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Abstract

The transformation group theoretic approach is applied to study the di#usion process of a drug through a skin-like
membrane which tends to partially absorb the drug. Two cases are considered for the di#usion coe0cient. The application
of one parameter group reduces the number of independent variables by one, and consequently the partial di#erential
equation governing the di#usion process with the boundary and initial conditions is transformed into an ordinary di#erential
equation with the corresponding conditions. The obtained di#erential equation is solved numerically using the shooting
method, and the results are illustrated graphically and in tables. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The di#usion through membranes is one of the interesting types of di#usion studies that is of great
importance in the pharmaceutical sciences. Several experiments may be made to study the process.
One such experiment which clearly exhibits this behaviour is that of non-stationary di#usion of a
drug from a donor cell through a thin membrane to a receiver cell. This type of experiment was
used in several works by Hoogervorst et al. [6] and Spacek and Kubin [7].
To explain the process, consider two cells of the same volume, the donor and the receiver cells,

separated by a thin membrane. A high concentration of a drug in a saline solution is placed in
the donor cell and the receiver cell contains only a saline solution. Initially, the membrane is
free from the drug, the two cells are stirred continually, and the drug starts to di#use through
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the membrane. The concentration of drug in the receiver cell and also in the membrane begins to
increase.
This experiment was carried out and the proposed mathematical model was solved numerically

by Spoelstra and Van Wyk [8] using the Gnite-di#erence method only to evaluate the values of the
parameters of the model and to deGne the concentration in the donor and the receiver cells.
In this work, the mathematical model is solved using the group transformation method applied

by Abd-el-Malek and El-Mansi [1], Boutros et al. [2], Gaggioli and Moran [4] and Hansen [5], to
deGne the concentration of drug in the membrane in addition to that in the donor and the receiver
cells.
In the group transformation, the number of independent variables are reduced by one and thus

the partial di#erential equation in two variables is transformed to an ordinary di#erential equation.
The resulting di#erential equation is then solved numerically using the shooting method presented
by Cheney and Kincaid [3].

2. Mathematical formulation

Mathematical models for di#usion, based on Fick’s laws, do not apply to the following cases:
membranes of hairless mouse skin, human skin and several synthetic membranes (see Spoelstra and
Van Wyk [8]).
The applied model is based on the following assumptions: the rate of absorption at any point

in the membrane is proportional to the concentration of the drug at the point, the x-axis of the
coordinate system is taken in the direction of the normal on the membrane and no di#usion takes
place through the edges of the membrane, the concentration in the membrane is considered as a
function of time and of the x-coordinate, and the rate of transfer of di#usant in the membrane, per
unit area, is proportional to the gradient of the concentration across the membrane.
Let C(x; t) be the concentration of the drug at a distance “x” from one face of the membrane and

at an instant of time “t” and P(x; t) be the function which determines the coe3cient of di4usion.
The concentrations of drug in the donor and the receiver cells are D(t) and R(t), respectively.
Consider a membrane of unit thickness and if “Q” is the coe0cient of partition, “q” is the

coe0cient which determines the rate of absorption of the drug in the membrane. The equation
which governs the di#usion process may be written as

9C
9t =P

92C
9x2 +

9P
9x
9C
9x − q

C2

t2
; 0¡x¡ 1; t ¿ 0 (2.1)

with the following conditions.
(i) Initial condition:

C(x; 0)=0; 06 x6 1: (2.2)

(ii) Boundary conditions:

(a) C(0; t)=(t); t ¿ 0;

(b) C(1; t)=  (t); t ¿ 0; (2.3)
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where

(t)=
�Q

D(t)− �
; �; � are constants

and

 (t)= aQR2(t); a is a constant:

3. Solution of the problem

Our method of solution depends on the application of a one-parameter group transformation to
the partial di#erential equation (2.1). Under this transformation the two independent variables will
be reduced by one and di#erential equation (2.1) transforms into an ordinary di#erential equation.

3.1. The group systematic formulation

The procedure is initiated with the group G, a class of transformation of one-parameter “b” of
the form

G: u=Ku(b)u+ Su(b); (3.1)

where u stands for x; t; C and P and the K’s and S’s are real-valued and at least di#erentiable in
the real argument “b”.

