Graded polynomial identities, group actions, and exponential growth of Lie algebras ${ }^{\star}$

A.S. Gordienko
Memorial University of Newfoundland, St. John's, NL, Canada

A R T I C L E I N F O

Article history:

Received 29 December 2011
Available online 18 June 2012
Communicated by E.I. Khukhro

MSC:

primary 17B01
secondary 17B70, 17B40, 20C30

Keywords:
Lie algebra
Polynomial identity
Grading
Codimension
Cocharacter
Symmetric group
Young diagram
Group action

Abstract

Consider a finite dimensional Lie algebra L with an action of a finite group G over a field of characteristic 0 . We prove the analog of Amitsur's conjecture on asymptotic behavior for codimensions of polynomial G-identities of L. As a consequence, we prove the analog of Amitsur's conjecture for graded codimensions of any finite dimensional Lie algebra graded by a finite Abelian group.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

In the 1980 's, a conjecture about the asymptotic behavior of codimensions of ordinary polynomial identities was made by S.A. Amitsur. Amitsur's conjecture was proved in 1999 by A. Giambruno and M.V. Zaicev [1, Theorem 6.5.2] for associative algebras, in 2002 by M.V. Zaicev [2] for finite dimensional Lie algebras, and in 2011 by A. Giambruno, I.P. Shestakov, M.V. Zaicev for finite dimensional Jordan and alternative algebras [3]. In 2011 the author proved its analog for polynomial identities

[^0]of finite dimensional representations of Lie algebras [4]. Alongside with ordinary polynomial identities of algebras, graded polynomial identities [5,6] and G-identities are important too [7,8]. Therefore the question arises whether the conjecture holds for graded and G-codimensions. E. Aljadeff, A. Giambruno, and D. La Mattina proved [9,10] the analog of Amitsur's conjecture for codimensions of graded polynomial identities of associative algebras graded by a finite Abelian group (or, equivalently, for codimensions of G-identities where G is a finite Abelian group).

This article is concerned with graded codimensions (Theorem 1) and G-codimensions (Theorem 2) of Lie algebras.

1.1. Graded polynomial identities and their codimensions

Let G be an Abelian group. Denote by $L\left(X^{\mathrm{gr}}\right)$ the free G-graded Lie algebra on the countable set $X^{g r}=\bigcup_{g \in G} X^{(g)}, X^{(g)}=\left\{x_{1}^{(g)}, x_{2}^{(g)}, \ldots\right\}$, over a field F of characteristic 0 , i.e. the algebra of Lie polynomials in variables from $X^{\text {gr }}$. The indeterminates from $X^{(g)}$ are said to be homogeneous of degree g. The G-degree of a monomial $\left[x_{i_{1}}^{\left(g_{1}\right)}, \ldots, x_{i_{t}}^{\left(g_{t}\right)}\right] \in L\left(X^{g r}\right)$ (all long commutators in the article are left-normed) is defined to be $g_{1} g_{2} \ldots g_{t}$, as opposed to its total degree, which is defined to be t. Denote by $L\left(X^{\mathrm{gr}}\right)^{(g)}$ the subspace of the algebra $L\left(X^{\mathrm{gr}}\right)$ spanned by all the monomials having G degree g. Notice that $\left[L\left(X^{\mathrm{gr}}\right)^{(g)}, L\left(X^{\mathrm{gr}}\right)^{(h)}\right] \subseteq L\left(X^{\mathrm{gr}}\right)^{(\mathrm{gh})}$, for every $g, h \in G$. It follows that

$$
L\left(X^{\mathrm{gr}}\right)=\bigoplus_{g \in G} L\left(X^{\mathrm{gr}}\right)^{(g)}
$$

is a G-grading. Let $f=f\left(x_{i_{1}}^{\left(g_{1}\right)}, \ldots, x_{i_{t}}^{\left(g_{t}\right)}\right) \in L\left(X^{\mathrm{gr})}\right.$. We say that f is a graded polynomial identity of a G-graded Lie algebra $L=\bigoplus_{g \in G} L^{(g)}$ and write $f \equiv 0$ if $f\left(a_{i_{1}}^{\left(g_{1}\right)}, \ldots, a_{i_{t}}^{\left(g_{t}\right)}\right)=0$ for all $a_{i_{j}}^{\left(g_{j}\right)} \in L^{\left(g_{j}\right)}$, $1 \leqslant j \leqslant t$. The set $\operatorname{Id}^{\mathrm{gr}}(L)$ of graded polynomial identities of L is a graded ideal of $L\left(X^{\mathrm{gr}}\right)$. The case of ordinary polynomial identities is included for the trivial group $G=\{e\}$.

Example 1. Let $G=\mathbb{Z}_{2}=\{\overline{0}, \overline{1}\}, \mathfrak{g l}_{2}(F)=\mathfrak{g l}_{2}(F)^{(\overline{0})} \oplus \mathfrak{g l}_{2}(F)^{(\overline{1})}$ where $\mathfrak{g l}_{2}(F)^{(\overline{0})}=\left(\begin{array}{c}F \\ 0 \\ 0\end{array}\right)$ and $\mathfrak{g l}_{2}(F)^{(\overline{1})}=$ $\left(\begin{array}{ll}0 & F \\ F & 0\end{array}\right)$. Then $\left[x^{(\overline{0})}, y^{(\overline{0})}\right] \in \operatorname{Id}^{\mathrm{gr}^{2}}\left(\mathfrak{g l}_{2}(F)\right)$.

Let S_{n} be the nth symmetric group, $n \in \mathbb{N}$, and

$$
V_{n}^{\mathrm{gr}}:=\left\langle\left[x_{\sigma(1)}^{\left(g_{1}\right)}, x_{\sigma(2)}^{\left(g_{2}\right)}, \ldots, x_{\sigma(n)}^{\left(g_{n}\right)}\right] \mid g_{i} \in G, \sigma \in S_{n}\right\rangle_{F} .
$$

The non-negative integer $c_{n}^{\mathrm{gr}}(L):=\operatorname{dim}\left(\frac{V_{n}^{\mathrm{gr}}}{V_{n}^{\mathrm{gr}} \mathrm{Id}^{\mathrm{gr}}(L)}\right)$ is called the nth codimension of graded polynomial identities or the nth graded codimension of L.

The analog of Amitsur's conjecture for graded codimensions can be formulated as follows.
Conjecture. There exists $\operatorname{Plexp}^{\mathrm{gr}}(L):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{\mathrm{gr}}(L)} \in \mathbb{Z}_{+}$.
Remark. I.B. Volichenko [11] gave an example of an infinite dimensional Lie algebra L with a nontrivial polynomial identity for which the growth of codimensions $c_{n}(L)$ of ordinary polynomial identities is overexponential. M.V. Zaicev and S.P. Mishchenko [12,13] gave an example of an infinite dimensional Lie PI-algebra L with a non-trivial polynomial identity such that there exists fractional $\operatorname{Plexp}(L):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}(L)}$.

Theorem 1. Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0 , graded by a finite Abelian group G. Then there exist constants $C_{1}, C_{2}>0, r_{1}, r_{2} \in \mathbb{R}, d \in \mathbb{N}$ such that $C_{1} n^{r_{1}} d^{n} \leqslant c_{n}^{\mathrm{gr}}(L) \leqslant$ $C_{2} n^{r_{2}} d^{n}$ for all $n \in \mathbb{N}$.

