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1. Introduction

In the 1980’s, a conjecture about the asymptotic behavior of codimensions of ordinary polynomial
identities was made by S.A. Amitsur. Amitsur’s conjecture was proved in 1999 by A. Giambruno and
M.V. Zaicev [1, Theorem 6.5.2] for associative algebras, in 2002 by M.V. Zaicev [2] for finite dimen-
sional Lie algebras, and in 2011 by A. Giambruno, L.P. Shestakov, M.V. Zaicev for finite dimensional
Jordan and alternative algebras [3]. In 2011 the author proved its analog for polynomial identities
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of finite dimensional representations of Lie algebras [4]. Alongside with ordinary polynomial identi-
ties of algebras, graded polynomial identities [5,6] and G-identities are important too [7,8]. Therefore
the question arises whether the conjecture holds for graded and G-codimensions. E. Aljadeff, A. Gi-
ambruno, and D. La Mattina proved [9,10] the analog of Amitsur’s conjecture for codimensions of
graded polynomial identities of associative algebras graded by a finite Abelian group (or, equivalently,
for codimensions of G-identities where G is a finite Abelian group).

This article is concerned with graded codimensions (Theorem 1) and G-codimensions (Theorem 2)
of Lie algebras.

1.1. Graded polynomial identities and their codimensions

Let G be an Abelian group. Denote by L(X®&") the free G-graded Lie algebra on the countable
set X8 = Ugeq X®, x® = {xgg) xgg),. .}, over a field F of characteristic 0, i.e. the algebra of Lie
polynomials in variables from X®. The indeterminates from X(® are said to be homogeneous of
degree g. The G-degree of a monomial [x(g‘) xi(tgf)] € L(X®") (all long commutators in the article
are left-normed) is defined to be g1g>...g, as opposed to its total degree, which is defined to be t.
Denote by L(X8")(® the subspace of the algebra L(X®") spanned by all the monomials having G-
degree g. Notice that [L(X%)® L(x&)®M]c L(X&)EN, for every g, h € G. It follows that

L(x®) = Pr(xe)®

geG

is a G-grading. Let f = f(x?lg”,...,xftg‘)) € L(X8"). We say that f is a graded polynomial identity of
a G-graded Lie algebra L = @, L® and write f =0 if f(agfl),...,agfr)) =0 for all al(fj) e L@,

1 < j <t. The set I1d® (L) of graded polynomial identities of L is a graded ideal of L(X8"). The case of
ordinary polynomial identities is included for the trivial group G = {e}.

Example 1. Let G = Z = {0, 1}, g, (F) = gl (F)® @ gl,(F) where gly(F)® = (%) and gl (F)P =
(2 f)- Then x©, y©7 e 1d2 (g1, (F)).

Let Sy be the nth symmetric group, n € N, and

Ve = <[x((7g(1])),x((7g(22)), s ((Tg(”,f)] |gi€G, 0€Sy),.

The non-negative integer c&'(L) := dim( ) is called the nth codimension of graded polynomial

Vg‘ﬂldgr(L)
identities or the nth graded codimension of L.
The analog of Amitsur’s conjecture for graded codimensions can be formulated as follows.

Conjecture. There exists Plexp8 (L) := limy_, o0 1/ c5' (L) € Z..

Remark. [.B. Volichenko [11] gave an example of an infinite dimensional Lie algebra L with a non-
trivial polynomial identity for which the growth of codimensions c,(L) of ordinary polynomial iden-
tities is overexponential. M.V. Zaicev and S.P. Mishchenko [12,13] gave an example of an infinite
dimensional Lie Pl-algebra L with a non-trivial polynomial identity such that there exists fractional

Plexp(L) := limp— o ~/Cn(L).

Theorem 1. Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0, graded by
a finite Abelian group G. Then there exist constants C1, C3 > 0, 11,72 € R, d € N such that Cyn"1d" < ¢&'(L) <
Cyn"2d" foralln e N.
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Corollary. The above analog of Amitsur’s conjecture holds for such codimensions.

Remark. If L is nilpotent, i.e. [x1,...,X,] =0 for some p € N, then VE C1d® (L) and &' (L) = 0 for all
nzp.

Theorem 1 will be obtained as a consequence of Theorem 2 in Section 1.3.
1.2. Polynomial G-identities and their codimensions

Analogously, one can consider polynomial G-identities for any group G. We use the exponential
notation for the action of a group and its group algebra. We say that a Lie algebra L is a Lie algebra
with G-action or a Lie G-algebra if there is a fixed linear representation G — GL(L) such that [a, b]8 =
[a®,b®] for all a,b €L and g € G. Denote by L(X|G) the free Lie algebra over F with free formal

generators xf., jeN, g €G. Define (x‘]g)h = x’}g for h € G. Let X := {x1,X2,x3,...} where x; _x},
1 € G. Then L(X|G) becomes the free G-algebra with free generators x;, j € N. Let L be a Lie G-
algebra over F. A polynomial f(x1,...,%;) € L(X|G) is a G-identity of L if f(ay,...,a,) =0 for all
a; € L. The set Id®(L) of all G-identities of L is an ideal in L(X|G) invariant under G-action.

Example 2. Consider ¢ € Aut(gl,(F)) defined by the formula

a b\ _(a —b
cd) " \—-c d )
Then [x +x¥, y + y¥] € 1d® (gl,(F)) where G = (y) = Z,.

Denote by VnG the space of all multilinear G-polynomials in X1, ..., xp, i.e.

V,f = <[X§1(1)’X§2(2)7 e U(n)] | gieG, o€ S,1>

Then the number c& (L) := dim(

the nth G-codimension of L.

m) is called the nth codimension of polynomial G-identities or

Remark. As in the case of associative algebras [1, Lemma 10.1.3], we have

cn(L) < ¢ (L) < |G["cn(L).
Here cp(L) = ¢, }(L) are ordinary codimensions.
Also we have the following upper bound:

Lemma 1. Let L be a finite dimensional Lie algebra with G-action over any field F and let G be any group. Then
¢S (L) < (dim L)1,

Proof. Consider G-polynomials as n-linear maps from L to L. Then we have a natural map Vr? —
Homp (L®"; L) with the kernel VHG N1d° (L) that leads to the embedding

Vi

— " <, Homp(L®" L).
vENIde(L) ( )
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Thus

, Ve , ,
(L) = dlm(m) < dimHomp (L®"; L) = (dim D™ g

The analog of Amitsur’s conjecture for G-codimensions can be formulated as follows.
Conjecture. There exists Plexp® (L) := limy_ o0 v/c$ (L) € Zy.

Theorem 2. Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0. Suppose a
finite group G not necessarily Abelian acts on L. Then there exist constants C1,Cy >0, 11,13 € R, d € N such
that Cin"d" < c$ (L) < Can™d" foralln e N.

Corollary. The above analog of Amitsur’s conjecture holds for such codimensions.

Remark. If L is nilpotent, i.e. [x1,...,Xp] =0 for some p € N, then, by the Jacobi identity, V,f c1d®(L)
and c$(L) =0 for all n > p.

Remark. The theorem is still true if we allow G to act not only by automorphisms, but by anti-
automorphisms too, i.e. if G = Go U G such that [a, b]® = [a8,b&] for all a,b e L, g € Gg and [a, b]® =
[b8,a8] for all a,b € L, g € Gy. Indeed, we can replace G with G = Gg U (—G1) where [a,b] & =
—[a,b]8 = —[b8,a8] =[a&,b %] for all (—g) € (—G1). Then G acts on L by automorphisms only.
Moreover, n-linear functions from L to L that correspond to polynomials from P,f and P,f , are the
same. Thus

G : Vr? . Vna G
ey () =dim( —"—— ) =dim( —"—— ) =¢{/ (L)
Vi Nld~ (L) vENId® (L)

has the desired asymptotics.
Theorem 2 is proved in Sections 4-6.
1.3. Duality between group gradings and group actions

If F is an algebraically closed field of characteristic 0 and G is finite Abelian, there exists a
well-known duality between G-gradings and G-actions where G = Hom(G, F*) = G. Details of the
application of this duallty to polynomial identities can be found, e.g., in [1, Chapters 3 and 10].

A character v € G acts on L in the natural way: (ag)” = v(g)ag for all g€ G and ag € L®.
Conversely, if L is a G-algebra, then L® ={a e L |a”¥ = y(g)a for all ¥ € G} defines a G- gradmg
on L.

Note that if G is finite Abelian, then L(X®") is a free G- algebra with free generators y; =

decx(g) Thus there exists an isomorphism ¢ : L(X|G) — L(X®) defined by e(xj) = dec x\®,

(&)

that preserves G-action and G- -grading. The isomorphism has the property &((x;)) = X; where

eg = m Zw(‘//(g)) 14 is one of the minimal idempotents of FG defined above.

Lemma 2. Let L be a G-graded Lie algebra where G is a finite Abelian group. Consider the corresponding
G-action on L. Then

(1) £(1d® (L)) = 1d¥"(L);
(2) ¢ (L) =cq (L).



30 A.S. Gordienko / Journal of Algebra 367 (2012) 26-53

Proof. The first assertion is evident. The second assertion follows from the first one and the equality
s(VOH=VE. o

Remark. Note that Z;-grading in Example 1 corresponds to Z;-action in Example 2.

Proof of Theorem 1. Codimensions do not change upon an extension of the base field. The proof is
analogous to the cases of ordinary codimensions of associative [1, Theorem 4.1.9] and Lie algebras
[2, Section 2]. Thus without loss of generality we may assume F to be algebraically closed. In virtue
of Lemma 2, Theorem 1 is an immediate consequence of Theorem 2. O

1.4. Formula for the PI-exponent

Theorem 2 is formulated for an arbitrary field F of characteristic 0, but without loss of generality
we may assume that F is algebraically closed.

Fix a Levi decomposition L = B @ R where B is a maximal semisimple subalgebra of L and R is
the solvable radical of L. Note that R is invariant under G-action. By [14, Theorem 1, Remark 3], we
can choose B invariant under G-action too.

