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Evidence for a dynamic role of the linker histone variant H1x during retinoic
acid-induced differentiation of NT2 cells
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a b s t r a c t

The dynamics of chromatin structure are tightly regulated by multiple epigenetic mechanisms such
as histone modifications and incorporation of histone variants. In the current work, differentiation
of an embryonal carcinoma cell line, NT2, was induced by retinoic acid, and total histone proteins
were compared throughout this process. The results showed a significant change in expression level
of a variant of H1 histone named H1x. Chromatin immunoprecipitation coupled with real-time PCR
analysis demonstrated a preferential incorporation of this protein in the regulatory region of Nanog,
a marker gene of stemness that is significantly suppressed in differentiated cells. This finding reveals
a dynamic role of H1x in differentiation, and implies a repressive role for this histone variant.
� 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The H1 or ‘‘linker’’ histones are a family of very lysine-rich pro-
teins that bind to the linker DNA between core nucleosomes and
facilitate compaction of chromatin fiber [1,2]. To date, eleven sub-
types of H1 have been identified, i.e., H1.1–H1.5 [3], H10 [4], H1t
[5,6], H1T2 [7], HILS1 [8], H1Foo [9] and H1x [10–12]. In a compar-
ison between all H1 histones, H1x has a lower molecular weight
than the bulk H1 histones, which causes a higher migration rate
of electrophoresis for this chromatin protein. The epigenetic role
of H1x has not been defined exactly, but a nucleosome digestion
assay of HeLa cell nuclei indicated that H1x is not randomly dis-
tributed in chromatin, but is enriched in a less accessible chroma-
tin portion [11].

Changes of H1 histone variants are crucial events in modulating
local chromatin arrangements. It has been mentioned that the H1
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variants differ in their ability to condense chromatin [13–16]. This
heterogeneity suggests a functional significance for H1 family
members in accordance with the developmental status of many
organisms [17,18], as well as differentiation of mammalian cell
lines in vitro [19].

Embryonal carcinoma (EC) cells derived from germ cell tumors
are valuable tools for investigating differentiation and develop-
mental biology processes in vitro. The advantage of the reproduc-
ible and rapid expansion of these cell lines provides a useful
alternative to embryos for the study of mammalian cell differenti-
ation [20]. During early stages of cell differentiation, the rate of
transcription of large numbers of genes is substantially altered in
a time-dependent manner [21]. In developmental model systems,
replacement of cognate histones by their variants has been pro-
posed to produce epigenetic marks that cause ‘‘commitment’’ of
cells to the differentiated phenotype [19,22], primarily according
to the cell culture/induction conditions.

In our previous study, through epigenetic analysis of a human
EC cell line, NT2, the dynamic interplay of core histone modifica-
tions/variations was discussed in relation to regulation of the gene
expression profile during differentiation induced by retinoic acid
(RA) [23].

In the current work, we investigated the contribution of linker
histone variation in the process of differentiation, using the same
cellular model system. The present data introduces H1x as a linker
lsevier B.V. All rights reserved.
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histone subtype with differential expression level during RA-in-
duced differentiation of NT2 cells. To our knowledge this is the first
time that a dynamic role in differentiation has been demonstrated
for the H1x subtype.
Fig. 1. (A) SDS–PAGE pattern of acid-extracted histones of NT2 cells during RA-
induced differentiation, at the time points indicated. M, molecular weight marker.
The arrow head shows a histone variant with differential expression pattern,
identified by mass spectrometry as the H1x variant (see Supplementary data, S2).
(B) Western blot analysis of total histone extracts for H1x histone. Histone H3 was
used as loading control.
2. Materials and methods

2.1. Cell sample preparation

NTERA2 clone D1 (NT2.cl.D1, a gift from Dr. Peter Andrews) EC
stem cells were grown and maintained in DMEM medium, supple-
mented with 10% fetal calf serum and 2 mM L-glutamine at 37 �C in
5% CO2. Differentiation was induced by RA as previously described
[23]. The cells were harvested at 0, 3, 6, 9, 12 and 15 days of RA
induction.