Corollary. The above analog of Amitsur's conjecture holds for such codimensions.
Remark. If L is nilpotent, i.e. $\left[x_{1}, \ldots, x_{p}\right] \equiv 0$ for some $p \in \mathbb{N}$, then $V_{n}^{\mathrm{gr}} \subseteq \operatorname{Id}^{\mathrm{gr}}(L)$ and $c_{n}^{\mathrm{gr}}(L)=0$ for all $n \geqslant p$.

Theorem 1 will be obtained as a consequence of Theorem 2 in Section 1.3.

1.2. Polynomial G-identities and their codimensions

Analogously, one can consider polynomial G-identities for any group G. We use the exponential notation for the action of a group and its group algebra. We say that a Lie algebra L is a Lie algebra with G-action or a Lie G-algebra if there is a fixed linear representation $G \rightarrow \operatorname{GL}(L)$ such that $[a, b]^{g}=$ [a^{g}, b^{g}] for all $a, b \in L$ and $g \in G$. Denote by $L(X \mid G)$ the free Lie algebra over F with free formal generators $x_{j}^{g}, j \in \mathbb{N}, g \in G$. Define $\left(x_{j}^{g}\right)^{h}:=x_{j}^{h g}$ for $h \in G$. Let $X:=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ where $x_{j}:=x_{j}^{1}$, $1 \in G$. Then $L(X \mid G)$ becomes the free G-algebra with free generators $x_{j}, j \in \mathbb{N}$. Let L be a Lie G algebra over F. A polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in L(X \mid G)$ is a G-identity of L if $f\left(a_{1}, \ldots, a_{n}\right)=0$ for all $a_{i} \in L$. The set $\mathrm{Id}^{G}(L)$ of all G-identities of L is an ideal in $L(X \mid G)$ invariant under G-action.

Example 2. Consider $\psi \in \operatorname{Aut}\left(\mathfrak{g l}_{2}(F)\right)$ defined by the formula

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\psi}:=\left(\begin{array}{cc}
a & -b \\
-c & d
\end{array}\right)
$$

Then $\left[x+x^{\psi}, y+y^{\psi}\right] \in \operatorname{Id}^{G}\left(\mathfrak{g l}_{2}(F)\right)$ where $G=\langle\psi\rangle \cong \mathbb{Z}_{2}$.
Denote by V_{n}^{G} the space of all multilinear G-polynomials in x_{1}, \ldots, x_{n}, i.e.

$$
V_{n}^{G}=\left\langle\left[x_{\sigma(1)}^{g_{1}}, x_{\sigma(2)}^{g_{2}}, \ldots, x_{\sigma(n)}^{g_{n}}\right] \mid g_{i} \in G, \sigma \in S_{n}\right\rangle_{F}
$$

Then the number $c_{n}^{G}(L):=\operatorname{dim}\left(\frac{V_{n}^{G}}{V_{n}^{G} \cap d^{G}(L)}\right)$ is called the nth codimension of polynomial G-identities or the nth G-codimension of L.

Remark. As in the case of associative algebras [1, Lemma 10.1.3], we have

$$
c_{n}(L) \leqslant c_{n}^{G}(L) \leqslant|G|^{n} c_{n}(L)
$$

Here $c_{n}(L)=c_{n}^{\{e\}}(L)$ are ordinary codimensions.
Also we have the following upper bound:
Lemma 1. Let L be a finite dimensional Lie algebra with G-action over any field F and let G be any group. Then $c_{n}^{G}(L) \leqslant(\operatorname{dim} L)^{n+1}$.

Proof. Consider G-polynomials as n-linear maps from L to L. Then we have a natural map $V_{n}^{G} \rightarrow$ $\operatorname{Hom}_{F}\left(L^{\otimes n} ; L\right)$ with the kernel $V_{n}^{G} \cap \operatorname{Id}^{G}(L)$ that leads to the embedding

$$
\frac{V_{n}^{G}}{V_{n}^{G} \cap \operatorname{Id}^{G}(L)} \hookrightarrow \operatorname{Hom}_{F}\left(L^{\otimes n} ; L\right) .
$$

Thus

$$
c_{n}^{G}(L)=\operatorname{dim}\left(\frac{V_{n}^{G}}{V_{n}^{G} \cap \operatorname{Id}^{G}(L)}\right) \leqslant \operatorname{dim} \operatorname{Hom}_{F}\left(L^{\otimes n} ; L\right)=(\operatorname{dim} L)^{n+1} .
$$

The analog of Amitsur's conjecture for G-codimensions can be formulated as follows.
Conjecture. There exists $\operatorname{Plexp}^{G}(L):=\lim _{n \rightarrow \infty} \sqrt[n]{c_{n}^{G}(L)} \in \mathbb{Z}_{+}$.
Theorem 2. Let L be a finite dimensional non-nilpotent Lie algebra over a field F of characteristic 0 . Suppose a finite group G not necessarily Abelian acts on L. Then there exist constants $C_{1}, C_{2}>0, r_{1}, r_{2} \in \mathbb{R}, d \in \mathbb{N}$ such that $C_{1} n^{r_{1}} d^{n} \leqslant c_{n}^{G}(L) \leqslant C_{2} n^{r_{2}} d^{n}$ for all $n \in \mathbb{N}$.

Corollary. The above analog of Amitsur's conjecture holds for such codimensions.
Remark. If L is nilpotent, i.e. $\left[x_{1}, \ldots, x_{p}\right] \equiv 0$ for some $p \in \mathbb{N}$, then, by the Jacobi identity, $V_{n}^{G} \subseteq \operatorname{Id}^{G}(L)$ and $c_{n}^{G}(L)=0$ for all $n \geqslant p$.

Remark. The theorem is still true if we allow G to act not only by automorphisms, but by antiautomorphisms too, i.e. if $G=G_{0} \cup G_{1}$ such that $[a, b]^{g}=\left[a^{g}, b^{g}\right]$ for all $a, b \in L, g \in G_{0}$ and $[a, b]^{g}=$ $\left[b^{g}, a^{g}\right]$ for all $a, b \in L, g \in G_{1}$. Indeed, we can replace G with $\tilde{G}=G_{0} \cup\left(-G_{1}\right)$ where $[a, b]^{-g}=$ $-[a, b]^{g}=-\left[b^{g}, a^{g}\right]=\left[a^{-g}, b^{-g}\right]$ for all $(-g) \in\left(-G_{1}\right)$. Then \tilde{G} acts on L by automorphisms only. Moreover, n-linear functions from L to L that correspond to polynomials from P_{n}^{G} and $P_{n}^{\tilde{G}}$, are the same. Thus

$$
c_{n}^{G}(L)=\operatorname{dim}\left(\frac{V_{n}^{G}}{V_{n}^{G} \cap \operatorname{Id}^{G}(L)}\right)=\operatorname{dim}\left(\frac{V_{n}^{\tilde{G}}}{V_{n}^{\tilde{G}} \cap \operatorname{Id}^{\tilde{G}}(L)}\right)=c_{n}^{\tilde{G}}(L)
$$

has the desired asymptotics.
Theorem 2 is proved in Sections 4-6.

1.3. Duality between group gradings and group actions

If F is an algebraically closed field of characteristic 0 and G is finite Abelian, there exists a well-known duality between G-gradings and \widehat{G}-actions where $\widehat{G}=\operatorname{Hom}\left(G, F^{*}\right) \cong G$. Details of the application of this duality to polynomial identities can be found, e.g., in [1, Chapters 3 and 10].