We say that M is an L-module with G-action if M is both left L- and FG-module, and (a - v)8 =
a®-v& forallaelL, ve M and g € G. There is a natural G-action on Endp(M) defined by ¢&m =
(wmg_l)g, meM, geG, ¥ € Endp(M). Note that L — gl(M) is a homomorphism of FG-modules.
Such module M is irreducible if for any G- and L-invariant subspace M1 € M we have either M1 =0
or M{ = M. Each G-invariant ideal in L can be regarded as a left L-module with G-action under the
adjoint representation of L.

Consider G-invariant ideals Iy, I3, ..., Iy, J1, J2,..., Jr, T € Z4, of the algebra L such that Ji C I,
satisfying the conditions

(1) Ix/Jk is an irreducible L-module with G-action;
(2) for any G-invariant B-submodules T} such that I = Ji & Ty, there exist numbers g; > 0 such that

[[T1,L,...,L1 (T2, L, ..., L], ... [Ty, L, ..., L]] #0.
N —’ N —’ N —’
q1 q2 ar

Let M be an L-module. Denote by Ann M its annihilator in L. Let

. L
d(L) := max (dlm )
Ann(l1/J1) N---NAnn(ly/ Jr)

where the maximum is found among all r € Z; and all Iy,..., I, J1,...,J; satisfying conditions
(1)-(2). We claim that Plexp® (L) = d(L) and prove Theorem 2 for d =d(L).

1.5. Examples

Now we give several examples.
Example 3. Let L be a finite dimensional G-simple Lie algebra over an algebraically closed field F of
characteristic 0 where G is a finite group. Then there exist C > 0 and r € R such that Cn"(dim L)" <
¢S (L) < (dimL)™*1.
Proof. The upper bound follows from Lemma 1. Consider G-invariant L-modules I1 =L and J; =0.

Then I;/J; is an irreducible L-module, Ann(l;/J1) =0 since a G-simple algebra has zero center, and
dim(L/Ann(l1/J1)) =dimL. Thus d(L) > dimL and by Theorem 2 we obtain the lower bound. O



A.S. Gordienko / Journal of Algebra 367 (2012) 26-53 31

Example 4. Let L be a finite dimensional simple G-graded Lie algebra over an algebraically closed
field F of characteristic 0 where G is a finite Abelian group. Then there exist C > 0 and r € R such
that Cn'(dim L)" < c&(L) < (dim L)™+1,

Proof. This follows from Example 3 and Lemma 2. O

Example 5. Let L be a finite dimensional Lie algebra with G-action over any field F of characteristic 0
such that Plexp® (L) < 2 where G is a finite group. Then L is solvable.

Proof. It is sufficient to prove the statement for an algebraically closed field F. (See the remark before
Theorem 2.) Consider the G-invariant Levi decomposition L = B @ R. If B # 0, there exists a G-simple
Lie subalgebra B; C L, dim By > 3 and Plexp®(L) = d(L) > 3 by Example 3. We get a contradiction.
Hence L =R is a solvable algebra. O

Analogously, we derive Example 6 from Example 4.

Example 6. Let L be a finite dimensional G-graded Lie algebra over any field F of characteristic O such
that Plexp®'(L) < 2 where G is a finite Abelian group. Then L is solvable.

Example 7. Let L = B1&®---® B be a finite dimensional semisimple Lie G-algebra over an algebraically
closed field F of characteristic 0 where G is a finite group and B; are G-minimal ideals. Let d :=
max;gigs dim B;. Then there exist C1, C2 > 0 and r1, 12 € R such that Cin"d" < CS(L) < Can2d",

Proof. Note that if I is a G-simple ideal of L, then [I, L] # 0 and hence [I, B;] # 0 for some 1 <i<s.
However [I, Bj] € B; NI is a G-invariant ideal. Thus I = B;. And if I is a G-invariant ideal of L, then
it is semisimple and each of its simple components coincides with one of B;. Thus if I C J are G-
invariant ideals of L and I/] is irreducible, then I = B; & J for some 1 <i <s and dim(L/Ann(l/])) =
dim B;. Note that if I = Bi, & J1 and I, = Bi, & J2, i1 # ip, then [[Bi,,L,...,L],[Bi,L,...,L]] = 0.
Thus I,...,Ir, J1,..., Jr can satisfy conditions (1)-(2) only if r = 1. Hence d(L) = maxgigsdim B;
and the result follows from Theorem 2. O

Example 8. Let L = B; & --- ® B be a finite dimensional semisimple G-graded Lie algebra over an
algebraically closed field F of characteristic 0 where G is a finite Abelian group and B; are minimal
graded ideals. Let d := max;<igs dim B;. Then there exist C1, C2 > 0 and ry, 2 € R such that Cin"d" <
c&'(L) < Cyn"2d,

Proof. This follows from Example 7 and Lemma 2. O

Example 9. Let me N, G C S, and O; be the orbits of G-action on

S
,2,...m=]Jou
i=1
Denote
d:= max |0j]|.
1<i<s
Let L be the Lie algebra over any field F of characteristic 0 with basis ay,...,am, b1,...,bn, dimL =

2m, and multiplication defined by formulas [a;, a;] = [b;,bj]=0 and

ifi=j,

pa_ )bj
[““bf]—{o if i # .
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Suppose G acts on L as follows: (a;)° =as () and (bj)° =bsj) for o € G. Then there exist C1,C2 >0
and rq1, 2 € R such that

Cin"d" < cC(L) < Con"2d".

In particular, if

C=(1)XZn=2/mZ)={0,1,...,m—1}

where T = (123 ... m) (a cycle), then

Cin"'m" < c,f(L) < Conm".
However, c;(L) =n—1 for all n € N.

Proof. If K D F is a larger field, then K ®f L is defined by the same formulas as L. Since c,? (L) =
C,?'K(K ®r L) (see the remark before Theorem 2), we may assume F to be algebraically closed.

Let Bj :=(bj | je Oj)r, 1 <i<s. Suppose I is a G-invariant ideal of L. If b; € I, then by @) =
(bi)? €1 for all o € G. Thus if i € O}, then by e[ for all ke Oj. Let ¢ := Z;L(otiai + Bib;) € I for
some «;, B € F. Then Bib; = [a;,c] €I for all 1 < i <m too. Therefore, I = Ag ® Bj; © --- ® B;, for
some 1<ij<sand Ag S{ar,...,am)r.

If I, ] C L are G-invariant ideals, then J C J+[L,L]NI < I is a G-invariant ideal too. Suppose I/ ]
is irreducible. Then either [L, L]NI € J and Ann(I/J)=L or I C J+[L, L] where [L, L] = (b1,...,bm)F.
Thus Ann(I/]) # L implies | = Ao @ Bj, ®---® B;, and I =B, @ ] for some 1< ¢ <s. In this case
dim(L/Ann(I/])) = |O¢].

Note that if Iy = B;; @ J1 and I = Bj, @ J2, then

[(Bi,,L,....L],[Bj,, L,....L]]=0.

Thus I4,...,Ir, J1,..., Jr can satisfy conditions (1)-(2) only if r = 1. Hence

d(L) = max |Oy]|
1<i<s

tx

and by Theorem 2 we obtain the bounds.

Consider the ordinary polynomial identities. Using the Jacobi identity, any monomial in V; can be
rewritten as a linear combination of left-normed commutators [Xq, Xj, Xi,, ..., X;,]. Since the polyno-
mial identity

[[x, y].[z.t]]=0

holds in L, we may assume that i3 <i4 < --- <ip. Note that f; =[x, X}, X, ..., X;,], 2 < j <n, are
linearly independent modulo Id(L). Indeed, if ZZ:Z ai fk =0, oy € F, then we substitute x; = by and
x; =ay for i # j. Only f; does not vanish. Hence oj =0 and ¢;,(L)=n—-1. O

Example 10. Let m e N, L = Ppy L® be the Zp-graded Lie algebra with L® = (i di)F.
dimL® = 2, multiplication [ci,c;] =[d;,dj] =0 and [c;,dj] = d;y; where F is any field of char-

acteristic 0. Then there exist C1, C2 > 0 and rq, 2 € R such that

Cin"'m" < &'(L) < Con2m™.
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Proof. Again we may assume F to be algebraically closed. Let ¢ € F be an mth primitive root of 1.
Then G = {yo, ..., ¥m_1} for G = Zy where () := ¢%/. We can identify the algebras from Exam-
ples 9 and 10 by formulas ¢; = S 1( kg and d; = St Jk bk The Zp-grading and (7)-action

correspond to each other since (c‘,)f = Jc/ =Y¢(j)c; and (d_,)r = g‘eldj- =Yy (j)d;. By Lemma 2,
&' (L) = ¢{" (L) and the bounds follow from Example 9. 0

1.6. S,-cocharacters

One of the main tools in the investigation of polynomial identities is provided by the representa-
G

tion theory of symmetric groups. The symmetric group S, acts on the space by permuting

V,?nl?iG(L)
the variables. Irreducible FS;-modules are described by partitions A = (A1, ..., As) Fn and their Young

diagrams D;. The character XnG(L) of the FS,-module is called the nth cocharacter of poly-

Vn
maldG(L)
nomial G-identities of L. We can rewrite it as a sum Xn (L)y=3",am(L, G, 1) x (1) of irreducible char-
acters x (A). Let er, =ar,br, and eT = br,ar, where ar, = ZneRT 7 and by, = Zaecr (signo)o,
be the Young symmetrizers corresponding to a Young tableau Tj. Then M(x) = FSer, = FSeT is an
irreducible FS,-module corresponding to the partition A Fn. We refer the reader to [1,17,18] “for an
account of S,-representations and their applications to polynomial identities.

Our proof of Theorem 2 follows the outline of the proof by M.V. Zaicev [2]. However, in many
cases we need to apply new ideas.

In Section 2 we discuss modules with G-action over Lie G-algebras, their annihilators and complete
reducibility.

