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Abstract

Defects of pressure piping, especially cracks, are inevitable during the lifetime of pipe, which will result in the pipe failure. In
order to ensure safe operation of pipe, failure assessment for the pressure pipe containing defects needs to be implemented. In
fact, the assessment parameters would show two types of uncertainty: randomness and fuzziness, because of the errors of
inspection and lack of precise information. In this paper, a fuzzy-probabilistic failure assessment method has been developed
based on Failure Assessment Diagram (FAD) from API 579-1/ASME FFS-1 procedure. This method combines the probability
theory with possibility theory to deal with fuzzy and random variables. Also, Monte Carlo simulation is used to calculate the
failure probability of pipe. This method was applied to a pipe with a surface crack. The effects of variables and their uncertainties
on failure probability were analyzed. The results show that the wall thickness and diameter of the pipe has the most important
contribution to the pipe failure, followed by the fracture toughness, the yield strength, the operating pressure, the depth and
length of the crack.
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1. Introduction

Pressure piping has been the major way to transport energy source due to its advantages of low cost and large
transmission capacity. But defects, especially cracks, are inevitable during the lifetime of pipe, which affect the
long-term reliability and integrity of the pipe. For ensuring safe operation of pipe, failure assessment of pressure
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pipe containing defects need to be implemented. There have been many assessment standards to assess the safe
condition of in-service equipment, such as such as the API 579-1/ASME FFS-1 [1], the FITNET FFS [2], the R6 [3],
the BS 7910 [4], the SINTAP [5-6].

In order to carry out failure assessment the above standards require parameters about defect geometry, wall
thickness and diameter of pipe, mechanical properties of pipe materials, and actual operating pressure and
temperature. These data are generally derived from design documents, operating, inspection and maintenance
records. Unfortunately, some parameters are always inflicted with uncertainty (i.e. incompleteness and
impreciseness) because of the random nature of the variables, the errors of inspection and the complexity of the
operating conditions. Generally, the data show two types of uncertainty: randomness and fuzziness. There are many
different approaches to uncertainty analysis: classical statistic, probabilistic, and sensitivity analysis [7-10].
However, these approaches cannot effectively solve fuzzy uncertainty, which will induce the unreasonable
assessment results.

During the last few years researchers have introduced fuzzy set theory or other relevant theories into failure
assessment. Zhou [11] proposed a method to compute the fuzzy failure probability of pressure piping based on fuzzy
sets. Anoop et al. [12] assessed the safe condition of austenitic steel nuclear power plant pipeline against SCC in the
presence of fuzzy and random uncertainties by using a new approach combining the vertex method with Monte
Carlo simulation. Singh and Markeset [13] examined two different ways of combining probabilistic and possibilistic
approaches for evaluating the integrity of corroded pipes.

In this study, a fuzzy-probabilistic failure assessment method based on API 579-1/ASME FFS-1 is presented to
predict the failure probability of pipes with crack by using the Monte Carlo simulation. This method combines the
probability theory with possibility theory to deal with fuzzy and random variables. The effects of variables and their
uncertainties on failure probability were analyzed to identify the most important parameters affecting the safety of
cracked pipe.

2. How to deal with hybrid uncertainties?
2.1. Random uncertainty and fuzzy uncertainty

In practice, two types of uncertainty, randomness and fuzziness, both exist in many cases. Some parameters have
the nature of randomness, and others fuzziness. It is traditional to deal with random uncertainty through the use of
probability theory, especially Monte Carlo simulation. Similarly, fuzzy uncertainty is handled by means of fuzzy set
theory. If we could proposed a new method, combining the probabilistic and possibilistic approaches, would be
better than either of the two above mentioned approaches. This work attempts to develop such a method according
to the relationship between probability theory and possibility theory.

2.2. Briefintroduction of possibility theory

Possibility theory, originally proposed by Zadeh in 1978 [14] and then further developed by Dubois and Prade
[15-17], is considered as the extension and supplement of fuzzy set theory, and it can effectively deal with uncertain
and imprecise information.

Probability theory uses a single probability measure (i.e. probability value, P(4)) to describe an event A, while
possibility theory uses two measures: possibility measure (/1) and necessity measure (), which are defined:

11(A) =sup 7(w) (1)

wed

N(A) =inf(1 - 7(w)) @)

weA

where 7 (@) denotes possibility distribution function; it can be effectively represented by means of a fuzzy O whose
membership function is 4, (@) = 7(w) [14].