2.2. Electrophoresis of histone extracts and western blot analysis

Total histones were extracted using 0.2 N HCl [24], and 15 lg of
extracts were electrophoretically analyzed on 15% sodium dodecyl
sulfate–polyacrylamide gel electrophoresis (SDS–PAGE), according
to the method of Laemmli [25]. Separated histones on gel were
transferred to PVDF membrane, then incubated overnight with
anti-histone H1x (Abcam ab31972, 1:500) as primary antibody.
Peroxidase-conjugated anti-rabbit IgG (Sigma A0545, 1:15000)
was used as secondary antibody and the immunoreactive proteins
were visualized using chemiluminescence ECL-Plus substrate (Sig-
ma, CPS-1-120) and detected by exposure to X-ray film. Blotting for
total histone H3 (Sigma HO164) was applied as a loading control.

2.3. Mass spectrometry

After running on gel, the sliced protein band was reduced, alkyl-
ated and trypsinized in gel as described before [26]. Peptides were
extracted from the gel with 2% trifluoroacetic acid. Extracted pep-
tides were desalted and acidified to a final concentration of 0.5%
acetic acid and purified by STAGE tips [27].

Peptide sequencing were performed using a nano Easy LC flow
system (Proxeon, Odense, Denmark) connected online to a 7-T lin-
ear ion trap ion cyclotron resonance Fourier transform (LTQ-FT Ul-
tra) mass spectrometer (Thermo Fisher, Bremen, Germany). Raw
spectrum files were processed by MaxQuant software as previously
described [28]. MS/MS spectra were merged into peak-list files and
searched against the human IPI protein database version 3.37.

2.4. Quantitative PCR

Total RNA extraction and cDNA synthesis were performed on
three independent replicates and mRNA quantification was per-
formed by quantitative real time-polymerase chain reaction
(qRT-PCR) using primers shown in Table S1-A. Gene expression
data were analyzed according to the DDCt quantitative method
[29] to estimate relative fold change values.

2.5. Chromatin immunoprecipitation (ChIP) – real time qPCR analysis

ChIP experiments were performed on three biological repli-
cates, using Orange ChIP kit (Diagenode, Belgium) just according
to the instruction of the manufacturer. Chromatin from 1 � 105

cells was used for each immunoprecipitation. PCR amplification
was performed on DNA recovered from the ChIP and the total chro-
matin input, using primers listed in Table S1-B (the particular re-
gions amplified are chosen based on our previous work [23]).
Immunoprecipitated DNA was quantified by real-time PCR on a
7500 Real-Time PCR System (AB Applied Biosystems). Data were
expressed as percentage of input DNA associated with immunopre-
cipitated histone H1x relative to a 1/100 dilution of input
chromatin.

2.6. Statistical analysis of real-time PCR

Values are expressed as means ± S.D. of 3 separate biological
experiments. All data was analyzed using repeated-measures ANO-
VA followed by Tukey–Kramer multiple comparisons post hoc test.
Differences were considered statistically significant at P < 0.05.

3. Results

3.1. Analysis of total histones extracted from NT2 cells during RA-
induced differentiation

To compare total histone components of NT2 cells through the
differentiation process, cell samples were harvested at 0, 3, 6, 9, 12
and 15 days after RA induction, and the extracted total histones
were analyzed by SDS–PAGE. As shown in Fig. 1A, a thin protein
band was observed (indicated with arrowhead) in the electropho-
retic pattern of histones extracted from NT2 cells after 9, 12 and
15 days of RA treatment. Localization of this protein near the area
related to histone H1 suggested a linker histone. The protein was
characterized by mass spectrometry analysis of Commassie-
stained excised gel band, using in-gel tryptic digestion followed
by Fourier transform mass spectrometry (FT-MS) analysis. The pro-
tein was thus identified as histone H1x (44.1% sequence coverage),
a variant of the cognate linker histone (see Supplementary data,
S2).

3.2. Differential expression of H1x during RA-induced differentiation of
NT2 cells

Western blot analysis with anti-H1x antibody further con-
firmed the appearance of histone H1x during RA-induced differen-
tiation (Fig. 1B), in agreement with the previous analysis.