A character $\psi \in \widehat{G}$ acts on L in the natural way: $\left(a_{g}\right)^{\psi}=\psi(g) a_{g}$ for all $g \in G$ and $a_{g} \in L^{(g)}$. Conversely, if L is a \widehat{G}-algebra, then $L^{(g)}=\left\{a \in L \mid a^{\psi}=\psi(g) a\right.$ for all $\left.\psi \in \widehat{G}\right\}$ defines a G-grading on L.

Note that if G is finite Abelian, then $L\left(X^{\mathrm{gr}}\right)$ is a free \widehat{G}-algebra with free generators $y_{j}=$ $\sum_{g \in G} x_{j}^{(g)}$. Thus there exists an isomorphism $\varepsilon: L(X \mid \widehat{G}) \rightarrow L\left(X^{g r}\right)$ defined by $\varepsilon\left(x_{j}\right)=\sum_{g \in G} X_{j}^{(g)}$, that preserves \widehat{G}-action and G-grading. The isomorphism has the property $\varepsilon\left(\left(x_{j}\right)^{e_{g}}\right)=x_{j}^{(g)}$ where $e_{g}:=\frac{1}{|G|} \sum_{\psi}(\psi(g))^{-1} \psi$ is one of the minimal idempotents of $F \widehat{G}$ defined above.

Lemma 2. Let L be a G-graded Lie algebra where G is a finite Abelian group. Consider the corresponding \widehat{G}-action on L. Then
(1) $\varepsilon\left(\mathrm{Id}^{\widehat{G}}(L)\right)=\mathrm{Id}^{\mathrm{gr}}(L)$;
(2) $c_{n}^{\widehat{G}}(L)=c_{n}^{\mathrm{gr}}(L)$.

Proof. The first assertion is evident. The second assertion follows from the first one and the equality $\varepsilon\left(V_{n}^{\widehat{G}}\right)=V_{n}^{\mathrm{gr}}$.

Remark. Note that \mathbb{Z}_{2}-grading in Example 1 corresponds to \mathbb{Z}_{2}-action in Example 2.
Proof of Theorem 1. Codimensions do not change upon an extension of the base field. The proof is analogous to the cases of ordinary codimensions of associative [1, Theorem 4.1.9] and Lie algebras [2, Section 2]. Thus without loss of generality we may assume F to be algebraically closed. In virtue of Lemma 2, Theorem 1 is an immediate consequence of Theorem 2.

1.4. Formula for the PI-exponent

Theorem 2 is formulated for an arbitrary field F of characteristic 0 , but without loss of generality we may assume that F is algebraically closed.

Fix a Levi decomposition $L=B \oplus R$ where B is a maximal semisimple subalgebra of L and R is the solvable radical of L. Note that R is invariant under G-action. By [14, Theorem 1, Remark 3], we can choose B invariant under G-action too.

We say that M is an L-module with G-action if M is both left L - and $F G$-module, and $(a \cdot v)^{g}=$ $a^{g} \cdot v^{g}$ for all $a \in L, v \in M$ and $g \in G$. There is a natural G-action on $\operatorname{End}_{F}(M)$ defined by $\psi^{g} m=$ $\left(\psi m^{g^{-1}}\right)^{g}, m \in M, g \in G, \psi \in \operatorname{End}_{F}(M)$. Note that $L \rightarrow \mathfrak{g l (}(M)$ is a homomorphism of $F G$-modules. Such module M is irreducible if for any G - and L-invariant subspace $M_{1} \subseteq M$ we have either $M_{1}=0$ or $M_{1}=M$. Each G-invariant ideal in L can be regarded as a left L-module with G-action under the adjoint representation of L.

Consider G-invariant ideals $I_{1}, I_{2}, \ldots, I_{r}, J_{1}, J_{2}, \ldots, J_{r}, r \in \mathbb{Z}_{+}$, of the algebra L such that $J_{k} \subseteq I_{k}$, satisfying the conditions
(1) I_{k} / J_{k} is an irreducible L-module with G-action;
(2) for any G-invariant B-submodules T_{k} such that $I_{k}=J_{k} \oplus T_{k}$, there exist numbers $q_{i} \geqslant 0$ such that

$$
[[T_{1}, \underbrace{L, \ldots, L}_{q_{1}}],[T_{2}, \underbrace{L, \ldots, L}_{q_{2}}], \ldots,[T_{r}, \underbrace{L, \ldots, L}_{q_{r}}]] \neq 0
$$

Let M be an L-module. Denote by Ann M its annihilator in L. Let

$$
d(L):=\max \left(\operatorname{dim} \frac{L}{\operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{r} / J_{r}\right)}\right)
$$

where the maximum is found among all $r \in \mathbb{Z}_{+}$and all $I_{1}, \ldots, I_{r}, J_{1}, \ldots, J_{r}$ satisfying conditions (1)-(2). We claim that $\operatorname{Pexp}^{G}(L)=d(L)$ and prove Theorem 2 for $d=d(L)$.

1.5. Examples

Now we give several examples.
Example 3. Let L be a finite dimensional G-simple Lie algebra over an algebraically closed field F of characteristic 0 where G is a finite group. Then there exist $C>0$ and $r \in \mathbb{R}$ such that $C n^{r}(\operatorname{dim} L)^{n} \leqslant$ $c_{n}^{G}(L) \leqslant(\operatorname{dim} L)^{n+1}$.

Proof. The upper bound follows from Lemma 1. Consider G-invariant L-modules $I_{1}=L$ and $J_{1}=0$. Then I_{1} / J_{1} is an irreducible L-module, $\operatorname{Ann}\left(I_{1} / J_{1}\right)=0$ since a G-simple algebra has zero center, and $\operatorname{dim}\left(L / \operatorname{Ann}\left(I_{1} / J_{1}\right)\right)=\operatorname{dim} L$. Thus $d(L) \geqslant \operatorname{dim} L$ and by Theorem 2 we obtain the lower bound.

Example 4. Let L be a finite dimensional simple G-graded Lie algebra over an algebraically closed field F of characteristic 0 where G is a finite Abelian group. Then there exist $C>0$ and $r \in \mathbb{R}$ such that $C n^{r}(\operatorname{dim} L)^{n} \leqslant c_{n}^{\mathrm{gr}}(L) \leqslant(\operatorname{dim} L)^{n+1}$.

Proof. This follows from Example 3 and Lemma 2.
Example 5. Let L be a finite dimensional Lie algebra with G-action over any field F of characteristic 0 such that $\operatorname{Plexp}^{G}(L) \leqslant 2$ where G is a finite group. Then L is solvable.

Proof. It is sufficient to prove the statement for an algebraically closed field F. (See the remark before Theorem 2.) Consider the G-invariant Levi decomposition $L=B \oplus R$. If $B \neq 0$, there exists a G-simple Lie subalgebra $B_{1} \subseteq L, \operatorname{dim} B_{1} \geqslant 3$ and $\operatorname{Pexp}^{G}(L)=d(L) \geqslant 3$ by Example 3. We get a contradiction. Hence $L=R$ is a solvable algebra.

Analogously, we derive Example 6 from Example 4.
Example 6. Let L be a finite dimensional G-graded Lie algebra over any field F of characteristic 0 such that $\operatorname{Plexp}^{\mathrm{gr}}(L) \leqslant 2$ where G is a finite Abelian group. Then L is solvable.