In Section 3 we prove that m(L, G, A) is polynomially bounded. In Section 4 we prove that if
m(L, G, 1) # 0, then the corresponding Young diagram D, has at most d long rows. This implies the
upper bound.

In Section 5 we consider faithful irreducible Lg-modules with G-action where Ly is a reductive
Lie G-algebra. For an arbitrary k € N, we construct an associative G-polynomial that is alternating
in 2k sets, each consisting of dim Ly variables. This polynomial is not an identity of the correspond-
ing representation of Lo. In Section 6 we choose reductive algebras and faithful irreducible modules
with G-action, and glue the corresponding alternating polynomials. This allows us to find A Fn
with m(L, G, 1) # 0 such that dimM(A) has the desired asymptotic behavior and the lower bound
is proved.

2. Lie algebras and modules with G-action

We need several auxiliary lemmas. First, the Weyl theorem [15, Theorem 6.3] on complete re-
ducibility of representations can be easily extended to the case of Lie algebras with G-action.

Lemma 3. Let M be a finite dimensional module with G-action over a Lie G-algebra Lo. Suppose M is a
completely reducible Lo-module disregarding the G-action. Then M is completely reducible Ly-module with
G-action.

Corollary. If M is a finite dimensional module with G-action over a semisimple Lie G-algebra By, then M is a
completely reducible module with G-action.

Proof of Lemma 3. Suppose M; € M is a G-invariant Lg-submodule of M. Then it is sufficient to
prove that there exists a G-invariant Lo-submodule M, € M such that M = M1 & M,.

Since M is completely reducible, there exists an Lg-homomorphism 7 : M — Mj such that
m(v)=v for all v € My. Consider a homomorphism 7 : M — M1, 7 (v) = ﬁ decrr(vgfl)g. Then
7 (v) =v for all v e My too and for all a € Ly, h € G we have
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f(@-v)= |;—| P A(CE e ) = I%I Zn(agq vE)E = % Za-yr(vgfl)‘g =a-7(v),

geG geG geG
Sy 1 me e _ 1T -1y~ lg 1 g e\~ h

where g’ =h~'g. Thus we can take My =ker7. O

Note that [L, R] € N by [16, Proposition 2.1.7] where N is the nilpotent radical, which is a G-
invariant ideal.

Lemma 4. There exists a G-invariant subspace S C R such that R = S & N is the direct sum of subspaces and
[B,S]=0.

Proof. Note that R is a B-submodule under the adjoint representation of B on L. Applying the
corollary of Lemma 3 to N C R, we obtain a G-invariant complementary subspace S C R such that
[B,S1< S. Thus [B,S]CSN[L,RICSNN=0. O

Therefore, L=B & S & N (direct sum of subspaces).
Let M be an L-module and let T be a subspace of L. Denote Annt M := (Ann M) N T. Lemma 5 is
a G-invariant analog of [2, Lemma 4].

Lemma 5. Let | € I C L be G-invariant ideals such that 1/ ] is an irreducible L-module with G-action. Then

(1) Anng(I/]) and Anns(I/]) are G-invariant subspaces of L;
(2) Ann(I/J) =Anng(I/]) ®Anns(I/]) & N.

Proof. Since I/] is a module with G-action, Ann(I/J), Anng(I/]), and Anngs(I/J) are G-invariant.
Moreover [N,I] € J since N is a nilpotent ideal and I/] is a composition factor of the adjoint
representation. Hence N C Ann(I/J). In order to prove the lemma, it is sufficient to show that if
b+seAnn(l/]),beB,seS, then b,s € Ann(I/]). Denote ¢ : L — gl(I/]). Then ¢(b) + ¢(s) =0 and

[@(), (B)] =[—¢(s), p(B)] =0.

Hence ¢(b) belongs to the center of ¢ (B) and ¢(b) = ¢(s) = 0 since ¢(B) is semisimple. Thus b, s €
Ann(I/]) and the lemma is proved. O

Lemma 6. Let Ly = Bg & Rg be a finite dimensional reductive Lie algebra with G-action, By be a maximal
semisimple G-subalgebra, and Rg be the center of Lo. Let M be a finite dimensional irreducible Ly-module
with G-action. Then

(1) M=M; @ --- ® Mg for some Lo-submodules M;, 1 <i<q;

(2) elements of Ry act on each M; by scalar operators;

(3) forevery 1 <i< qand g € G there exists such 1 < j < q that Mig = M and this action of G on the set
{M1, ..., Mg} is transitive.

Proof. Denote by ¢ the homomorphism Lo — gl(M). Then ¢ is a homomorphism of G-representa-
tions. We claim that ¢(Rp) consist of semisimple operators. Let r1,...,r; be a basis in Rg. Consider
the Jordan decomposition ¢(r;) =r] +r/ where each r] is semisimple, each r{’ is nilpotent, and both
are polynomials of ¢(r;) without a constant term [15, Section 4.2]. Since each ¢(r;) commutes with all
operators ¢(a), a € Lo, the elements (r/)%, 1 <i<t, g € G, generate a nilpotent G-invariant associative
ideal K in the enveloping algebra A € Endr(M) of the Lie algebra ¢(Lg). Suppose KM # 0. Then
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for some » € N we have K**'M =0, but K*M = 0. Note that K*M is a nonzero G-invariant Lg-
submodule. Thus K*M =M and KM = K**1M = 0. Since K € Endr(M), we obtain K = 0.

Therefore ¢(r;) =r; are commuting semisimple operators. They have a common basis of eigenvec-
tors. Hence we can choose subspaces M;, 1 <i<q, q €N, such that

M:Ml@"'@qu

and each M; is the intersection of eigenspaces of ¢(r;). Note that [¢(r;), ¢(x)] =0 for all x € L. Thus
M; are Log-submodules and propositions (1) and (2) are proved.

For every M; we can define a linear function «; : Rg — F such that ¢(r)m = «;(r)m for all r € Ry
and m € M;. Then M; = ﬂreRO ker(p(r) — «i(r) - 1) and

ME = m ker(¢(r®) — a;(r) - 1) = m ker(¢(F) — ot,'(Fgﬂ) ‘1)

reRo feRo

where 7 =r8. Therefore, M;.g must coincide with M; for some 1< j <q. The module M is irreducible
with respect to Lo- and G-action that implies proposition (3). O

Lemma 7. Let W be a finite dimensional L-module with G-action. Let ¢ : L — gl(W) be the corresponding
homomorphism. Denote by A the associative subalgebra of Endr (W) generated by the operators from ¢ (L)
and G. Then ¢([L, R]) € J(A) where ]J(A) is the Jacobson radical of A.

Proof. Let W =Wy 2> W1 2 W, D .-- D W, = {0} be a composition chain in W of not necessarily
G-invariant L-submodules. Then each W;/Wj,1 is an irreducible L-module. Denote the corresponding
homomorphism by ¢; : L — gl(W;/Wi,1). Then by E. Cartan’s theorem [16, Proposition 1.4.11], ¢;(L)
is semisimple or the direct sum of a semisimple ideal and the center of gl(W;/W;11). Thus ¢;([L, L])
is semisimple and ¢;([L, L] N R) =0. Since [L, R] € [L, L] N R, we have ¢;([L, R]) =0 and [L, R]W; C
Wit1. Denote by p : G — GL(W) the homomorphism corresponding to G-action. The associative G-
invariant ideal of A generated by ¢([L, R]) is nilpotent since for any a; € ¢([L, R]), bjj € (L), gij € G
we have

a1 (p(g10)b110(811) .. P(&1,5—1)b1.5, P(81,5,)) 02 . ..
ar—1(0(8-1.0be-1.10(8—1.1) - - P(&—1,5_1—1Dbr—1.5_, P(8e—1.5_1)) 0

g g -
_ g10 151,82 8t—1 t-1,1 =151\ 8t _
=ay (b{] by )as*...a (bt_]‘1 N R )a;' p(ge+1) =0

where gi,glfj € G are products of g;; obtained using the property p(g)bw = b%p(g)w where g € G,
be (L), we W. Thus ¢([L,R]) € J(A). O

3. Multiplicities of irreducible characters in x,f (L)
The aim of the section is to prove

Theorem 3. Let L be a finite dimensional Lie G-algebra over a field F of characteristic 0 where G is a finite
group. Then there exist constants C > 0, r € N such that

> m(L,G.x) <Cn'
Abn

foralln e N.
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Remark. Cocharacters do not change upon an extension of the base field F (the proof is completely
analogous to [1, Theorem 4.1.9]), so we may assume F to be algebraically closed.

In [19, Theorem 13(b)] A. Berele, using the duality between S,- and GL;,(F)-cocharacters [20,21],
showed that such sequence for an associative algebra with an action of a Hopf algebra is polynomially
bounded. One may repeat those steps for Lie G-algebras and prove Theorem 3 in that way. However
we provide an alternative proof based only on S,-characters.

Let {e} be the trivial group, Vp := V¥, xa(L) := % (L), m(L, 1) := m(L, {e}, ), 1d(L) := 1d®}(L).
Then, by [22, Theorem 3.1],

Zm(L,A) < C3n'" (1)

Abn

for some C3 >0 and r3 € N.

Let G1 C Gy be finite groups and W1, W, be FG1- and FGy-modules respectively. Then we denote
FGy-module FG; ®Fg, W1 by W1 1 G2. Here G2 acts on the first component. Let W5 | G1 be W3
with Gy-action restricted to G1. We use analogous notation for the characters.

Denote by length(M) the number of irreducible components of a module M.

Consider the diagonal embedding ¢ : Sy — Snig)s

1 2 n

L n+1 n+2 2n
@) =\611) 0@ ... om

n+o(l) n+o@2) ... n+o(n)

Then we have

Lemma 8.