1300 W. Wu et al. / Procedia Engineering 130 (2015) 1298 — 1310

2.3. The relationship between possibility variable and probability variable

Although probability theory and possibility theory differ in format, there is certain relation between them. Zadeh
[14] pointed out that the probability measure of an event is less than or equal to its possibility measure, and greater
than or equal to its necessity measure. Thus, an equivalence class P of probability measures P compatible with the
available data can be defined:

P = {P|VA4,N(A) < P(4) < II(4)} 3)

According to the above formula, a procedure has been proposed by Savoia [18] to connect between fuzzy
variable and random variable. Consider a fuzzy set Q with membership function #,(x). Assuming 4 = (-, x] in
Eq. (3), the following cumulative distribution functions (CFDs) are defined:

F,(x) = N((~=2,x]) = N(4) 4
F, (x) = (=0, x]) = [1(4) 5)

where F (x) and F, (x) denotes the lower and upper bounds for all probability measures P belonging to class P,
compatible with available data. That is,

E,(x) < F(x) < F, (x), where F(x) = P((—0, x]) (6)

Using Egs. (4) and (5), the lower and upper bounds F,(x) and F, (x) may be rewritten in terms of the
membership function of the fuzzy set Q as

F,(x) = sup{u, (o) | @ < x} (7
F,(x)=inf{l- u,(®)| @ > x} (®)

According to Egs. (7) and (8), the relationship amongst £, (x), £, (x) and u,(@) is clearly shown in Fig. 1.

Based on the above analysis, we can convert one fuzzy variable to two random variables which obey £ (x) and
F, ().C) , .respectlvely. That means we can use probability theory to calculate failure possibility of cracked pipe
considering random and fuzzy uncertainties.

F, (%)
F,(x)
_ Ho(x)

o
=Y

Fig. 1. The relationship amongst F,(x)s F,(x) and (@) -
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3. Proposed procedure of failure assessment of cracked pipe

In this section a fuzzy-probabilistic failure assessment method for cracked pipe was proposed based on Failure
Assessment Diagram (FAD) from API 579-1/ASME FFS-1 procedure. This method combines the probability theory
with possibility theory to deal with fuzzy and random uncertainties. The specific procedure is as follows.

A limit state function g(X) of a pressure pipe with cracks is defined as

g(X)=f(L)-K, ©))
- (1-0.142)[03+0.7exp(-0.65L' ) |. L < Lrv "
0, L>I™

where f(L,) is the failure assessment curve (see Fig. 2). If the assessment point lies below the curve, that means

g(X)>0, the pipe is safe. If the assessment point lies on or above the curve, g(X)<0, failure occurs. The failure
probability of the pipe can be expressed as:

Defect size Stress analysis Fracture toughness,K ;¢
| |

v

Stress intensity factor, K;

v

KA — KI [
' KIC

i" A Brittle fracture /// Unsafe zone
g .

2 Failure assessment curve
g Safe zone // f(L)

eh ’

: /

= >4 (LK)

,7A
/
K, = Kisee
/
2 Plastic collapse
//
Load ratio, L,
J Ty |
T 03
Reference stress, 0,
[

Defect size | | Stress analysis ‘ ‘ Yield stress,o;

Fig. 2. Failure Assessment Diagram (FAD).
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P, = P(g(X)<0) (an

According to the assessment procedure of crack-like flaws in the API 579-1/ASME FFS-1 standard and the
reliability theory, the failure probability can be written as:

P = ﬂ P(L,,K YK dL, (12)

2(X)<0

where P(L,, K,) denotes the joint probability density function of L, and K.. Because P(L,, K,) is too complicated to
represent explicitly, Eq. (11) is hardly calculated by analytical methods. Therefore, the Monte Carlo simulation is
used to compute the failure probability. A large number of random variables are generated based on the distributions
they obey. Then, the random variables are input into the limit state function. According to the theory of large
numbers [19], the failure probability can be calculated by the following relation:

1
P = ﬂ P(L K )dK dL = % - Egh" (13)

L, <0
1, g(X)<0

h = (14)
0, g(X)>0

where N and n denote the total number of Monte Carlo simulation cycles and the number of cycles for g(X)<0,
respectively.
The flowchart for calculating the failure probability of pipe containing crack is shown in Fig. 3. It is noteworthy

that if there are one fuzzy variable, firstly convert it to two random variables which obey F n (x) and F i (x) by

using Eqgs. (7) and (8), and then calculate two failure probabilities corresponding to the two random variables,
respectively. Similarly, if there are m fuzzy variables, 2" failure probabilities can be obtained. We define P, . and

P as the lower bound and upper bound probability, respectively. That is, we finally obtain a failure probability

£ max

interval [P

f.min® " f max ] .
4. Example
4.1. Case description

The above method was applied to a pipe with a semi-elliptical surface crack (see Fig. 4) to calculate the failure
probability of the pipe. Except operating pressure P, the rest of parameters (i.e. the sizes of the crack, inner radius R,
wall thickness ¢, fracture toughness Kjc and yield stress o) are all treated as random variables. The specific values of
the parameters and their probabilistic distributions are given in Table 1. The operating pressure P of the pipe is
considered as a fuzzy variable represented triangular membership function. Since the authors could not obtain
information on the variation of P, support for the fuzzy set of operating pressure P is determined assuming a
variation of 10% of the design value (3.4 MPa). The specific membership function of the operating pressure is
shown in Fig. 5.
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Fig. 3. The flowchart to calculate the failure probability.
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4.2. Calculation of failure probability

The details and results of calculation of failure probability are given in Appendix A. The results show that the
interval range of the failure probability of the pipe is from 0.0002 to 0.0012. The maximum failure probability is
0.0012, which is recommended for decision-making purpose.

Fig. 4. A semi-elliptical surface crack in a straight pipe.

Table 1. Random parameters and their random distributions used in the assessment.

Parameters Distribution Mean value Standard deviation
Inner radiu R; /mm Normal 1500 150

Wall thickness ¢ /mm Normal 25 2.5

Crack depth a /mm Normal 5 0.5

Crack length 2¢ /mm Normal 80 8

Fracture toughness KIC /MPa-m0.5 Lognormal 329.7 32.97

Yield stress o, /MPa Lognormal 248 24.8

5. Results and discussion
5.1. Influence of uncertainty of fuzzy variables

The coefficient of variation of a fuzzy variable (fcov) is defined to be a measure of the degree of fuzzy
uncertainty.

AP
feov(P) =— (15)
P

where AP denotes the maximum deviation between the design pressure and actual operating pressure.

By changing the value of AP, the failure probabilities of the pipe at different fcov(P) were calculated (where P is
constant). The results are shown in Fig. 6. It can be seen that the failure probability as well as the range of the fuzzy
failure probability interval increases with increasing fcov(P).The reason is that with increasing AP, the fuzzy
uncertainty of the variable increases, which can increase possibility to allow g(X) to fall within the unsafe zone. In
addition, it can be noticed that the fuzzy failure probability is less than the probability calculated based on the
maximum pressure P+ AP, which shows the estimated failure probability based on P+ AP is more conservative than
fuzzy failure probability.
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Fig. 5. Membership function for operating pressure in the example problem.
5.2. Influence of uncertainty of random variables

Similar to fcov, the coefficient of variation of a random variable (rcov) is defined to be a measure of the degree of
random uncertainty.

o
reov = — (16)
7,

where o and g denotes the standard deviation and the mean value of a random variable, respectively. Through
only changing the standard deviation, the failure probabilities of the pipe at different rcov (from 0 to 0.4) were
calculated.

Figure 7 and Fig. 8 illustrate the influence of rcov(R;) and rcov(¢) on failure probability, respectively. The results
shows that with the increasing rcov(R;) and rcov(f), failure probability obviously increases. This is because that with
increasing standard deviation of R; or ¢, the random variable increases the possibility to allow g(X) to fall within the
unsafe zone, thus increasing the failure probability. Besides, it can be seen that the upper-bound failure probability
increases from 0.0012 to 0.0604 as the rcov(R;) increase from 0 to 0.4, whereas that increase from 0.0012 to 0.1684
as the rcov(f) increase from 0 to 0.04. This implies rcov(¢) has a bigger influence on the failure probability of the
pipe than rcov(R)).
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[
Qo
o 0.03 - o .
2
& o002} / i
0.01 | /l _
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Fig. 6. Effect of the fcov(P) on the failure probability.