3.2. The invariance analysis

To transform the di#erential equation, transformations of the derivatives of C and P are obtained
from G via chain-rule operations

u Ni=
(
Ku

Ki

)
ui; u Ni Nj =

(
Ku

KiKj

)
uij; i= x; t; j= x; t (3.2)

where u stands for C and P.
Eq. (2.1) is said to be invariantly transformed, for some function H (b), whenever

NC Nt − NP NC Nx Nx − NP Nx NC Nx + Nq
NC
2

Nt2
=H (b)

[
Ct − PCxx − PxCx + q

C2

t2

]
: (3.3)

Substitution from (3.1) into (3.3) yields(
KC

Kt

)
Ct − (KPP + SP)

(
KC

(Kx)2

)
Cxx −

(
KPKC

(Kx)2

)
Pxcx +

(
KCC + SC

Ktt + St

)2
q

=H (b)
[
Ct − PCxx − PxCx + q

C2

t2

]
+ R(b); (3.4)
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where

R(b)=−
[
KCSP

(Kx)2

]
+ 2q

[
KCSCC

(Ktt)2 + 2KtStt + (St)2

]
+
[

q(SC)2

(Ktt)2 + 2KtStt + (St)2

]
: (3.5)

For conformal invariance, H (b) is taken as a constant. For the remainder R(b) to vanish,

SP = SC =0; (3.6)

and from (3.4)

[
KC

Kt

]
=
[
KPKC

(Kx)2

]
=
[
KC

Kt

]2
=H (b); St =0: (3.7)

Moreover, initial condition (2.2) and boundary conditions (2.3) are also invariant in form, implying
that

KC

Kt =1;
KC

Kt =
KPKC

(Kx)2
; Kx=1; (3.8)

giving

KC =Kt; KP =
1
Kt : (3.9)

Finally, we get the one-parameter group G which invariantly transforms di#erential equation (2.1),
as well as initial condition (2.2), and boundary conditions (2.3). The group G is of the form

G:




Nx= x;
Nt=(Kt)t;
NC =(Kt)C;

NP=
(
1
Kt

)
P:

(3.10)

3.3. The complete set of absolute invariants

The reduction of the partial di#erential equation (2.1) into an ordinary di#erential equation pro-
ceeds as follows:

gj(x; t; C; P)=Fj[�(x; t)];

where � is the absolute invariant of the independent variables x and t. C and P are the dependent
variables and gj (j=1; 2) represents the invariant groups for both C and P.
According to the fundamental theorem of group analysis [4]

4∑
i=1

(�iui + �i)
9gi

9ui
=0; (3.11)
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where
ui=(x; t; C; P);

�i=
9Kui

9b (b0)= 0;

�i=
9Sui

9b (b
0)= 0;

i=1; 2; 3; 4

where b0 is the identity element of the group.
From this we get �i=0; i=1; 2; 3; 4 as Sx= St = SC = SP =0.
Eq. (3.11) is applied to obtain �(x; t). It is written as

�1x
9�
9x + �2t

9�
9t =0; (3.12)

giving

�2t
9�
9t =0 since �1 =

9Kx

9b =0

from which �=f1(x). Without loss of generality, we can consider the identity function, i.e., �= x.
By a similar analysis the dependent variables C and P are found to be

C(x; t)=�(t)F(�) (3.13)

and

P(x; t)=!(t)T (�): (3.14)

4. The reduction to an ordinary di�erential equation

To obtain a similar representation for the problem, Eq. (2.1) is reduced to an ordinary di#erential
equation. This is carried out by substituting “C” and “P” and their partial derivatives using (3.13)
and (3.14). This is achieved as follows:

9C
9t =F

d�
dt

;
9C
9x =�

dF
d�

;
92C
9x2 =�

d2F
d�2

;
9P
9x =!

dT
d�

: (4.1)

Upon substituting into Eq. (2.1), we get

d2F
d�2

+
[
1
T
dT
dt

]
dF
d�

−
[
1

!T�
d�
dt

]
F − q

[
�

!Tt2

]
F2 = 0: (4.2)

For (4.2) to be reduced to an expression in the single independent invariant �, it is necessary that
the coe0cients should be constants or functions of � alone. Thus,

1
T
dT
d�
=E1(�); (4.3a)

1
!T�

d�
dt
=E2(�); (4.3b)

�
!Tt2

=E3(�): (4.3c)
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Case 1: Let T (�)= e−�; �(t)= #t; !=1=t, where # is a constant; hence,

E1 =− 1; E2 = e�; E3 = #e�

and, consequently, Eq. (4.2) takes the form

d2F
d�2

− dF
d�

− e�F − #qe�F2 = 0 (4.4)

with the boundary conditions:

F(0)= �Q; (4.5a)

F(1)=Q: (4.5b)

In addition,

P(x; t)=
e−x

t
;

D(t)=
1
#t
+ �;