> m(L.G.2) :1ength<V7'$> < length<(7vnm ) ! (p(Sn)>.
vENnIdé(L) Vi) N1d(L)

Abn

Proof. Consider Sy-isomorphism 7 : (Vyg| | ¢(Sn)) — V¢ defined by 7 (Xn(i—1)+¢) = X' where G =
VG

{g1,82,..., 8}, 1 <t<n. Note that 7w (Vpg NId(L)) C Vrf N1d°(L). Thus FS,-module WZIC(L) isa
.. Vn '
homomorphic image of FS,-module (W'fc‘lm) oSy, O

Hence it is sufficient to prove that length((%) J ©(Sp)) is polynomially bounded. However,

we start with the study of the restriction on the larger subgroup
S{1,....,n} x S{n+1,....,2n} x --- x ${n(|G| = 1), ...,n|G|} € Spg|

that we denote by (S,)¢!.

This is a particular case of a more general situation. Let m =mj +--- +m, m; € N. Then we have a
natural embedding Spm, X --- X S, < Sp. Irreducible representations of Sy, X - - - x Sy, are isomorphic
to MOy - sM(A D) where A9 - m;. Here

MDYt aM(AO) = MO ® - @ M(AO)

as a vector space and Sp, acts on M(A?). Denote by x (AM)---fx (L©) the character of M(»™)g
C MO,
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Analogously, x(AM) & --- ® x (A®) is the character of FSy,-module
MO ® - @M(AY) = (M D)z aM (A D)) 4 Sp.
Note that if my =-.- =m; =k, one can define the inner tensor product, i.e.
MO ® - @ M(rY)

with the diagonal Sy-action. The character of this FSg-module equals x (A(D) ... x (1),
Recall that irreducible characters of any finite group Go are orthonormal with respect to the scalar

product (x, ¥) = 2o Lgeco X (& DV ().
Denote by AT the transpose partition of A -n. Then AlT equals the height of the first column of D;,.

Lemma 9. Let h, t € N. There exist C4 > 0, r4 € N such that for all x = m, A0 F=myq, ..., 2O+ my, where
D, lie in the strip of height h, i.e. AlT < h,and my +my + - -- +m; = m, we have

(X()‘) b Smy X -+ X Sm,), X(A(l))ﬁ' ety ()L(f))) — (X ), X()‘(l)) @ o @ X(A(f))) < Cqm'™,
IFrbm AOEmy, o, A9 Fme, mp +my+---+m =m, and
(XOI L (Smy x -+ x Sm), x (A D)z 8x(AY)) = (x ), x (V)& ® x (1)) #0
then W) <Al forall1 <i<tand AT < Y5, ()T,

Proof. By Frobenius reciprocity,

(X)L Smy x - x Sm)s x (WD) 2x (A9)) = (x ), (x (2 P)g---2x () 1 Sm)
(x, x(:V) & ®x ("))

Now we prove the lemma by induction on t. The case t =1 is trivial. Suppose (x (1), x(A)®
- ® x (1)) is polynomially bounded for every - (mq + - - +mg_1) with u] <h. We have
(x), x(:M)&---8 x (1))
(K0, (D) B8 X (1) B £ (:0))

> (), x( )& & x (M) (x ), x () & x (1)) (2)
Mg+ me_q)

In order to determine the multiplicity of x (1) in x () ® x(A®), we are using the Littlewood-
Richardson rule (see the algorithm in [23, Corollary 2.8.14]). We cannot obtain D, if (A)T > T

or ul >l or AT > O)T + ul. Suppose the Young diagram D;, lies in the strip of height h. Then
we may consider only the case (A®)] <h and u] <h. Each time the number of variants to add the
boxes from a row is bounded by m". Since (A(t)){ < h, the second multiplier in Eq. (2) is bounded by

(m")" =m"*. The number of diagrams in the strip of height h is bounded by m". Thus the number of
terms in Eq. (2) is bounded by m". Together with the inductive assumption this yields the lemma. O
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Lemma 10. There exist C5 > 0, r5 € N such that

Vgl |c|) .

for all n € N. Moreover, if (A)T > dim L for some 1 <i < |G|, then M(x()z - - sM(1U¢D) does not appear
in the decomposition.

Proof. Fix a |G|-tuple of partitions (A(V, ..., AU¢D) A® n. Then the multiplicity of M(AM)g .-

M) in (g ) L (Sn)/€! equals

(x D)z 2x (A1), xie1 (D) 4 (S)'®)
= Y (x( Pzt (A1), x ) 4 (S)'N)m(L, 2). (3)

Anl|G)

By [22, Lemma 3.4] (or Lemma 14 for G = (e)), m(L, A) =0 for all A Fn|G| with Alr > dim L. Thus

Lemma 9 implies that for all M(AM)g...gM(AUCD) that appear in (%) 1 (5S¢l the Young

diagrams D, lie in the strip of height (dimL). Thus the number of different (A1, ..., AU¢D) that

appear in the decomposition of (%) 1 (56! is bounded by n@imDIGI Together with Eqs. (1),

(3), and Lemma 9, this yields the lemma. O

Lemma 11. Let h, k € N. There exist Cg > 0, rg € N such that for the inner tensor product M(1) ® M(it) of
any FSy-modules M(1) and M(p), A, e =n, A1 <h, uT <k, we have

lengths, (M(1) ® M(1)) < Cen'®
and (x (M) x (), x (v)) =0 for any v - n with vlT > hk.

Proof. Let T, be any Young tableau of the shape . Denote by IRt, the one-dimensional trivial
representation of the Young subgroup (i.e. the row stabilizer) Rr,. Then

FSnar, = IR7, 1 Sn

(see [24, Section 4.3]). By [25, Theorem 38.5],

M(@.) ® (IR7, 1 Sp) = ((M(*) | R1,) ® IRT,) 1 Sn.

Thus

M) ® M(11) = M(A) ® FSpef = M%) ® FSubr,ar, € M(4) ® FSyar,
=M@®) ® (IRt 1 Sn) = ((M() | Rr,) ® IR7,) 1+ Sn = (M() | Rr,) 1 Sn.

Note that length(M(2) | Rr,) is polynomially bounded by Lemma 9 and M(%) | Rr, is a sum of
MG+ M), s = T <k, %D+ i, D) <h. Thus (M) | Rr,) 1 Sy is a sum of M(xD) ®
- ® M (). Applying Lemma 9 again, we obtain the lemma. O
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Lemma 12. There exist C7 > 0, r7 € N satisfying the following properties. If AV, ..., 11Dy is a |G|-tuple of
partitions A - n where (\0)T < dimL forall 1 <i < |G|, then

lengths, (M(AV) ® --- ® M(11D)) < c7n".

Proof. Note that
MED) @ @MAO) = (MAD) 8- @M(EY) @ M),

Using induction on t and applying Lemma 11 with h = (dimL)"~! and k = dimL, we obtain the
lemma. O

Proof of Theorem 3. The theorem is an immediate consequence of Lemmas 8, 10, and 12. O

4. Upper bound

Fix a composition chain of G-invariant ideals
L=ILg2L 3L23-~-2N?¢---2L94 2]_9:{0}_
Let hta := maxger, k for ae L.

Remark. If d =d(L) =0, then L = Ann(L;_1/L;) for all 1 <i<6 and [ay,a3,...,a,] =0 for all q; € L
and n > 6 + 1. Thus ¢S (L) =0 for all n > 6 + 1. Therefore we assume d > 0.

Let Y :={y11, Y12, -+, Y1ji5 Y21, Y220 - - -» Y2jos -5 Ym1s Ym2s -+ s Ymjm }» Y15 ---5 Yg, and {z1, ..., zZm}
be subsets of {x1,x2,...,xp} suchthat Y; CY, |Yi|=d+1,Y;NY; = fori#j, YN{z1,...,zn} =9,
ji = 0. Denote

o g1 81 812 81y g 81 82 82j
fmq:=Alty . Alt[[27", v ¥iS e V1, 1 [25%. y53t. 55 e Yaio |
gm ,8m1 8&m2 8mjm
[Zm ’yml ’ymZ ""’ymjm ]]

where Alt; is the operator of alternation on the variables of Y;, gi, gij € G.

Let ¢ : L(X|G) — L be a G-homomorphism induced by some substitution {x1, x2,...,%;} — L. We
say that ¢ is proper for fiq if (z1) e NUBUS, ¢(z;) € N for 2 <i<m, and ¢(yy) € BUS for
1<i<m, 1<k<ji.

Lemma 13. Let ¢ be a proper homomorphism for fi q. Then ¢ (finq) can be rewritten as a sum of ¥ (fmi1,4)
where v is a proper homomorphism for f11,¢,9 > q— (dimLym—2.(Y', Y, 2}, ..., z,, ; may be different
for different terms.)

Proof. Let o; := htp(z;). We will use induction on Z:":l o;. (The sum will grow.) Note that a; <6 <
dimL. Denote I; := Ly;, Ji:=La,;-

First, consider the case when I4,...,In, J1,..., Jm do not satisfy conditions (1)-(2). In this case
we can choose G-invariant B-submodules T;, I; = T; & J;, such that

[[T1,L,....L0[T2,L,..., L) ... [T, L, ..., L]] =0 (4)
—— ~—— ~——

q1 9 dm
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for all g; > 0. Rewrite ¢(z;) =a; +a, a; € T;, a € J;. Note that hta > ht(z;). Since fin g is mul-
tilinear, we can rewrite ¢@(finq) as a sum of similar terms @(fmq) where @(z;) equals either a]
or a;. By Eq. (4), the term where all @(z;) = a; € T;, equals 0. For the other terms @(fm q) we have
Yy ht@(z) > 3L hto(z).

Thus without lost of generality we may assume that I4,..., I, J1,..., Jm satisfy conditions (1)-
(2). In this case, dim(Ann(l1/J1) N---NAnn(I;;/Jm)) = dim(L) — d. In virtue of Lemma 5,

Ann(I1/J1) N---NAnn(Im/ Jm) =BNAnn(y/J1) N--- N AU,/ Jm)
®SNAnn({/J)N---NAM(m/Jm) @ N.