1306

W. Wu et al. / Procedia Engineering 130 (2015) 1298 — 1310

T T T
0.08 )] B
= When P=(1+0.1)x3.4MPa e
—e— When P=(1-0.1)x3 4MPa / 1
006 L When P=3.4MPa N ~ B
51 4— Upper-bound probability P4
= | —v— Lower-bound probability i 1
o /
S 004} _
a
@ 4
3 P
& 02 b S
0.00 p== -
Il 1 1 1
0.0 a1 02 0.3 04
rcov(RJ)
Fig. 7. Effect of the rcov(Ri) on the failure probability.
T T T
0.08 - . g
—=—\When P=(1+0 1)x3 4MPa I
&— When P=(1-0.1)x3.4MPa /
When P=3.4MPa Ay
0.06 - 4 Upper-bound probability Ié 7
| v— Lower-bound probability i

Failure probability
o
o
=

=)
1=}
[N]

0.00 p= -
L 1 1 1
0.0 0.1 0.2 0.3 0.4
rcov(as)
Fig. 9. Effect of the ycoy(c ) on the failure probability.
L T r T L T T
0.005 | —w—when P=(1+0.1)<3.4MPa T
|l | —® When P=(1-0.1)x3.4MPa s
—— When P=3.4MPa S
0.004 |- | —a— Upper-bound probability o b
z -v— Lower-bound probability //// |
= s
= 0003 | o K,
<] A e
& b e =l
o - s
5 0002 | A i
= e
w e
P
0.001 p——4 *
| L =
p— - s
Y] S S— S e ——
0.0 0.1 0.2 0.3 04
recov{a)

Fig. 11. Effect of the rcov(a) on the failure probability.

T T T
0.20 e
=— When P=(1+0.1)x3.4MPa -
—s— When P=(1-0.1)x3.4MPa /” A
wis b When P=3.4MPa i
o 4 Upper-bound probability
% —v— Lower-bound probability
S 010f g
a
e
2
S 005t .
0.00 4
1 Il 1 1
0.0 0.1 02 0.3 0.4
rcow(t)
Fig. 8. Effect of the rcov(t) on the failure probability.
T T T
0.025 | 4
—=—When P=(1+0.1)x3.4MPa -
—o— When P=(1-0.1)x3.4MPa
0020 |- When P=3.4MPa v B
4— Upper-bound prabability /
& —v— Lower-bound probabilit /
3 0015 | / B
©
o
[
o
p 0010 B
2
[y
w
0005 |- E
0.000 B
L 1 " L " 1 n Il
0.0 0.1 0.2 03 04
reoviK, )
Fig. 10. Effect of the rcov(KIC) on the failure probability.
0.012 3 ; y
0.010 _ —u— When P=(1+0.1)x3.4MPa )
: o When P=(1-0.1)x3.4MPa
I When P=3.4MPa
0.008 |- 4 Upper-bound probability .
= | —v— Lower-bound probability
=
T 0.006 | E
o
s
@
§ 0.004 - -
poozE—— " - 4
L i
L L L 1 n 1 n 1

0.0 01 02

reov(c)

Fig. 12. Effect of the rcov(c) on the failure probability.



W. Wu et al. / Procedia Engineering 130 (2015) 1298 — 1310

Figure 9 and Fig. 10 show the influence of rcov(o) and rcov(Kic) on failure probability, respectively. The
similar tendencies are seen for the influence of rcov(o,) and rcov(Kic). The failure probability is more sensitive to

rcov(o,) than it is to rcov(Kic).

Figure 11 and Fig. 12 illustrate the effect of rcov(a) and rcov(c) on failure probability, respectively. Although
with the increasing rcov(a) and rcov(c) failure probability gradually increases, the increasing extent is relatively
small.From the above analysis, it is shown that the failure probability of the pipe is more sensitive to standard
deviations of ¢, R; and & than that of Kjc, , @ and c.

5.3. Sensitivity Analysis

In this section the effect of the mean value of the different variables on the failure probability was analyzed. In
the above case, the limit state function is influenced by variables P, R;, ¢, o, Kic, a ,c. By changing the mean value

of any of these variables from -30% to 30% and keeping the rest constant, the changing trend of the limit state
function is obtained. The results are shown in Fig. 13. The slope of the curve reflects the influence of the variable on

g(X). Obviously, the limit state function increases with increasing the mean value of o, Kic, ?, whereas it decreases

with increases increasing of a ,c, R;, P.

