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Let A and D be positive operators on a complex Hilbert space H. In this work
Ž .we show that the operator equation lDX q X*A s A l ) 0 has a unique solution

C satisfying certain conditions, if there exists a positive operator B such thatl
Ž .AB q D y B A G 0. This implies several previously known results in special

cases on this class of operator equations. Also, along with some definitions, a
counterexample to a previous conjecture will be given. Q 1996 Academic Press, Inc.

INTRODUCTION

The purpose of this paper is two-fold.

Ž .a Describe very briefly the previous research on the range inclu-
sion in order to find the solutions of the class of operator equations

lDX q X*A s A for all real l ) 0.

This implies several previously known results on solution of the class of
operator equations in the special case.

Ž .b Give a counterexample to a previous conjecture related to range
inclusion. Throughout this work, H will denote a complex Hilbert space,
and A, B, and D will be positive bounded linear operators on H. Recall
that A G B means that A y B is positive and A : B denotes the parallel

Ž .sum of A and B. Also, the range of A will be denoted by R A .

In Section 1, we survey some results about the range inclusion and give
an example which establishes that a previously known conjuncture is false.
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In Section 2, we give a sufficient condition for the operator equation

lDX q X*A s A

to have a positive solution. This class of operator equations arises in
various practical situations including the studies of superconductivity,
boundary value problems, sensitivity analysis, and optimal control.

1. RANGE INCLUSION

w xThe concept of range inclusion has been studied by the author 8]10
w xand Green and Morley 6, 7 . We begin with a principle of symmetry for

range inclusion.

w xTHEOREM 1.1 8 . If A and B are linear transformations on a ¨ector space
Ž . Ž . Ž . Ž .X, then R A : R A q B if and only if R B : R A q B .

Ž w x.LEMMA 1.1 Green and Morley 6, 7 . Let A and B be positï e operators.
Ž . Ž .If AB s BA, then R A : R A q B .

w x 2 Ž . Ž .THEOREM 1.2 9 . If AB q BA q B G 0, then R A q lB = R A , for
all l G 1.

w x Ž . Ž .THEOREM 1.3 10 . If AB q BA G 0, then R A q lB = R A for all
l G 0.

Note that Theorem 1.3 implies Theorem 1.2 and Lemma 1.1.
Now we give an example which establishes that the following conjecture

is false.

Ž . Ž .Conjecture. If R A q lB = R A for all l G 0, then AB q BA G 0.

0 1 4r3 1 2Ž . Ž .EXAMPLE 1.1. Let A s and B s act on C . Clearly0 0 1 1

Ž . Ž . Ž . Ž .R A , R B , and R A, lB are closed for all l G 0. Thus, R A q lB s
Ž Ž . 1 r 2 . Ž 1 r 2 . Ž Ž . 1 r 2 . Ž 1 r 2 .R A q lB s R A q R lB s R A q
Ž 1r2 . Ž . Ž . Ž . Ž . Ž .R B s R A q R B = R A , and hence R A : R A q lB for all l G

0 1Ž .0. Also AB q BA s which is not positï e.1 2

The following theorem generalizes some of the work done by Green and
w x w x w xMorley 6, 7 , Bunce 3 , and the author 9 .

w xTHEOREM 1.4 10 . Let A, B, and C be positï e operators. If AB q CA G
0, then for a fixed l G 0,

Ž . w Ž .x Ž . Ž .1 R A q l B q C s R A q R B q C ;
Ž . w Ž .x Ž .2 R A q l B q C = R A ;
Ž . w Ž .x Ž .3 R A q l B q C = R B q C ;
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Ž . 5 w Ž . xy1 54 A A q l B q C q e F M for some real M and all e ) 0;1 1

Ž . 5Ž .w Ž . xy1 55 B q C A q l B q C q e F M for some real M and2 2
Ž . Ž . Ž . Ž . Ž .e ) 0. Moreo¨er, 1 , 2 , 3 , 4 , and 5 are equï alent.

2. SOLUTION OF lDX q X*A s A

In this section, it is shown that if there exists a positive operator B such
Ž .that AB q D y B A G 0, then the operator equation lDX q X*A s

Ž . Ž . Ž . Ž .A l ) 0 has a unique solution C satisfying condition a , b , and c ofl
the following theorem.

w x Ž . Ž .THEOREM 2.1 10 . If , R A q B = R A , then the operator equation
AX q X*B s A has a unique solution C on H so that

Ž . 5 5 2 � Ž .24a C s inf mrA F m A q B ;2

Ž . Ž . Ž .b ker A s ker c , and
Ž . Ž .y Ž .c R A q B = R D .

Moreo¨er, C is positï e if and only if AB s BA.

THEOREM 2.2. Suppose there exists a positï e operator B such that AB q
Ž . Ž .D y B A G 0, then operator equation lDX q X*A s A l ) 0 has a
unique bounded solution C on H such thatl

Ž . 5 5 2 � 2 Ž .24a C s inf mrA F m A q Dl

Ž . Ž . Ž .b Ker A s Ker C ; andl

Ž . Ž .y Ž .c Range A q lD = Range Cl

Moreo¨er, C is positï e if and only if AD s DA.l

Ž . Ž .Proof. If AB q D y B A G 0, then AB q D y B A q BA q
Ž . ŽA D y B s AD q DA G 0. It follows from Theorem 1.3 that R A q
. Ž .lD = R A . Note that for each real l G 0, there exists a unique bounded

operator C satisfying the desired condition such thatl
Ž . Ž .A: lD s lDC and lD: A s A I y C . Moreover, since lD : A* sl l

Ž . Ž U .lD : A , one can conclude that lDC s I y C A. This shows that lDCl l l
U Ž . ² U Ž . Žq C A s A. Also, since A s A q lD C and C A q lD x, A ql l l

. : ² Ž . : ² Ž 2 . : UlD x s Ax, A q lD x s x, A q lAD x for all x. Thus C is posi-l
tive if and only if AD s DA, because A2 q lAD G 0 if and only if
AD s DA and the proof is complete.

Note that if AD q DA G 0, then we can select B as Dr and hence we2
Ž . Ž .have AB q D y B A s ADr q D y Dr A s ADr q Dr A G 0.2 2 2 2

Thus the operator equation lDX q X*A s A has a unique solution Cl
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satisfying the desired condition. This shows that the above theorem gener-
w xalizes Lemma 2.1 of 10 .
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