Choose a basis in B that includes a basis of BN Ann(I;/J1) N---NAnn(I,/Jm) and a basis in S that
includes the basis of SNAnn(I1/J1)N---NAnN(Ip/ Jm). Since fp q is multilinear, we may assume that
only basis elements are substituted for yy,. Note that fy 4 is alternating in Y;. Hence, if ¢(fmn,q) #0,
then for every 1 <i < q there exists y j, € Y; such that either

@(Yjx) € BNAnn(I1/J1) N ---N AN/ Jm)

or

@(yjx) € SN AN/ J1) N -+~ N AN/ Jm).

Consider the case when ¢(ykj) € BNAnn(I1/J1)N---NAnn(Iy/ Jm) for some yi;. By the corollary
from Lemma 3, we can choose G-invariant B-submodules Ty such that Iy = Ty & Jx. We may assume
that ¢(zy) € Ty since elements of J; have greater heights. Therefore [(p(zf"), ale TN Ji forall ae
BNAnn(l1/J1)N---NAnn(lyy/ Jm). Hence [(p(zf"),a] = 0. Moreover, BNAnn(I1/J1)N---NAnn(I;m/ Jm)
is a G-invariant ideal of B and [B, S] = 0. Thus, applying Jacobi’s identity several times, we obtain

K g
o([z5 yit .. ygr]) =o.

Expanding the alternations, we get ¢(fim,q) =0.
Consider the case when @(yk) € SNAnn(I1/J1)N---NAnn(Iyy/ Jm) for some yy, € Yq. Expand the
alternation Altg in fi 4 and rewrite fj; ¢ as a sum of

r ._ g1 811 812 81jp 2 81 L &n 82j,
fm,qfl .—Alt1...A1tq71[[Zl syn ay12 ,---,y”] ]7[22 ,yz] ayzz 7-~~»y2j2 ],...,
gm ,8m1 &m2 8mjm
[Zm »Ym1 s Ym2 ”"’ymjm ]]

The operator Alt; may change indices, however we keep the notation yy, for the variable with the
property @ (yxe) € SNAnn(l1/J1) N---NAnn(In/Jm). Now the alternation does not affect yy,. Note
that

8k 1,8kl 8ke Bk 1 _ [,8k ,,8ke 8k 8kiy,
LA e Vg 1=[2 vii' - i o Vg ]
-1 g
Sk ., 8kl 8k, p—1 kg . 8ke 8k, p+1 8ke—1 8k, 0+1 kil
+Z[zk ' Yia ""’yk,ﬂfl’[ykﬂ ' Yie ]’ylc,,BJrl’""yk,éfl’yk,i+]’""ykjk ]
B=1

In the first term we replace [z;f“, y@‘"] with zj, and define ¢’(z}) := (p([zf", yf’é‘]), @' (x) ;== @(x) for
other variables x. Then ht(p’(z,;) > ht(z) and we can use the inductive assumption. If yyg € Y; for

some j, then we expand the alternation Alt; in this term in ]‘m,qq. If ¢(ykp) € B, then the term is
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zero. If ¢(ykp) € S, then go([yf}‘f, ykfl]) € N. We replace [yfg‘g, yfif[] with an additional variable Z;n+1
8Bke

and define x[/(z,’nﬂ) = w([yfgﬂ Yie D, ¥ (%) := @(x) for other variables x. Applying Jacobi's identity
several times, we obtain the polynomial of the desired form. In each inductive step we reduce q
no more than by 1 and the maximal number of inductive steps equals (dim L)m. This finishes the
proof. O

Since N is a nilpotent ideal, NP =0 for some p € N.
Lemma14.IfA = (A1, ..., As) Fnand Ag4q = p((dimL)p + 3) or Agimi+1 > O, thenm(L,G,A) =0

Proof. It is sufficient to prove that e’ﬂf €1d®(L) for every f € VnG and a Young tableau T, A n,
with Ag4q = p((dimL)p + 3) or Adimr+1 > O.

Fix some basis of L that is a union of bases of B, S, and N. Since polynomials are multilinear, it is
sufficient to substitute only basis elements. Note that eT =br,ar, and by, alternates the variables of
each column of T,. Hence if we make a substitution and ey, f does not vanish, then this implies that
different basis elements are substituted for the variables of each column. But if Agimr4+1 > O, then the
length of the first column is greater than dim L. Therefore, eTAf e 1d%(L).

Consider the case Ag4q > p((dimL)p + 3). Let ¢ be a substitution of basis elements for the
variables x1,...,xp. Then eT f can be rewritten as a sum of polynomials fi;q where 1 <m < p,
q > p((dimL)p + 2), and z;, 2 <i < m, are replaced with elements of N. (For different terms fm R
numbers m and q, variables z;, y;j, and sets Y; can be different.) Indeed, we expand symmetriza-
tion on all variables and alternation on the variables replaced with elements from N. If we have no
variables replaced with elements from N, then we take m = 1, rewrite the polynomial f as a sum
of long commutators, in each long commutator expand the alternation on the set that includes one
of the variables in the inner commutator, and denote that variable by z;. Suppose we have variables
replaced with elements from N. We denote them by z,. Then, using Jacobi’s identity, we can put one
of such variables inside a long commutator and group all the variables, replaced with elements from
B US, around z; such that each z; is inside the corresponding long commutator.

Applying Lemma 13 many times, we increase m. The ideal N is nilpotent and ¢(fp11,4) =0 for
every q and a proper homomorphism ¢. Reducing q no more than by p((dimL)p + 2), we obtain
plr, /H)=0. O

Now we can prove

Theorem 4. If d > 0, then there exist constants C, > 0, 1, € R such that cG (L) < Can"2d" foralln € N. In the
case d = 0, the algebra L is nilpotent.

Proof. Lemma 14 and [1, Lemmas 6.2.4, 6.2.5] imply

Z dimM () < Cgn'8d™
m(L,G,A)#0

for some constants Cg, rg > 0. Together with Theorem 3 this implies the upper bound. O
5. Alternating polynomials
In this section we prove auxiliary propositions needed to obtain the lower bound.

Lemma 15. Let a1, a2, ...,0q, f1,....Bg € F, 1<k<q o #0 for 1 <i <k, ay =0, and By # 0. Then
there exists such y € F that o; + y i # 0 forall 1 <i <k.
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k-1

TR 0}. It is possible to do since F is infinite. O

Proof. It is sufficient to choose y ¢ {—‘;—}, e

Let F(X|G) be the free associative algebra over F with free formal generators x‘]g, jeN, geG.

Define (x‘]g)h = x’}g for h € G. Then F(X|G) becomes the free associative G-algebra with free generators

Xj :x}, j€N, 1eG. Denote by P,f, n €N, the subspace of associative multilinear G-polynomials in
variables X1, ..., Xp. In other words,

G _ g1 82 &n
Py = { Z Uo.g1,..an X (1)Xs2) - Xom) | Xo.81,..80 € F}'
0ESn, 81,-..8n€G

Lemma 16. Let Lo = Bg @ Rg be a reductive Lie algebra with G-action, By be a maximal semisimple G-
subalgebra, and Ro be the center of Lo with a basis r1,72,...,1:. Let M be a faithful finite dimensional
irreducible Lo-module with G-action. Denote the corresponding representation Ly — gl(M) by ¢. Then there
exists such alternating in x1, X2, ..., Xy polynomial f € PtG that f(@(r1), ..., @(r;)) is a nondegenerate oper-
ator on M.

Proof. By Lemma 6, M =M @ --- ® Mg where M; are Lg-submodules and r; acts on each M; as
a scalar operator. Note that it is sufficient to prove that for each j there exists such alternating in

X1,X2, ..., X polynomial fj e PtG that fj(¢(r1),..., @(rr)) multiplies each element of M; by a nonzero
scalar. Indeed, in this case Lemma 15 implies the existence of such f =y1f1+---+ 4 fg yi € F, that
f(p(r1),...,(rr)) acts on each M; as a nonzero scalar.

Denote by p; € Endr (M) the projection on M; along @k#i M;y. Fix 1 < j <q. By Lemma 6, propo-

sition (3), we can choose such g; € G that M¥ = M;j, 1 <i <q. Then p§ = p;. Consider f; :=
; g1 8 g ; g1 .8 g _ g5 8 8 _

desq (51gna)x01(1)x02(2)...xa"(q). Note that either pgl(?pgz(z)...paq(q) =0or pgl(l)poz(z)...paq(q) = Pk
for some 1‘< k <'s. Now we prove that pil(l)p?(z) . paq(q) =pj if and only if o(i~) =iforall 1<i<q.
Indeed, p(g;(,.) = p; if and only if Mﬁ’(i) = M;. Hence o (i) = i. This implies that fj(p1...., pq) acts as
an identical map on M;.

We can choose ity1,...,iq such that @(r),¢(r2),..., (@), Piy,-..,Ppi, form a basis in
(P1,...,Ppq)F. Then fj((p(n),(p(rz),,..,(p(rt),pim,...,p,-q) acts as a nonzero scalar on M;. If t =g,
then we define f; = fj. Suppose t < q. Since the projections commute, we can rewrite

q
Fi(@@), 9(r2), ... @), Picyys - Pig) = Y fi(91), @(r2), ..., (r0)) i

i=1

where ]‘,- € PtG are alternating in x1,x3,...,X;. Hence f’j(go(n),(p(rz),..‘,(p(rt)) acts on M; as a
nonzero scalar operator. We define fj:= f;. O

Let Lo be a Lie algebra with G-action, M be Lp-module with G-action, ¢ : Lo — gl(M) be
the corresponding representation. A polynomial f(xq,...,x;) € F(X|G) is a G-identity of ¢ if
f(p(@),...,p(ay)) =0 for all a; € Lp. The set ldc(<p) of all G-identities of ¢ is a two-sided ideal
in F(X|G) invariant under G-action.

Lemma 17 is an analog of [3, Lemma 1].