Example 7. Let $L=B_{1} \oplus \cdots \oplus B_{s}$ be a finite dimensional semisimple Lie G-algebra over an algebraically closed field F of characteristic 0 where G is a finite group and B_{i} are G-minimal ideals. Let $d:=$ $\max _{1 \leqslant i \leqslant s} \operatorname{dim} B_{i}$. Then there exist $C_{1}, C_{2}>0$ and $r_{1}, r_{2} \in \mathbb{R}$ such that $C_{1} n^{r_{1}} d^{n} \leqslant c_{n}^{G}(L) \leqslant C_{2} n^{r_{2}} d^{n}$.

Proof. Note that if I is a G-simple ideal of L, then $[I, L] \neq 0$ and hence $\left[I, B_{i}\right] \neq 0$ for some $1 \leqslant i \leqslant s$. However $\left[I, B_{i}\right] \subseteq B_{i} \cap I$ is a G-invariant ideal. Thus $I=B_{i}$. And if I is a G-invariant ideal of L, then it is semisimple and each of its simple components coincides with one of B_{i}. Thus if $I \subseteq J$ are G invariant ideals of L and I / J is irreducible, then $I=B_{i} \oplus J$ for some $1 \leqslant i \leqslant s$ and $\operatorname{dim}(L / \operatorname{Ann}(I / J))=$ $\operatorname{dim} B_{i}$. Note that if $I_{1}=B_{i_{1}} \oplus J_{1}$ and $I_{2}=B_{i_{2}} \oplus J_{2}, i_{1} \neq i_{2}$, then $\left[\left[B_{i_{1}}, L, \ldots, L\right],\left[B_{i_{2}}, L, \ldots, L\right]\right]=0$. Thus $I_{1}, \ldots, I_{r}, J_{1}, \ldots, J_{r}$ can satisfy conditions (1)-(2) only if $r=1$. Hence $d(L)=\max _{1 \leqslant i \leqslant s} \operatorname{dim} B_{i}$ and the result follows from Theorem 2.

Example 8. Let $L=B_{1} \oplus \cdots \oplus B_{s}$ be a finite dimensional semisimple G-graded Lie algebra over an algebraically closed field F of characteristic 0 where G is a finite Abelian group and B_{i} are minimal graded ideals. Let $d:=\max _{1 \leqslant i \leqslant s} \operatorname{dim} B_{i}$. Then there exist $C_{1}, C_{2}>0$ and $r_{1}, r_{2} \in \mathbb{R}$ such that $C_{1} n^{r_{1}} d^{n} \leqslant$ $c_{n}^{\mathrm{gr}}(L) \leqslant C_{2} r^{r_{2}} d^{n}$.

Proof. This follows from Example 7 and Lemma 2.
Example 9. Let $m \in \mathbb{N}, G \subseteq S_{m}$ and O_{i} be the orbits of G-action on

$$
\{1,2, \ldots, m\}=\coprod_{i=1}^{s} O_{i}
$$

Denote

$$
d:=\max _{1 \leqslant i \leqslant s}\left|O_{i}\right| .
$$

Let L be the Lie algebra over any field F of characteristic 0 with basis $a_{1}, \ldots, a_{m}, b_{1}, \ldots, b_{m}, \operatorname{dim} L=$ 2 m , and multiplication defined by formulas $\left[a_{i}, a_{j}\right]=\left[b_{i}, b_{j}\right]=0$ and

$$
\left[a_{i}, b_{j}\right]= \begin{cases}b_{j} & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

Suppose G acts on L as follows: $\left(a_{i}\right)^{\sigma}=a_{\sigma(i)}$ and $\left(b_{j}\right)^{\sigma}=b_{\sigma(j)}$ for $\sigma \in G$. Then there exist $C_{1}, C_{2}>0$ and $r_{1}, r_{2} \in \mathbb{R}$ such that

$$
C_{1} n^{r_{1}} d^{n} \leqslant c_{n}^{G}(L) \leqslant C_{2} n^{r_{2}} d^{n}
$$

In particular, if

$$
G=\langle\tau\rangle \cong \mathbb{Z}_{m}=\mathbb{Z} /(m \mathbb{Z})=\{\overline{0}, \overline{1}, \ldots, \overline{m-1}\}
$$

where $\tau=(123 \ldots m)$ (a cycle), then

$$
C_{1} n^{r_{1}} m^{n} \leqslant c_{n}^{G}(L) \leqslant C_{2} n^{r_{2}} m^{n}
$$

However, $c_{n}(L)=n-1$ for all $n \in \mathbb{N}$.
Proof. If $K \supseteq F$ is a larger field, then $K \otimes_{F} L$ is defined by the same formulas as L. Since $c_{n}^{G}(L)=$ $c_{n}^{G, K}\left(K \otimes_{F} L\right)$ (see the remark before Theorem 2), we may assume F to be algebraically closed.

Let $B_{i}:=\left\langle b_{j} \mid j \in O_{i}\right\rangle_{F}, 1 \leqslant i \leqslant s$. Suppose I is a G-invariant ideal of L. If $b_{i} \in I$, then $b_{\sigma(i)}=$ $\left(b_{i}\right)^{\sigma} \in I$ for all $\sigma \in G$. Thus if $i \in O_{j}$, then $b_{k} \in I$ for all $k \in O_{j}$. Let $c:=\sum_{i=1}^{m}\left(\alpha_{i} a_{i}+\beta_{i} b_{i}\right) \in I$ for some $\alpha_{i}, \beta_{i} \in F$. Then $\beta_{i} b_{i}=\left[a_{i}, c\right] \in I$ for all $1 \leqslant i \leqslant m$ too. Therefore, $I=A_{0} \oplus B_{i_{1}} \oplus \cdots \oplus B_{i_{k}}$ for some $1 \leqslant i_{j} \leqslant s$ and $A_{0} \subseteq\left\langle a_{1}, \ldots, a_{m}\right\rangle_{F}$.

If $I, J \subseteq L$ are G-invariant ideals, then $J \subseteq J+[L, L] \cap I \subseteq I$ is a G-invariant ideal too. Suppose I / J is irreducible. Then either $[L, L] \cap I \subseteq J$ and $\operatorname{Ann}(I / J)=L$ or $I \subseteq J+[L, L]$ where $[L, L]=\left\langle b_{1}, \ldots, b_{m}\right\rangle_{F}$. Thus $\operatorname{Ann}(I / J) \neq L$ implies $J=A_{0} \oplus B_{i_{1}} \oplus \cdots \oplus B_{i_{k}}$ and $I=B_{\ell} \oplus J$ for some $1 \leqslant \ell \leqslant s$. In this case $\operatorname{dim}(L / \operatorname{Ann}(I / J))=\left|O_{\ell}\right|$.

Note that if $I_{1}=B_{i_{1}} \oplus J_{1}$ and $I_{2}=B_{i_{2}} \oplus J_{2}$, then

$$
\left[\left[B_{i_{1}}, L, \ldots, L\right],\left[B_{i_{2}}, L, \ldots, L\right]\right]=0 .
$$

Thus $I_{1}, \ldots, I_{r}, J_{1}, \ldots, J_{r}$ can satisfy conditions (1)-(2) only if $r=1$. Hence

$$
d(L)=\max _{1 \leqslant i \leqslant s}\left|O_{\ell}\right|
$$

and by Theorem 2 we obtain the bounds.
Consider the ordinary polynomial identities. Using the Jacobi identity, any monomial in V_{n} can be rewritten as a linear combination of left-normed commutators $\left[x_{1}, x_{j}, x_{i_{3}}, \ldots, x_{i_{n}}\right]$. Since the polynomial identity

$$
[[x, y],[z, t]] \equiv 0
$$

holds in L, we may assume that $i_{3}<i_{4}<\cdots<i_{n}$. Note that $f_{j}=\left[x_{1}, x_{j}, x_{i_{3}}, \ldots, x_{i_{n}}\right], 2 \leqslant j \leqslant n$, are linearly independent modulo $\operatorname{Id}(L)$. Indeed, if $\sum_{k=2}^{n} \alpha_{k} f_{k} \equiv 0, \alpha_{k} \in F$, then we substitute $x_{j}=b_{1}$ and $x_{i}=a_{1}$ for $i \neq j$. Only f_{j} does not vanish. Hence $\alpha_{j}=0$ and $c_{n}(L)=n-1$.

