326766s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib50693A323031326766s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4C657769733A313939396273s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4C657769733A313939396273s1
http://refhub.elsevier.com/S0370-2693(14)00804-1/bib4C657769733A313939396273s1
http://www2.yukawa.kyoto-u.ac.jp/ws/2013/apc-yitp2014.ws/schedule.html

	Standard Clock in primordial density perturbations and cosmic microwave background
	1 Introduction
	2 Standard Clocks
	3 A Standard Clock candidate in CMB
	4 A full model of Standard Clock
	5 Conclusion
	Acknowledgements
	References