The ranking of the variables is revealed more clearly in Fig. 14. If variables have a positive effect on the limit
state function g(X), the upside of the bar is shown in black and the down side of the bar in red color. If variables
have a reverse effect on g(X), the bars are shown in a reversed manner (see Fig. 14 ). It can be seen that the pipe wall

thickness t has the biggest effect on pipe failure, followed by R;, Kic, o P, a and c. Therefore, in order to reduce the
failure probability of the pipe by the mean value of variables, priorities should be sequentially given to ¢, R;, Kic,
o, P, a and c. It is obvious that for an in-service pipe only P, @ and ¢ can be focused on to control the failure

probability.
T T T
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Fig. 13. Effect of variation of variables on limit state function. ~ Fig. 14. Ranking of the effect of variation of variables on limit state function.

6. Conclusions

In this paper, a fuzzy-probabilistic failure assessment method has been developed based on API 579-1/ASME
FFS-1 procedure. The proposed method combines probability theory and possibility theory to deal with hybrid
uncertainties: randomness and fuzziness. The failure probability of a pipe containing a crack was calculated by using

Monte Carlo simulation. The effect of parameters (P, ¢, Ri, o, Kic, , a and c) and their uncertainty on failure

probability was systematically discussed and the following results are obtained.

1307
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The failure probability increases with the increasing fcov(P) and increasing standard deviations of the random
variables (¢, Ri, o, Kic,, a and c). The failure probability of the pipe is more sensitive to standard deviations of ¢, R

and o than that of Kic, , a and c. Sensitivity analyses by only changing the mean value of any of these involved
variables shows that the wall thickness ¢ and inner radius of the pipe R; have the most important contribution to the
pipe failure, followed by Kic, o, P, a and c.

From the results obtained, it is noted that the fuzzy-probabilistic failure assessment method used in the present
study is promising for failure assessment of cracked pipe.
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Appendix A. Calculation of fuzzy failure probability of the pipe

This appendix describe the detailed calculations of fuzzy failure probability of the pipe containing a crack (see
Fig. 4). The specific process is as follows.

Step 1: Sample from random variables

First of all, convert each of fuzzy variable P to two random variables which obey F;(x) and F;, (x) by using
Egs. (7) and (8), and then obtain a group of samples of random variables according to their distributions.

Step 2: Calculate toughness ratio K,

Calculate toughness ratio K, of the semi-elliptical surface crack in pipe by using the following equations [20].

K K, A
L= 1
K, (A1)
K, =~Nrma(o,f +0,f,) (A2)
1 a 089 |(aY 1 aY'|(a)
f = —1.13-0.09—+| —0.45+ — |+ 05— +14| 1-— - (A3)
c t

a\“ | ¢ 02+ L M 0.65+%
1+1.464(cj T T
a a a 0.75 a 1.5 a 2
f = 1+(—1.22—0.12—j—+ 0.55—1.05(—) +0.47(—j (—j f (A4)
c/)t c c t

o =— (AS)
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where 0, and o, denote membrane stress and bending stress, respectively.

Substitute the group of samples from Step 1 into the Eqs. (A1-AS5) to obtain the toughness ratio K.

Step 3: Calculate load ratio L,

Firstly, calculate the reference stress (o) of the semi-elliptical surface crack in pipe by using the following

equations [20]

L o,
, = (A6)
G.Y
2
—12M P 4——t
Gre/ s m + 3(1 _ 0_/)2 (A7)
1-[a/(M, )]
M =—t11 /]
T (alt) (A8)
(A9)
(A10)
P - PR, (A11)

where P, and P, denote primary membrane stress and primary bending stress, respectively.
Substitute the group of samples from Step 1 into the Eqs. (A6-A11) to obtain the load ratio L,.

Step 4: Determine the position of (K, L)

Substitute K, from Step 2 and L, from Step 3 into Eq. 10. If g(X)<0, the pipe is unsafe, that is, n=n+1, otherwise,
n remains constant.

Step 5. Determine the failure probability
Repeat Steps 1-4 N times (N=10°), and then determine the failure probability interval based on Eq.(13). The

results show that the interval range of the failure probability of the pipe is from 0.0002 to 0.0012.
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