Example 10. Let $m \in \mathbb{N}, L=\bigoplus_{\bar{k} \in \mathbb{Z}_{m}} L^{(\bar{k})}$ be the \mathbb{Z}_{m}-graded Lie algebra with $L^{(\bar{k})}=\left\langle c_{\bar{k}}, d_{\bar{k}}\right\rangle_{F}$, $\operatorname{dim} L^{(\bar{k})}=2$, multiplication $\left[c_{\bar{i}}, c_{\bar{j}}\right]=\left[d_{\bar{i}}, d_{\bar{j}}\right]=0$ and $\left[c_{\bar{i}}, d_{\bar{j}}\right]=d_{\bar{i}+\bar{j}}$ where F is any field of characteristic 0 . Then there exist $C_{1}, C_{2}>0$ and $r_{1}, r_{2} \in \mathbb{R}$ such that

$$
C_{1} n^{r_{1}} m^{n} \leqslant c_{n}^{\mathrm{gr}}(L) \leqslant C_{2} n^{r_{2}} m^{n} .
$$

Proof. Again, we may assume F to be algebraically closed. Let $\zeta \in F$ be an m th primitive root of 1 . Then $\widehat{G}=\left\{\psi_{0}, \ldots, \psi_{m-1}\right\}$ for $G=\mathbb{Z}_{m}$ where $\psi_{\ell}(\bar{J}):=\zeta^{\ell j}$. We can identify the algebras from Examples 9 and 10 by formulas $c_{\bar{j}}=\sum_{k=1}^{m} \zeta^{-j k} a_{k}$ and $d_{\bar{j}}=\sum_{k=1}^{m} \zeta^{-j k} b_{k}$. The \mathbb{Z}_{m}-grading and $\langle\tau\rangle$-action correspond to each other since $\left(c_{\bar{j}}\right)^{\tau^{\ell}}=\zeta^{\ell j} c_{\bar{j}}=\psi_{\ell}(\bar{J}) c_{\bar{j}}$ and $\left(d_{\bar{j}}\right)^{\tau^{\ell}}=\zeta^{\ell j} d_{\bar{J}}=\psi_{\ell}(\bar{J}) d_{\bar{j}}$. By Lemma 2, $c_{n}^{\mathrm{gr}}(L)=c_{n}^{\langle\tau\rangle}(L)$ and the bounds follow from Example 9.

1.6. S_{n}-cocharacters

One of the main tools in the investigation of polynomial identities is provided by the representation theory of symmetric groups. The symmetric group S_{n} acts on the space $\frac{V_{n}^{G}}{V_{n}^{G} \cap d^{G}(L)}$ by permuting the variables. Irreducible $F S_{n}$-modules are described by partitions $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right) \vdash n$ and their Young diagrams D_{λ}. The character $\chi_{n}^{G}(L)$ of the $F S_{n}$-module $\frac{V_{n}^{G}}{V_{n}^{G} \cap d^{G}(L)}$ is called the nth cocharacter of polynomial G-identities of L. We can rewrite it as a sum $\chi_{n}^{G}(L)=\sum_{\lambda \vdash n} m(L, G, \lambda) \chi(\lambda)$ of irreducible characters $\chi(\lambda)$. Let $e_{T_{\lambda}}=a_{T_{\lambda}} b_{T_{\lambda}}$ and $e_{T_{\lambda}}^{*}=b_{T_{\lambda}} a_{T_{\lambda}}$ where $a_{T_{\lambda}}=\sum_{\pi \in R_{T_{\lambda}}} \pi$ and $b_{T_{\lambda}}=\sum_{\sigma \in C_{T_{\lambda}}}(\operatorname{sign} \sigma) \sigma$, be the Young symmetrizers corresponding to a Young tableau T_{λ}. Then $M(\lambda)=F S e_{T_{\lambda}} \cong F S e_{T_{\lambda}}^{*}$ is an irreducible $F S_{n}$-module corresponding to the partition $\lambda \vdash n$. We refer the reader to [1,17,18] for an account of S_{n}-representations and their applications to polynomial identities.

Our proof of Theorem 2 follows the outline of the proof by M.V. Zaicev [2]. However, in many cases we need to apply new ideas.

In Section 2 we discuss modules with G-action over Lie G-algebras, their annihilators and complete reducibility.

In Section 3 we prove that $m(L, G, \lambda)$ is polynomially bounded. In Section 4 we prove that if $m(L, G, \lambda) \neq 0$, then the corresponding Young diagram D_{λ} has at most d long rows. This implies the upper bound.

In Section 5 we consider faithful irreducible L_{0}-modules with G-action where L_{0} is a reductive Lie G-algebra. For an arbitrary $k \in \mathbb{N}$, we construct an associative G-polynomial that is alternating in $2 k$ sets, each consisting of $\operatorname{dim} L_{0}$ variables. This polynomial is not an identity of the corresponding representation of L_{0}. In Section 6 we choose reductive algebras and faithful irreducible modules with G-action, and glue the corresponding alternating polynomials. This allows us to find $\lambda \vdash n$ with $m(L, G, \lambda) \neq 0$ such that $\operatorname{dim} M(\lambda)$ has the desired asymptotic behavior and the lower bound is proved.

2. Lie algebras and modules with G-action

We need several auxiliary lemmas. First, the Weyl theorem [15, Theorem 6.3] on complete reducibility of representations can be easily extended to the case of Lie algebras with G-action.

Lemma 3. Let M be a finite dimensional module with G-action over a Lie G-algebra L_{0}. Suppose M is a completely reducible L_{0}-module disregarding the G-action. Then M is completely reducible L_{0}-module with G-action.

Corollary. If M is a finite dimensional module with G-action over a semisimple Lie G-algebra B_{0}, then M is a completely reducible module with G-action.

Proof of Lemma 3. Suppose $M_{1} \subseteq M$ is a G-invariant L_{0}-submodule of M. Then it is sufficient to prove that there exists a G-invariant L_{0}-submodule $M_{2} \subseteq M$ such that $M=M_{1} \oplus M_{2}$.