Lemma 17. Let Lo be a Lie algebra with G-action, M be a faithful finite dimensional irreducible Lo-module
with G-action, and ¢ : Lo — gl(M) be the corresponding representation. Then for some n € N there exists
a polynomial f € PnG\IdG(go) alternating in {x1,...,%¢} and in {y1,...,Ye¢} C {X¢+1,...,Xn} Where £ =
dim L.
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Proof. Since M is irreducible, by the density theorem, Endr (M) = Mg(F) is generated by operators
from G and ¢(Lp). Here q := dim M. Consider Regev’s polynomial

F@a . xgyr ¥y =Y (Sign(0T))Xo 1) Yr(1) Xo@Xo3)Xo @) Y@ Y13) V() -
0€Sq,
T€Sq

Xo(2-29+2) %o (¢?) Yo (@*~20+2) - V1(@d)-

This is a central polynomial [1, Theorem 5.7.4] for M (F), i.e. }’ is not a polynomial identity for Mq(F)
and its values belong to the center of Mq(F).

Let aq,...,a; be a basis of Lp. Denote by p the representation G — GL(M). Note that if we have
the product of elements of ¢(Lp) and p(G), we can always move the elements from p(G) to the right,
using p(g)a=ap(g) for g € G and a € ¢(Lo). Then @(a1), ..., ¢(ae), (@i, ... ¢ @i, )P&1), ...
(@(ai, ;) ... (i, ) (&), is a basis of Endr(M) for appropriate ij € {1,2,...,£}, gj € G, since
Endr(M) is generated by operators from G and ¢(Lo). We replace x4 ; with zj1zj2...2jm;0(g;) and

/ /

Yeyj with Z312j .- .z}’mj,o(gj) in ]‘ and denote the expression obtained by f Using p(g)a =ap(g)
again, we can move all p(g), g €G, in fq to the right and rewrite f as dec fe p(g) where

G . . . . . 7
each fg e Pze+2z;:1 m; is an alternating in xi1,...,%; and in y1,...,y, polynomial. Note that f

becomes a nonzero scalar operator on M under the substitution x; = y; = ¢(a;) for 1 <i < ¢ and
Zjk = z;,k =g@(aiy) for 1< j<r, 1<k<m; Thus fg ¢ ldG(<p) for some g € G and we can take

f=fg O

Let k¢ <n where k, £,n € N are some numbers. Denote by Qf’k 2 S P,? the subspace spanned by

all polynomials that are alternating in k disjoint subsets of variables {xg,...,xz} C {x1,Xx2,..., X},
1<i<k.
Theorem 5 is an analog of [3, Theorem 1].

Theorem 5. Let Ly = By @ Rg be a reductive Lie algebra with G-action over an algebraically closed field F
of characteristic 0, Bo be a maximal semisimple G-subalgebra, Ro be the center of Lo, and dim Lo = £. Let M
be a faithful finite dimensional irreducible Lo-module with G-action. Denote the corresponding representation
Lo — gl(M) by @. Then there exists T € Z such that for any k € N there exists f € Q[G!quz,d”\ Idc(q)).

Proof. Let f1 = f1(X1,...,X¢, Y1,...,Y¢,21,-..,27) be the polynomial from Lemma 17 alternating in
X1,...,X¢ and in y1,..., y,. Since f € sz ZHT\ldG(<p), we may assume that k > 1. Note that
f(l)(u
1 U, Vi X, Xy Y15 Ve 21, -5 2T)

¢
::Zf1(X1,...,[U],[V],Xi]],...,Xg, y1,...,yg,Z1,...,ZT)
i=1

is alternating in x1,...,X¢ and in yq,...,y, and
M= = = S - .
fi @, v, X, .. Xe, Y1, oo Ve 21, 0, 2T)
=tr(adyg) U1 adyg) V1) f1(X1, X2, ..., Xe, Y1.---, Ye, 21, .5 ZT)
for any substitution of elements from ¢(Lg) since we may assume Xi,...,X; to be different basis

elements. Here (ada)b = [a, b].
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Let
(6)] . .
fr7@a, U v, VXL, X, Y Ve 2T, e, ZT)

¢
-1
1=Zf1(] N, o 1, Vi Vit X e [u, [V X)Xy V1o eees Ve 21, - 21),
i=1

2 < j<s, s=dimB. Note that if we substitute an element from ¢(Rp) for u; or v;, then f](j) vanish
since Rq is the center of Ly. Again,
PG T TR R Y Ve 2
= tr(adg(Ly) U1 adg(Lg) V1) tr(@dg(Ly) U2 adg(Ly) V2) . .. tr(adyLy) itjadgg) V)
f1xu X, Xe, V.- Ve, 21, ., ZT). (5)

Let h be the polynomial from Lemma 16. We define

fout, .o U, Vi, oo, Ve X1, oo Xes Yo oo Y0, 21, -, 2T)

= Z Sign(UT)ffs)(uam,---,Ua(s),vm),---,Vr(s),xl,u-,xu Yi,ees Yo 21, ..., 2T)
o,TES,

“hugs41)s -+ Ua @) (Ves+1), -5 Ve (@)-

Then f> € Q£G,4,4£+T' Suppose a1, ...,as € (Bo) and dsy1, ..., € @(Rp) form a basis of ¢(Lp). Con-
sider a substitution x; = y; = u; = v; =a;, 1 <i< L. Suppose that the values z; =Zzj, 1< j<T, are
chosen in such a way that fi(ay,...,a¢,01,...,0¢,21,...,27) # 0. We claim that f, does not vanish
either. Indeed,

faar,...,a¢,01,...,0¢,01,...,00,01,...,0¢,21, ..., 2T)

; (s) _ _
= E sign(o 7) f17 (Ao (1) - -+ Ao (s), Az (1) - -+ > Ar(s)s Q15 oo s Agy A15eny (g, 21, 00 v s ZT)
0,78y

-h(ag (s41)s - - -+ o)z 541y, - - -, Az (o))

=< Z Sigﬂ(UT)ffs)(aa(l),---,aa(s),ar(l),---,ar(s),au---,ae, 01,---705,21,---,%))

o,TESs

: ( > sign@oh(@nsiy. o Gr @)@y - aw(@))
T,0eS{sH, ... L)

since aj, s < j < ¢, belong to the center of ¢(Lg) and f;s) vanishes if we substitute such a; for u;

or v;. Here S{s+1,...,¢} is the symmetric group on {s+1,...,¢}. Note that h is alternating. Using
Eq. (5), we obtain

fa(ar,...,a¢,0a1,...,a¢,01,...,0¢,01,...,0¢,21, ..., 2T)

:( Y sign(@ T)U(adeo)aaa)a%(Lo)ar(l))~--U(adwao)aa(s)adw(Lwar(s)))

0,T€Ss

-f1(a1,...,ag, a],...,05,21,...,27')(“—S)!)z(h((13+],...,a[))2.
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Note that

> sign(o 1) tr(@dyg) o) adg(re) ar)) - - - tr@dy i) dos) adgrg) ar(s)
o,T€Ss

= Z sign(o ) tr(ad(p(Lo) a ad(p(LO) (11.(,71(1)) e tr(ad(p(LO) As adw(LO) 01071(3))
0,TE€S;

(t'=t07 Y .
= > sign(t') tr@dyrg) a1 adg(g) Grr(1)) - - - tr@dg i) as ady(rg) ars)
o,T'eSs

N

N
= sldet(tr(ady (o) 6 adg 1o a))); ;_q = ! det(tr(adysg) ai adg(sy) a;)); j_y #0

since the Killing form tr(adxad y) of the semisimple Lie algebra ¢(Bg) is nondegenerate. Thus

fa(ar,....a¢,a1,...,0¢,01,...,00,01,...,0¢,21,...,27) 0.

Note that if f; is alternating in some of z1, ..., z, the polynomial f> is alternating in those variables
too. Thus if we apply the same procedure to f, instead of f;, we obtain f3 € chsﬁz”' Analogously,

we define f4 using f3, fs using fa, etc. Eventually, we obtain f = fi € QfM 2/<45+T\Idc (p). O
6. Lower bound

By the definition of d =d(L), there exist G-invariant ideals I1, I3, ..., I, J1, J2,..., Jr, T € Z4, Of
the algebra L, satisfying conditions (1)-(2), Jix < I, such that

) L
d=dim .
Ann(l1/J1) N---NAnn(ly/ Jr)

We consider the case d > 0.
Without loss of generality we may assume that

(Y Ann(i/ Ji # () Anndli/ Ji)
k=1 k=1,
k¢

for all 1 < ¢ <r. In particular, L has nonzero action on each I/ Ji.

Our aim is to present a partition A +n with m(L, G, 1) # 0 such that dim M (1) has the desired
asymptotic behavior. We will glue alternating polynomials constructed in Theorem 5 for faithful irre-
ducible modules over reductive algebras. In order to do this, we have to choose the reductive algebras.

Lemma 18. There exist G-invariant ideals B1, ..., By in B and G-invariant subspaces R1, ey Rr C S (some
of R; and B may be zero) such that

(1) Bi+:-+Br=B1®--- & Br;

2)Ri++R=R1® - @Ry}

(3) X1 dim(Bx ® Re) = d;

(4) I/ ]y is a faithful (B & Ry ® N)/N-module;

(5) It/ Jx is an irreducible (3"[_ (B; & Ri) ® N)/N-module with G-action;
(6) Bilk/Jk = Rily/Jx =0 fori>k.
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Proof. Consider Ny := ﬂﬁzl Ann(ly/Jx), 1 <€ <r, No=L. Note that N, are G-invariant. Since B is
semisimple, we can choose such G-invariant ideals By tpat N¢_1 N B =By ® (N;N B). Also we can
choose such G-invariant subspaces R, that N,_1 NS =R, & (N¢ N S). Hence properties (1), (2), (6)
hold.

By Lemma 5, Ny = (Ny N B) & (NN S) & N. Thus property (4) holds. Furthermore,

Ne—1=B;®@(NeNB)@R®(NeNS)SN= (B, ®R) ® Ny
(direct sum of subspaces). Hence L = (EB§:1(BI‘ ® R;)) ® N, and properties (3) and (5) hold too. O

Let A be the associative subalgebra in Endr(L) generated by operators from adL and G. Then
J(A)P =0 for some p € N. Denote by A; a subalgebra of Endr(L) generated by adL only. Let
g1, ..., 0k, be abasis of Ry.