Furthermore, quantitative real time-PCR showed a gradual in-
crease in H1x transcript level during the course of RA-induced dif-
ferentiation (Fig. 2).
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Fig. 2. Quantitative reverse transcription PCR analysis of H1x expression during RA-
induced differentiation of NT2 cells, at the time points indicated (mean ± S.D.; n = 3;
*P < 0.05 compared to day 0).
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3.3. Localization of the histone variant H1x on the regulatory regions
of stemness/differentiation marker genes

ChIP was applied to check the presence of H1x histone variant
on the regulatory regions of two stemness marker genes (Oct4
and Nanog) and two neuroectodermal marker genes (Nestin and
Pax6) drawn in Fig. 3A. Among the four marker genes, H1x was pre-
dominantly detected in the regulatory region of Nanog, the stem-
ness gene drastically suppressed after onset of differentiation
(Fig. 3B). It is interesting to note that incorporation of H1x to the
up-stream region of Nanog was about 10-fold higher than that
for the other stemness gene, Oct4, and also 5–10-fold more than
seen with the neuroectodermal marker genes, Nestin and Pax6. A
time course ChIP experiment was also performed, in order to mon-
itor the presence of H1x on the regulatory region of Nanog during
H1x Incorporatio
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Fig. 3. (A) Regulatory regions examined by chromatin immunoprecipitation on the four
by bars and nucleotide number relative to the transcription start site (TSS). (B) ChIP anal
RA-induced NT2 cells. (C) Time course ChIP analysis of H1x on the regulatory region of N
relative to a 1/100 dilution of input chromatin (mean ± S.D.; n = 3; *P < 0.05 compared t
RA-induced differentiation. As shown in Fig. 3C, levels were signif-
icantly above the day 0 value starting at day 3, with a further in-
crease around days 12–15.

4. Discussion

The role of linker histones in regulating chromatin structure
and gene expression is well established. Although there are many
reports concerning the expression of different kinds of H1 linker
histone subtypes through development and also in different tissues
and organs, a clear and direct correlation between individual H1
variants and chromatin structure and function is unknown [30].

In this study we demonstrated that a variant of the linker his-
tone family, H1x, is up-regulated during RA-induced differentia-
tion of NT2 cells. Since RA-induced differentiation of
teratocarcinoma cell lines such as NT2 appears in many ways to
recapitulate steps that occur during embryonic development
[23,31], this finding suggests that the linker variant H1x has a dy-
namic role in embryonal differentiation processes.

Increased expression level of H1x through RA-induced differen-
tiation of NT2 cells encouraged us to study the incorporation of this
epigenetic mark on the 50-regulatory regions of four stemness/dif-
ferentiation marker genes Oct4, Nanog, Nestin and Pax6.

In our previous work on monitoring the expression profile of
two stemness (Oct4 and Nanog) and two neuroectodermal marker
genes (Nestin and Pax6), it was clearly shown that these markers
were reciprocally regulated through RA-induced neuronal/neuro-
ectodermal differentiation of NT2 cells [23]. In the current study,
anti-H1x ChIP coupled with real-time PCR revealed that the H1x
variant was predominantly incorporated into the regulatory region
of Nanog, a homeobox-containing transcription factor specifically
expressed in pluripotent stem cells. Comparing the expression pat-
tern of Oct4 and Nanog in NT2 cells [23,32], Oct4 shows a low
H1x Incorporation
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continuous expression during RA induction, although both stem-
ness marker genes down-regulate immediately after the onset of
differentiation. With this in mind we propose that replacement
of H1 histone by the variant H1x on the 50-upstram region of Nanog
gene has an effective repressive role in the regulation of this stem-
ness gene. Although it was reported previously that H1x is en-
riched in micrococcal nuclease-resistant or less accessible
chromatin portions of HeLa cell nuclei [11], the current work
shows for the first time a clear link between this linker histone
subtype and repression of a defined marker gene during cellular
differentiation.

Concerning the numerous numbers of genes involved in differ-
entiation of embryo into various cellular lineages, this study
emphasizes the importance of elucidating the repressive role of
H1x variant in the control of more developmental marker genes.
It will be very interesting to use ChIP-sequencing technology to
map the incorporation of this linker histone variant at the gen-
ome-wide level in this and other cellular model systems.
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Supplementary data associated with this article can be found, in
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