Since M is completely reducible, there exists an L_{0}-homomorphism $\pi: M \rightarrow M_{1}$ such that $\pi(v)=v$ for all $v \in M_{1}$. Consider a homomorphism $\tilde{\pi}: M \rightarrow M_{1}, \tilde{\pi}(v)=\frac{1}{|G|} \sum_{g \in G} \pi\left(v^{g^{-1}}\right)^{g}$. Then $\tilde{\pi}(v)=v$ for all $v \in M_{1}$ too and for all $a \in L_{0}, h \in G$ we have

$$
\begin{aligned}
& \tilde{\pi}(a \cdot v)=\frac{1}{|G|} \sum_{g \in G} \pi\left((a \cdot v)^{g^{-1}}\right)^{g}=\frac{1}{|G|} \sum_{g \in G} \pi\left(a^{g^{-1}} \cdot v^{g^{-1}}\right)^{g}=\frac{1}{|G|} \sum_{g \in G} a \cdot \pi\left(v^{g^{-1}}\right)^{g}=a \cdot \tilde{\pi}(v), \\
& \tilde{\pi}\left(v^{h}\right)=\frac{1}{|G|} \sum_{g \in G} \pi\left(\left(v^{h}\right)^{g^{-1}}\right)^{g}=\frac{1}{|G|} \sum_{g \in G} \pi\left(v^{\left(h^{-1} g\right)^{-1}}\right)^{h\left(h^{-1} g\right)}=\frac{1}{|G|} \sum_{g^{\prime} \in G}\left(\pi\left(v^{g^{\prime-1}}\right)^{g^{\prime}}\right)^{h}=\tilde{\pi}(v)^{h}
\end{aligned}
$$

where $g^{\prime}=h^{-1} g$. Thus we can take $M_{2}=\operatorname{ker} \tilde{\pi}$.
Note that $[L, R] \subseteq N$ by [16, Proposition 2.1.7] where N is the nilpotent radical, which is a G invariant ideal.

Lemma 4. There exists a G-invariant subspace $S \subseteq R$ such that $R=S \oplus N$ is the direct sum of subspaces and $[B, S]=0$.

Proof. Note that R is a B-submodule under the adjoint representation of B on L. Applying the corollary of Lemma 3 to $N \subseteq R$, we obtain a G-invariant complementary subspace $S \subseteq R$ such that $[B, S] \subseteq S$. Thus $[B, S] \subseteq S \cap[L, R] \subseteq S \cap N=0$.

Therefore, $L=B \oplus S \oplus N$ (direct sum of subspaces).
Let M be an L-module and let T be a subspace of L. Denote $\operatorname{Ann}_{T} M:=(\operatorname{Ann} M) \cap T$. Lemma 5 is a G-invariant analog of [2, Lemma 4].

Lemma 5. Let $J \subseteq I \subseteq L$ be G-invariant ideals such that I / J is an irreducible L-module with G-action. Then
(1) $\operatorname{Ann}_{B}(I / J)$ and $\mathrm{Ann}_{S}(I / J)$ are G-invariant subspaces of L;
(2) $\operatorname{Ann}(I / J)=\operatorname{Ann}_{B}(I / J) \oplus \operatorname{Ann}_{S}(I / J) \oplus N$.

Proof. Since I / J is a module with G-action, $\operatorname{Ann}(I / J), \operatorname{Ann}_{B}(I / J)$, and $\operatorname{Ann}_{S}(I / J)$ are G-invariant. Moreover $[N, I] \subseteq J$ since N is a nilpotent ideal and I / J is a composition factor of the adjoint representation. Hence $N \subseteq \operatorname{Ann}(I / J)$. In order to prove the lemma, it is sufficient to show that if $b+s \in \operatorname{Ann}(I / J), b \in B, s \in S$, then $b, s \in \operatorname{Ann}(I / J)$. Denote $\varphi: L \rightarrow \mathfrak{g l (I / J)}$. Then $\varphi(b)+\varphi(s)=0$ and

$$
[\varphi(b), \varphi(B)]=[-\varphi(s), \varphi(B)]=0 .
$$

Hence $\varphi(b)$ belongs to the center of $\varphi(B)$ and $\varphi(b)=\varphi(s)=0$ since $\varphi(B)$ is semisimple. Thus $b, s \in$ Ann (I / J) and the lemma is proved.

Lemma 6. Let $L_{0}=B_{0} \oplus R_{0}$ be a finite dimensional reductive Lie algebra with G-action, B_{0} be a maximal semisimple G-subalgebra, and R_{0} be the center of L_{0}. Let M be a finite dimensional irreducible L_{0}-module with G-action. Then
(1) $M=M_{1} \oplus \cdots \oplus M_{q}$ for some L_{0}-submodules $M_{i}, 1 \leqslant i \leqslant q$;
(2) elements of R_{0} act on each M_{i} by scalar operators;
(3) for every $1 \leqslant i \leqslant q$ and $g \in G$ there exists such $1 \leqslant j \leqslant q$ that $M_{i}^{g}=M_{j}$ and this action of G on the set $\left\{M_{1}, \ldots, M_{q}\right\}$ is transitive.

Proof. Denote by φ the homomorphism $L_{0} \rightarrow \mathfrak{g l}(M)$. Then φ is a homomorphism of G-representations. We claim that $\varphi\left(R_{0}\right)$ consist of semisimple operators. Let r_{1}, \ldots, r_{t} be a basis in R_{0}. Consider the Jordan decomposition $\varphi\left(r_{i}\right)=r_{i}^{\prime}+r_{i}^{\prime \prime}$ where each r_{i}^{\prime} is semisimple, each $r_{i}^{\prime \prime}$ is nilpotent, and both are polynomials of $\varphi\left(r_{i}\right)$ without a constant term [15, Section 4.2]. Since each $\varphi\left(r_{i}\right)$ commutes with all operators $\varphi(a), a \in L_{0}$, the elements $\left(r_{i}^{\prime \prime}\right)^{g}, 1 \leqslant i \leqslant t, g \in G$, generate a nilpotent G-invariant associative ideal K in the enveloping algebra $A \subseteq \operatorname{End}_{F}(M)$ of the Lie algebra $\varphi\left(L_{0}\right)$. Suppose $K M \neq 0$. Then
for some $\varkappa \in \mathbb{N}$ we have $K^{\varkappa+1} M=0$, but $K^{\varkappa} M \neq 0$. Note that $K^{\varkappa} M$ is a nonzero G-invariant $L_{0^{-}}$ submodule. Thus $K^{\chi} M=M$ and $K M=K^{\varkappa+1} M=0$. Since $K \subseteq \operatorname{End}_{F}(M)$, we obtain $K=0$.

Therefore $\varphi\left(r_{i}\right)=r_{i}^{\prime}$ are commuting semisimple operators. They have a common basis of eigenvectors. Hence we can choose subspaces $M_{i}, 1 \leqslant i \leqslant q, q \in \mathbb{N}$, such that

$$
M=M_{1} \oplus \cdots \oplus M_{q}
$$

and each M_{i} is the intersection of eigenspaces of $\varphi\left(r_{i}\right)$. Note that $\left[\varphi\left(r_{i}\right), \varphi(x)\right]=0$ for all $x \in L_{0}$. Thus M_{i} are L_{0}-submodules and propositions (1) and (2) are proved.

For every M_{i} we can define a linear function $\alpha_{i}: R_{0} \rightarrow F$ such that $\varphi(r) m=\alpha_{i}(r) m$ for all $r \in R_{0}$ and $m \in M_{i}$. Then $M_{i}=\bigcap_{r \in R_{0}} \operatorname{ker}\left(\varphi(r)-\alpha_{i}(r) \cdot 1\right)$ and

$$
M_{i}^{g}=\bigcap_{r \in R_{0}} \operatorname{ker}\left(\varphi\left(r^{g}\right)-\alpha_{i}(r) \cdot 1\right)=\bigcap_{\tilde{r} \in R_{0}} \operatorname{ker}\left(\varphi(\tilde{r})-\alpha_{i}\left(\tilde{r}^{g^{-1}}\right) \cdot 1\right)
$$

where $\tilde{r}=r^{g}$. Therefore, M_{i}^{g} must coincide with M_{j} for some $1 \leqslant j \leqslant q$. The module M is irreducible with respect to $L_{0^{-}}$and G-action that implies proposition (3).