R(t)=

√
#
a
t: (4.6)

Case 2: Let T (�)= e−�2 ; �(t)= #t; !=1=t; where # is a constant; hence,

E1 =− 2�; E2 = e�
2
; E3 = #e�

2

and, consequently, Eq. (4.2) takes the form

d2F
d�2

− 2�dF
d�

− e�2F − #qe�
2
F2 = 0 (4.7)

with the boundary conditions:

F(0)= �Q; (4.8a)

F(1)=Q: (4.8b)

In addition,

P(x; t)=
e−x2

t
: (4.9)

5. Numerical results

Eqs. (4.4) and (4.7) with the associated boundary conditions are boundary value problems. The
most e#ective method to solve such type of problems is the shooting method. Referring to Spoelstra
and Van Wyk [8] and to meet the physics of the problem, a suitable choice of the constants and
the parameters of the problem is made.
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Consider

q=1:16; Q=81:95; �=2:0; �=40; 000; #=
10−6

4
; a=

10−11

32
:

The results are given in tables and Ggures.

6. Discussion of results

The model used is illustrated in Fig. 1. The results obtained in Fig. 2 show the decrease of
concentration in the donor cell and increase of concentration in receiving cell as expected physically.
A detailed study of the concentration and di#usion in the membrane is given as follows:

Fig. 1. A physical model of the experiment of the problem: (1) the donor cell; (2) the receiver cell; and (3) a thin
membrane.

Fig. 2. The concentration of the donor and the receiver cells.
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Fig. 3. (a) Curves of the concentration through the membrane at di#erent times for the two cases of P(x; t). (b) Variation
of the concentration with time at speciGc sections of membrane for P(x; t)= e−x=t and (c) P(x; t)= e−x2 =t.

(i) In Fig. 3a, the concentration of the drug inside the membrane is given versus x. It is found
that C(x; t) slowly decreases from the border of the membrane to the other. (ii) In Figs. 3b and c,
the concentration C(x; t) is plotted for the two physical cases:
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Fig. 3. (Continued)

Table 1
Values of concentration in membrane for the two cases at t=20 min

X C(x; 20) R.D.%
case(1) case(2)

0.0 0.000820 0.000820 0.000
0.1 0.000760 0.000758 −0.260
0.2 0.000703 0.000703 0.000
0.3 0.000650 0.000653 0.610
0.4 0.000600 0.000608 1.315
0.5 0.000553 0.000566 2.330
0.6 0.000512 0.000528 3.030
0.7 0.000476 0.000492 3.250
0.8 0.000446 0.000461 3.180
0.9 0.000424 0.000433 2.080
1.0 0.000410 0.000410 0.000

P(x; t)=
e−x

t
and P(x; t)=

e−x2

t
:

The Ggures show that the concentration increases with time.
(iii) The relative di#erence between the concentration in the membrane for the two di#erent cases

is tabulated in Tables 1 and 2 for two di#erent times (20 min and 100 min). The small relative
variation in concentration for the two cases is explained by the fact that the di#usion coe0cient is
of small weight in Eq. (2.1).
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Table 2
Values of concentration in membrane for the two cases at t=100 min

X C(x; 100) R.D.%
case(1) case(2)

0.0 0.00410 0.00410 0.000
0.1 0.00380 0.00379 −0.260
0.2 0.00352 0.00352 0.000
0.3 0.00325 0.00327 0.610
0.4 0.00300 0.00304 1.315
0.5 0.00276 0.00283 2.330
0.6 0.00256 0.00264 3.030
0.7 0.00238 0.00246 3.250
0.8 0.00223 0.00230 3.180
0.9 0.00212 0.00216 2.080
1.0 0.00205 0.00205 0.000

Fig. 4. Relative di#erence between values of concentration in the two cases through the membrane.

The di#erence is varying at di#erent sections of the membrane, the greatest relative di#erence
occurs at x=0:7 and gradually decreases to attain a zero value at the two faces of the membrane,
as illustrated in Fig. 4.

7. Concluding remarks

A highly non-linear partial di#erential equation, has been solved using the group method, and
C(x; t) and P(x; t) have been evaluated analytically using the parameters of an experimental



M.B. Abd-el-Malek et al. / Journal of Computational and Applied Mathematics 140 (2002) 1–11 11

study [8]. The results obtained map the state of the membrane in a way similar to the one ob-
tained by Spoelstra and van Wyk [8], using a Gnite-di#erence method.
The other transformations, like spiral transform and linear transform, do not work for leaving the

di#erential equation as well as the initial and boundary conditions invariant.
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