Lemma 19. There exist decompositions ad a;j = ¢;j +djj, 1 <i <1, 1< j <k;, such that ¢;j € A acts as a di-
agonalizable operator on L, d;j € J(A), elements c;; commute with each other, and c;j and d;; are polynomials
in ad a;j. Moreover, Ry := (c¢1, ..., Co k, ) F are G-invariant subspaces in A.

Proof. Consider the solvable G-invariant Lie algebra (ad R) + J(A). In virtue of the Lie theorem, there
exists a basis in L in which all the operators from (adR) + J(A) have upper triangular matrices.
Denote the corresponding embedding A < M;;(F) by ¥. Here m :=dim L.

Let A; be the associative algebra generated by ada;j, 1 <i<r, 1< j<k. This algebra is
G-invariant since for every fixed i the elements a;j, 1 < j <k;, form a basis of the G-invariant
subspace R;. By the G-invariant Wedderburn-Malcev theorem [14, Theorem 1, Remark 1], A; =
;\1 @ J(A7) (direct sum of subspaces) where ;\1 is a G-invariant semisimple subalgebra of A;. Since
¥(adR) C ¢, (F), we have ¥ (A1) C UTp(F). Here UTy(F) is the associative algebra of upper triangu-
lar matrices m x m. There is a decomposition

UTm(F)=Fe11 ®Fexa ® - ® Fepm ® N

where

N:={(ej[1<i<j<m)F

is a nilpotent ideal. Thus there is no subalgebras in A; isomorphic to My(F) and A; = Fe1 & --- & Fe;
for some idempotents e; € A1. Denote for every a;; its component in J(A1) by d;; and its component
in Fe; @ --- @ Fe; by c;j. Note that e; are commuting diagonalizable operators. Thus they have a
common basis of eigenvectors in L and c;; are commuting diagonalizable operators too. Moreover

adaf =cf +df € (adaie | 1 <€<ki)r S (cie [ 1<L<ki)p @ (dig | 1 <L <ki)r

for all g € G. Thus R; is G-invariant.

We claim that the space J(A1) + J(A) generates a nilpotent G-invariant ideal I in A. First,
v (J(A1)), ¥ (J(A)) C UTy(F) and consist of nilpotent elements. Thus the corresponding matrices
have zero diagonal elements and ¥ (J(A1)), ¥'(J(A)) € N. Denote Ny := (e;j | i +k < j)r C N. Then

N=N12N; 22 Np_1 2 N =1{0}.
Let htya:=k if ¥ (a) € Ny, ¥ (@) ¢ Nk+]~

Recall that (J(A))? =0. We claim that I™*P =0. Let p : G — GL(L) be the G-action on L. Using
the property
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p(g)a=a®p(g) (6)
where a € A3, g € G, we obtain that the space I™*? is a span of hyjihzj2... jmtphmt+p+10(g) where
jk € J(A) U J(A), hy € A U {1}, g €G. If at least p elements j, belong to J(A), then the product
equals 0. Thus we may assume that at least m elements j, belong to J(A1).

Let j; € J(A1), hj € A, U{1}. We prove by induction on ¢ that jihyj2ha...h¢—1j, can be expressed
as a sum of }1]'2...}aj/1j’2...j},a where j; € J(A7), jie J(A),ae Ay U {1}, and « +Zf;:1 hty ji > L.
Indeed, suppose that jihij2hs...he_2je—1 can be expressed as a sum of jij. ..jyj; iy ... j,a where

}',- € J(A1), jie J(A),ae ApU {1}, and y +3, hty ji > £ —1. Then jihijzha ... je—1he—1je is a sum
of

Jij2edydidy - Jahe—1je = jrja - Jy it gy dhlahe—1, jel + jidz - Jy i dh- - iy de(@he—1).

Note that, in virtue of the Jacobi identity and Lemma 7, [ah;_1, j¢] € J(A). Thus it is sufficient to
consider only the second term. However

Jiz. e dydydy .- dhie@he—1) = j1jz ... Jydeiiiy - i, (@he—1)

X
+ Y idaedydvdye e dioa Lt el - ahe).
i=1

Since [j}, jel € J(A) and hty[j}, je] > 14 htg ji, all the terms have the desired form. Therefore,

jihijaha ... jm_1hm—1jm € ¥~ (Nm) = {0},

[™*P =0, and

JA) C J(A) + J(A) S IC J(A).
In particular, d;j € J(A1) € J(A). O

Denote

.

B:= (@ad&-) ® (el 1<i<r, 1< j<kir,
i=1

Bo:=(@dB)® (cij | 1<i<r, 1<j<k)r CA.

Lemma 20. The space L is a completely reducible By-module with G-action. Moreover, L is a completely
reducible (ad By) & Ry-module with G-action forany 1 <k <r.

Proof. By Lemma 3, it is sufficient to show that L is a completely reducible Byp-module and a com-
pletely reducible (ad By) @ Ri-module disregarding the G-action. The elements c;; are diagonalizable
on L and commute. Therefore, an eigenspace of any c;; is invariant under the action of other cy,. Us-
ing induction, we split L = @f’:] W; where W; are intersections of eigenspaces of cy, and elements
Cke act as scalar operators on W;. In virtue of Lemmas 4, 19, and the Jacobi identity, [c;j, ad B] = 0.
Thus W; are B-submodules and L is a completely reducible By-module and (ad By) @& R-module since
B and By are semisimple. O
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Lemma 21. There exist complementary subspaces I, = Ty @ Ji such that

(1) Ty is a B-submodule and an irreducible B-submodule with G-action;

(2) Tyisa completely reducible faithful (ad By) @& Ry-module with G-action;
(3) Xyt dim((ad By) ® Re) =d;

(4) BiTk = R,‘Tk =0fori>k.

Proof. By Lemma 20, L is a completely reducible Bg-module with G-action. Therefore, for every Ji
we can choose a complementary G-invariant Bg-submodules Ty in I. Then T} are both B- and B-
submodules.

Note that (adajj)w = c;jw for all w € I/ Jx since Iy/Jr is an irreducible A-module and
J(A) I/ Jx = 0. Hence, by Lemma 18, I/ ] is a faithful (ad By) & Ri-module, R; I/ Jr =0 for i > k
and the elements c;; are linearly independent. Moreover, by property (5) of Lemma 18, I/ ], is an
irreducible (3"}_;(B; ® R;) @ N)/N-module with G-action. However (3_/_,(B; ® R;) ® N)/N acts on
It/ Ji by the same operators as B. Thus Ty = I/ Ji is an irreducible B-module with G-action. Prop-
erty (1) is proved. By Lemma 20, L is a completely reducible (ad By) & Ry-module with G-action for
any 1<k <r. Using the isomorphism T, = I/ Jx, we obtain properties (2) and (4) from the remarks
above. Property (3) is a consequence of property (3) of Lemma 18. O

Lemma 22. For all 1 < k < r we have

Tk=Tk ® T ® - ® Tm

where Ty; are faithful irreducible (ad By) ® R-submodules with G-action,me N, 1 < j <m.

Proof. By Lemma 21, property (2), Tk =Tk ®Tia ® -+ D Ty for some irreducible (ad By) & Ry-
submodules with G-action. Suppose Ty; is not faithful for some 1 < j <m. Hence bT; =0 for some

b € (ad By) @ Ry, b # 0. Note that B = ((ad B) ® Ry) ® By where

B :=PadB) & PR

ik ik

and [(ad Bi) & Ry, Bi] = 0. Denote by Ek the associative subalgebra of Endr (Ty) with 1 generated by
operators from By. Then

[(@d By) @ Ry, By] =0
and Y, 3, aTyj 2 Ty is a G-invariant B-submodule of Ty, since
¢ g
/
(Zarkj) =Y et =Y @ Ty = Y oy
acBy aeBy aeEk a’eBy

for all g € G. Thus Ty =Y .3, aTy; and

ka = Z baTy; = Z a(bTy;) =0.

aeBy acBy

We get a contradiction with faithfulness of Ty. O
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By condition (2) of the definition of d, there exist numbers q, ..., q; € Z4 such that

[(T1,L,....LL (T2, L. L] [T, Ly L]] 0.
N — N —’ N —’
q1 q2 qr

Choose n; € Z, with the maximal Y ;_; n; such that

(oot [ (Tt [ (]

q1 q2 ar
for some ji € J(A). Let j;i :=[T;_, ji- Then j; € J(A)U {1} and
[LaTi. L. L 2T, Ly L) Ui T L LT] 50,
N e’ N — N e’
q1 q2 qr
but
[T Ly L [eG T Ly L) LT L LT] =0 (7)
N ——’ N —— N ——’
q1 dk ar

forall je J(A) and 1 <k<r.
In virtue of Lemma 22, for every k we can choose a faithful irreducible (ad Bx) & Ry-submodule
with G-action T C Ty such that

[(j1T1. L. L [j2T2, Ly oo Ll [ T, Ly LT] #0. (8)
N’ N e’ N’
q1 q2 qr

Lemma 23. Let ¥ : Pi_;(B; ® Ri) —> Pi_1((@d B;) @ R;) be the linear isomorphism defined by formulas
¥ (b) = adb for all b € B; and W(auz) = cCjg, 1 < £ < kg. Let f; be multilinear associative G-polynomials,
hgl), s (l) e@_, Bi®R;, ti € Ty, ik € L, be some elements. Then

(L1 fi(adni®, ... adhi ey, din, ..o ding, ], [ fr(ad B ad RD)E i, - g, ]
= [ ) () g, L [ fr (0 (00). o B g ]

In other words, we can replace ad aj; with cj, and the result does not change.

Proof. We rewrite ada;; = ci¢ + dijg = ¥ (a;) + dj; and use the multilinearity of f;. By Eq. (7), terms
with djp vanish. O

Denote by A3 C Endp(L) the linear span of products of operators from ad L and G such that each
product contains at least one element from ad L.