Lemma 7. Let W be a finite dimensional L-module with G-action. Let $\varphi: L \rightarrow \mathfrak{g l}(W)$ be the corresponding homomorphism. Denote by A the associative subalgebra of $\operatorname{End}_{F}(W)$ generated by the operators from $\varphi(L)$ and G. Then $\varphi([L, R]) \subseteq J(A)$ where $J(A)$ is the Jacobson radical of A.

Proof. Let $W=W_{0} \supseteq W_{1} \supseteq W_{2} \supseteq \cdots \supseteq W_{t}=\{0\}$ be a composition chain in W of not necessarily G-invariant L-submodules. Then each W_{i} / W_{i+1} is an irreducible L-module. Denote the corresponding homomorphism by $\varphi_{i}: L \rightarrow \mathfrak{g l}\left(W_{i} / W_{i+1}\right)$. Then by E. Cartan's theorem [16, Proposition 1.4.11], $\varphi_{i}(L)$ is semisimple or the direct sum of a semisimple ideal and the center of $\mathfrak{g l}\left(W_{i} / W_{i+1}\right)$. Thus $\varphi_{i}([L, L])$ is semisimple and $\varphi_{i}([L, L] \cap R)=0$. Since $[L, R] \subseteq[L, L] \cap R$, we have $\varphi_{i}([L, R])=0$ and $[L, R] W_{i} \subseteq$ W_{i+1}. Denote by $\rho: G \rightarrow G L(W)$ the homomorphism corresponding to G-action. The associative G invariant ideal of A generated by $\varphi([L, R])$ is nilpotent since for any $a_{i} \in \varphi([L, R]), b_{i j} \in \varphi(L), g_{i j} \in G$ we have

$$
\begin{aligned}
a_{1}(& \left.\rho\left(g_{10}\right) b_{11} \rho\left(g_{11}\right) \ldots \rho\left(g_{1, s_{1}-1}\right) b_{1, s_{1}} \rho\left(g_{1, s_{1}}\right)\right) a_{2} \ldots \\
& a_{t-1}\left(\rho\left(g_{t-1,0}\right) b_{t-1,1} \rho\left(g_{t-1,1}\right) \ldots \rho\left(g_{t-1, s_{t-1}-1}\right) b_{t-1, s_{t-1}} \rho\left(g_{t-1, s_{t-1}}\right)\right) a_{t} \\
= & a_{1}\left(b_{11}^{g_{10}} \ldots b_{1, s_{1}}^{g_{1, s_{1}}^{\prime}}\right) a_{2}^{g_{2}} \ldots a_{t-1}^{g_{t-1}}\left(b_{t-1,1}^{g_{t-1,1}^{\prime}} \ldots b_{t-1, s_{t-1}}^{g_{t-1, s_{t-1}}^{\prime}}\right) a_{t}^{g_{t}} \rho\left(g_{t+1}\right)=0
\end{aligned}
$$

where $g_{i}, g_{i j}^{\prime} \in G$ are products of $g_{i j}$ obtained using the property $\rho(g) b w=b^{g} \rho(g) w$ where $g \in G$, $b \in \varphi(L), w \in W$. Thus $\varphi([L, R]) \subseteq J(A)$.

3. Multiplicities of irreducible characters in $\chi_{n}^{G}(L)$

The aim of the section is to prove

Theorem 3. Let L be a finite dimensional Lie G-algebra over a field F of characteristic 0 where G is a finite group. Then there exist constants $C>0, r \in \mathbb{N}$ such that

$$
\sum_{\lambda \vdash n} m(L, G, \lambda) \leqslant C n^{r}
$$

for all $n \in \mathbb{N}$.

Remark. Cocharacters do not change upon an extension of the base field F (the proof is completely analogous to [1, Theorem 4.1.9]), so we may assume F to be algebraically closed.

In [19, Theorem 13(b)] A. Berele, using the duality between S_{n} - and $\mathrm{GL}_{m}(F)$-cocharacters [20,21], showed that such sequence for an associative algebra with an action of a Hopf algebra is polynomially bounded. One may repeat those steps for Lie G-algebras and prove Theorem 3 in that way. However we provide an alternative proof based only on S_{n}-characters.

Let $\{e\}$ be the trivial group, $V_{n}:=V_{n}^{\{e\}}, \chi_{n}(L):=\chi_{n}^{\{e\}}(L), m(L, \lambda):=m(L,\{e\}, \lambda), \operatorname{Id}(L):=\operatorname{Id}^{\{e\}}(L)$. Then, by [22, Theorem 3.1],

$$
\begin{equation*}
\sum_{\lambda \vdash n} m(L, \lambda) \leqslant C_{3} n^{r_{3}} \tag{1}
\end{equation*}
$$

for some $C_{3}>0$ and $r_{3} \in \mathbb{N}$.
Let $G_{1} \subseteq G_{2}$ be finite groups and W_{1}, W_{2} be $F G_{1}$ - and $F G_{2}$-modules respectively. Then we denote $F G_{2}$-module $F G_{2} \otimes_{F G_{1}} W_{1}$ by $W_{1} \uparrow G_{2}$. Here G_{2} acts on the first component. Let $W_{2} \downarrow G_{1}$ be W_{2} with G_{2}-action restricted to G_{1}. We use analogous notation for the characters.

Denote by length (M) the number of irreducible components of a module M.
Consider the diagonal embedding $\varphi: S_{n} \rightarrow S_{n|G|}$,

$$
\varphi(\sigma):=\left(\begin{array}{cccc|cccc|c}
1 & 2 & \ldots & n & n+1 & n+2 & \ldots & 2 n & \ldots \\
\sigma(1) & \sigma(2) & \ldots & \sigma(n) & n+\sigma(1) & n+\sigma(2) & \ldots & n+\sigma(n) & \ldots
\end{array}\right)
$$

Then we have

Lemma 8.

$$
\sum_{\lambda \vdash n} m(L, G, \lambda)=\text { length }\left(\frac{V_{n}^{G}}{V_{n}^{G} \cap \operatorname{Id}^{G}(L)}\right) \leqslant \operatorname{length}\left(\left(\frac{V_{n|G|}}{V_{n|G|} \cap \operatorname{Id}(L)}\right) \downarrow \varphi\left(S_{n}\right)\right)
$$

Proof. Consider S_{n}-isomorphism $\pi:\left(V_{n|G|} \downarrow \varphi\left(S_{n}\right)\right) \rightarrow V_{n}^{G}$ defined by $\pi\left(x_{n(i-1)+t}\right)=x_{t}^{g_{i}}$ where $G=$ $\left\{g_{1}, g_{2}, \ldots, g_{|G|}\right\}, 1 \leqslant t \leqslant n$. Note that $\pi\left(V_{n|G|} \cap \operatorname{Id}(L)\right) \subseteq V_{n}^{G} \cap \operatorname{Id}^{G}(L)$. Thus $F S_{n}$-module $\frac{V_{n}^{G}}{V_{n}^{G} \cap d^{G}(L)}$ is a homomorphic image of $F S_{n}$-module $\left(\frac{V_{n|G|}}{V_{n|G|} \cap I d(L)}\right) \downarrow \varphi\left(S_{n}\right)$.