Lemma 24. J(A) C As.
Proof. Note that A3 is a G-invariant two-sided ideal of A and A3 + A3 = A where As C Endp(L) is

the associative subalgebra generated by operators from G. Thus A/A3 = 2\3/(7\3 N As3) is a semisimple
algebra since A3 is a homomorphic image of the semisimple group algebra FG. Thus J(A) € As. O
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Lemma 25. [f d # 0, then there exists a number ny € N such that for every n > ng there exist disjoint subsets
X1, oo Xok S X1, .., %n) k=[50, |Xq| = - - - = | Xok| = d and a polynomial f € VE\1d® (L) alternating
in the variables of each set X j.

Proof. Denote by ¢; : (ad B;) ® R; — gl(T;) the representation corresponding to the action of (ad B;) ®
R; on T;. In virtue of Theorem 5, there exist constants m; € Z, such that for any k there exist mul-
tilinear polynomials f; € Qdci 2* 2,{(jll_4_,111_\ldG(gol-), d; :== dim((ad B;) @ R;), alternating in the variables
from disjoint sets Xéi), 1<e<2k, |X2i)| =d;.

In virtue of (8),

[Litr, b1, .. B1,g, ) izbas U2, -y l2,g ), oo L, ey - Tl g, 1] # 0,

for some iijp € L and t; € T;. All j; € J(A) U {1} are polynomials in elements from G and ad L. Denote
by m the maximal degree of them.

Recall that each T; is a faithful irreducible (ad B;) ® Rj-module with G-action. Therefore by the
density theorem, Endfr(T;) is generated by operators from G and (ad B;) ® R;. Note that Endp(T;) =
Mgim; (F). Thus every matrix unit e;’g € Mgimr,;(F) can be represented as a polynomial in operators
from G and (ad B;) & R;. Choose such polynomials for all i and all matrix units. Denote by mg the
maximal degree of those polynomials.

Let ng :=r(2mo + 1 + 1) + Y_i_; (m; + q;). Now we choose f; for k = ["5;*]. Since f; ¢ 1d° (@),
there exist X;1, ..., Xj 2kd;+m; € (ad B;) @ R; such that f;(X;1, ..., X; 2kd;+m;) 7 0. Hence

ety fi®in. ... Xi oudpm)els, # 0

for some matrix units eg)li, eg)si € Endr(T;), 1 < ¢, s; <dimT;. Thus

dil‘l’l'[i

0 ¢ 3 5 (O]
Z eaifi Xi1s - - - xi,zkdi+m,-)esi@
=1

is a nonzero scalar operator in Endg(T;).
Hence

dim Ty
HJ( 5 ()f()())t}
(=1
dim T,
[jr( > ez?rfr@n,...,xr,zmmr)eg})fr,z‘m,...,arqrﬂ #0.
=1

Denote X;:=Ji_; Xg). Let Alt, be the operator of alternation in the variables from X,. Consider

FX11, o X1 2kdy4+mys -« > Xr1s o Xr 2kdy+my )

dilTlT]
. 1 1\ - _
:=A1t1A1t2...Alt2k[|:J1< E eg(gg)lfl(xll,~~~sxl,2kd1+m1)e§1;)tl»u]l,~~~7u1q1i|7~~~7
=1

dim T,
|:]r< Z eérg)rfr(xﬂ sy Xr,2kdr+mr)eg)g>trv Urt, - .., L_qu,:|:|-

=1
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Then

FX11, o X1 2kdy4my s - - o> Xrls - - o5 Xr 2kdo+my)

dim T,
2 2k S D1z = =
=(dH™...d) |:|: ( > €M]f1(X11,--.,X1,2/<dl+m1)€§1%>t1,Un,~--,u1q1i|,‘--,
dim T,
|:Jr< Z egg)rfr()_(rlo~~s?_<r,2kdr+mr)eg)g>tr7 ﬁr1,~~»ﬁrqr:|i| 750,

=1

since f; are alternating in each Xéi) and, by Lemma 21, ((ad B;) ® R;)T, =0 for i > £. Now we rewrite
e?]) as polynomials in elements of (ad B;) @ R; and G. Using linearity of f in eilj?, we can replace e?j)
with the products of elements from (ad B;) @ R; and G, and the expression will not vanish for some
choice of the products. Using Eq. (6), we can move all p(g) to the right. By Lemma 23, we can replace
all elements from (ad B;) & R; with elements from B; ® R; and the expression will be still nonzero.
Denote by  : @?:1 (Bj @ Rj) — @?:1 ((ad B;j) ® R;) the Eorresponding linear isomorphism. Now we
rewrite j; as polynomials in elements ad L and G. Since f is linear in j;, we can replace j; with one
of the monomials, i.e. with the product of elements from ad L and G. Using Eq. (6), we again move
all p(g) to the right. Then we replace the elements from ad L with new variables, and

f=Al Alty .. Aty [[[y11. V12, - Ve 211, (212, -, [21;,
(fr@dxii, ..., adx1 2kdy1m)) ' [Wit, [wiz, ... [Wm,t?]] o Joun, g ]
[[lev 2, ooy Wraps (21, (202, - - - (206,

(fr(adxrl,...,adxr,2kdr+mr))gr[wr1, [wra, ..., [Wrerr ] Joum, g ]

for some 0 < & < <m, 0< By, yi <my, gi,hi €G, yir, Zig, Wig € L does not vanish under the substitution
ti=t, zizuw-xw—‘// 1("12) Yie = Yie, Zie = Zig, Wig = Wig.
Note that f e VG fl:i=2kd +1+ Yi_1(mi +q +a; + Bi + vi) <n. If n=n, then we take

f= f Suppose n > fi. Let b € (adB1) & Ry, b # 0. Then e(])be(]) # 0 for some 1< j,¢ <dimT;
and (Zd'mTl (e(l)be( W = pty, @oe F\{O} Hence f does not vanish under the substitution
fr = (00 ey beg )" e 6 =T for 2 < i <1 wi = e, Xie = ¥ Rio). Vie = Fier 2ie = Zie,

Wi = Wig.
By Lemma 24,

be J(A) @ad(B1 @ Ry) C A3

and using Eq. (6) we can rewrite (Zd‘mT1 (embe“)))" f, as a sum of elements [V1, [V, [.. o [Vg,

t‘]g] J,g=n—n, v;el, geG. Hence f does not vanish under a substitution tq = [v1, [V2, [..., [Vq,
t§1...] for some g >n—f, viel, geG; ti=1; for 2 <i<r; ujp =g, Xie = ¥ Rie), Vie —J_/il'
Zi¢ = Ziy, Wi¢ = Wj¢. Therefore,

f=Alt Alty . Al [[[y11. [Vi2, - - - Wiegs (211, (212, - (218,

81
(fr@dxq1, ..., adxq 2kdy+my))” Wi, [Wi2, ... [Wiy,,

[ 1;17[ ’211’[”.,[ hi t ]...]...],un,---vulm]’
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[[}’21, [y22,...[V2as» [221, [222, . . ., [228,,

h
(f2@dxa1, ..., ad X2 2kds1my)) 5 [War, [Waz, .. [Way,, 652] .. ] U2, o Ug, ],
oy s - Wrars 12015 (202, - - -5 (20,

(fr@dxpq, ..., adxr,2kdr+mr))gr[wr1, [Wi2, ... [Wry,. t’r“] S RTE T TR |

does not vanish under the substitution vy =v,, 1<€<n—1, t1 =[Vp_j11, [Vajiz2. [.--, [Vq, f‘]g] K
ti =t for 2 <i<r; uig = je, Xie = ¥~ Xie), Yie = Vie» Zie = Zie, Wi = Wig. Note that f e V¢ and
satisfies all the conditions of the lemma. O

Lemma 26. Let k, ng be the numbers from Lemma 25. Then for every n > ng there exists a partition
A= (A1,..., ) En, A = 2k — C for every 1 <i < d, with m(L,G, L) # 0. Here C := p((dimL)p +
3)((dim L) — d) where p € N is such number that NP = 0.

Proof. Consider the polynomial f from Lemma 25. It is sufficient to prove that e?A f ¢1d°(L) for some
tableau T, of the desired shape A. It is known that FS, = @)\ﬂ FSne*T“A where the summation runs

over the set of all standard tableax T;, A -n. Thus FS, f = ZA‘TA FSne*;kf g 1d%(L) and e;kf ¢ 1d%(L)
for some A Fn. We claim that A is of the desired shape. It is sufficient to prove that Ag > 2k — C,
since A; > A4 for every 1 <i <d. Each row of T, includes numbers of no more than one variable
from each X;, since e*T‘A =br,ar, and ar, is symmetrizing the variables of each row. Thus Z?;] Ai <

2k(d — 1) + (n — 2kd) =n — 2k. In virtue of Lemma 14, 2?21 Ai >n —C. Therefore .y >2k—C. O

Proof of Theorem 1. The Young diagram D, from Lemma 26 contains the rectangular subdiagram D,
mw=@2k—C,...,2k — C). The branching rule for S, implies that if we consider the restriction of S;-
—_—

d
action on M(1) to Sp_1, then M(1) becomes the direct sum of all non-isomorphic FS,_1-modules
M(v), v (n—1), where each D, is obtained from D; by deleting one box. In particular, dim M(v) <
dim M()). Applying the rule (n — d(2k — C)) times, we obtain dim M(x) < dim M(A). By the hook
formula,

d(2k — O))!

dimM(p) = ————~
(W Iy

where hj; is the length of the hook with edge in (i, j). By Stirling formula,

(2k —C+d)?
V2md(2k — C) (42k=0)yd@k-0)
- (V27 (2k — C + d) (Z=CH)2k—Cd)d

cS(L) > dimM (@) > dimM(u) >

~ Cgkrg ded

for some constants Cg > 0, rg € Q, as k — oo. Since k = ["Ego], this gives the lower bound. The upper

bound has been proved in Theorem 4. 0O
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