Hence it is sufficient to prove that length $\left(\left(\frac{V_{n|G|}}{V_{n|G|} \operatorname{II}(L)}\right) \downarrow \varphi\left(S_{n}\right)\right)$ is polynomially bounded. However, we start with the study of the restriction on the larger subgroup

$$
S\{1, \ldots, n\} \times S\{n+1, \ldots, 2 n\} \times \cdots \times S\{n(|G|-1), \ldots, n|G|\} \subseteq S_{n|G|}
$$

that we denote by $\left(S_{n}\right)^{|G|}$.
This is a particular case of a more general situation. Let $m=m_{1}+\cdots+m_{t}, m_{i} \in \mathbb{N}$. Then we have a natural embedding $S_{m_{1}} \times \cdots \times S_{m_{t}} \hookrightarrow S_{m}$. Irreducible representations of $S_{m_{1}} \times \cdots \times S_{m_{t}}$ are isomorphic to $M\left(\lambda^{(1)}\right) \sharp \cdots \sharp M\left(\lambda^{(t)}\right)$ where $\lambda^{(i)} \vdash m_{i}$. Here

$$
M\left(\lambda^{(1)}\right) \sharp \cdots \sharp M\left(\lambda^{(t)}\right) \cong M\left(\lambda^{(1)}\right) \otimes \cdots \otimes M\left(\lambda^{(t)}\right)
$$

as a vector space and $S_{m_{i}}$ acts on $M\left(\lambda^{(i)}\right)$. Denote by $\chi\left(\lambda^{(1)}\right) \sharp \cdots \sharp \chi\left(\lambda^{(t)}\right)$ the character of $M\left(\lambda^{(1)}\right) \sharp$ $\cdots \sharp M\left(\lambda^{(t)}\right)$.

Analogously, $\chi\left(\lambda^{(1)}\right) \widehat{\otimes} \cdots \widehat{\otimes} \chi\left(\lambda^{(t)}\right)$ is the character of $F S_{m}$-module

$$
M\left(\lambda^{(1)}\right) \widehat{\otimes} \cdots \widehat{\otimes} M\left(\lambda^{(t)}\right):=\left(M\left(\lambda^{(1)}\right) \sharp \cdots \sharp M\left(\lambda^{(t)}\right)\right) \uparrow S_{m} .
$$

Note that if $m_{1}=\cdots=m_{t}=k$, one can define the inner tensor product, i.e.

$$
M\left(\lambda^{(1)}\right) \otimes \cdots \otimes M\left(\lambda^{(t)}\right)
$$

with the diagonal S_{k}-action. The character of this $F S_{k}$-module equals $\chi\left(\lambda^{(1)}\right) \ldots \chi\left(\lambda^{(t)}\right)$.
Recall that irreducible characters of any finite group G_{0} are orthonormal with respect to the scalar product $(\chi, \psi)=\frac{1}{\left|G_{0}\right|} \sum_{g \in G_{0}} \chi\left(g^{-1}\right) \psi(g)$.

Denote by λ^{T} the transpose partition of $\lambda \vdash n$. Then λ_{1}^{T} equals the height of the first column of D_{λ}.
Lemma 9. Let $h, t \in \mathbb{N}$. There exist $C_{4}>0, r_{4} \in \mathbb{N}$ such that for all $\lambda \vdash m, \lambda^{(1)} \vdash m_{1}, \ldots, \lambda^{(t)} \vdash m_{t}$, where D_{λ} lie in the strip of height h, i.e. $\lambda_{1}^{T} \leqslant h$, and $m_{1}+m_{2}+\cdots+m_{t}=m$, we have

$$
\left(\chi(\lambda) \downarrow\left(S_{m_{1}} \times \cdots \times S_{m_{t}}\right), \quad \chi\left(\lambda^{(1)}\right) \sharp \cdots \sharp \chi\left(\lambda^{(t)}\right)\right)=\left(\chi(\lambda), \quad \chi\left(\lambda^{(1)}\right) \widehat{\otimes} \cdots \widehat{\otimes} \chi\left(\lambda^{(t)}\right)\right) \leqslant C_{4} m^{r_{4}} .
$$

If $\lambda \vdash m, \lambda^{(1)} \vdash m_{1}, \ldots, \lambda^{(t)} \vdash m_{t}, m_{1}+m_{2}+\cdots+m_{t}=m$, and

$$
\left(\chi(\lambda) \downarrow\left(S_{m_{1}} \times \cdots \times S_{m_{t}}\right), \chi\left(\lambda^{(1)}\right) \sharp \cdots \sharp \chi\left(\lambda^{(t)}\right)\right)=\left(\chi(\lambda), \quad \chi\left(\lambda^{(1)}\right) \widehat{\otimes} \cdots \widehat{\otimes} \chi\left(\lambda^{(t)}\right)\right) \neq 0
$$

then $\left(\lambda^{(i)}\right)_{1}^{T} \leqslant \lambda_{1}^{T}$ for all $1 \leqslant i \leqslant t$ and $\lambda_{1}^{T} \leqslant \sum_{i=1}^{t}\left(\lambda^{(i)}\right)_{1}^{T}$.
Proof. By Frobenius reciprocity,

$$
\begin{aligned}
\left(\chi(\lambda) \downarrow\left(S_{m_{1}} \times \cdots \times S_{m_{t}}\right), \chi\left(\lambda^{(1)}\right) \sharp \cdots \sharp \chi\left(\lambda^{(t)}\right)\right) & =\left(\chi(\lambda),\left(\chi\left(\lambda^{(1)}\right) \sharp \cdots \sharp \chi\left(\lambda^{(t)}\right)\right) \uparrow S_{m}\right) \\
& =\left(\chi(\lambda), \chi\left(\lambda^{(1)}\right) \widehat{\otimes} \cdots \widehat{\otimes} \chi\left(\lambda^{(t)}\right)\right) .
\end{aligned}
$$

Now we prove the lemma by induction on t. The case $t=1$ is trivial. Suppose $\left(\chi(\mu), \chi\left(\lambda^{(1)}\right) \widehat{\otimes}\right.$ $\left.\cdots \widehat{\otimes} \chi\left(\lambda^{(t-1)}\right)\right)$ is polynomially bounded for every $\mu \vdash\left(m_{1}+\cdots+m_{t-1}\right)$ with $\mu_{1}^{T} \leqslant h$. We have

$$
\begin{align*}
&(\chi\left.(\lambda), \chi\left(\lambda^{(1)}\right) \widehat{\otimes} \cdots \widehat{\otimes} \chi\left(\lambda^{(t)}\right)\right) \\
& \quad\left(\chi(\lambda),\left(\chi\left(\lambda^{(1)}\right) \widehat{\otimes} \cdots \widehat{\otimes} \chi\left(\lambda^{(t-1)}\right)\right) \widehat{\otimes} \chi\left(\lambda^{(t)}\right)\right) \\
& \quad=\sum_{\mu \vdash\left(m_{1}+\cdots+m_{t-1}\right)}\left(\chi(\mu), \chi\left(\lambda^{(1)}\right) \widehat{\otimes} \cdots \widehat{\otimes} \chi\left(\lambda^{(t-1)}\right)\right)\left(\chi(\lambda), \chi(\mu) \widehat{\otimes} \chi\left(\lambda^{(t)}\right)\right) \tag{2}
\end{align*}
$$

In order to determine the multiplicity of $\chi(\lambda)$ in $\chi(\mu) \widehat{\otimes} \chi\left(\lambda^{(t)}\right)$, we are using the LittlewoodRichardson rule (see the algorithm in [23, Corollary 2.8.14]). We cannot obtain D_{λ} if $\left(\lambda^{(t)}\right)_{1}^{T}>\lambda_{1}^{T}$ or $\mu_{1}^{T}>\lambda_{1}^{T}$, or $\lambda_{1}^{T}>\left(\lambda^{(t)}\right)_{1}^{T}+\mu_{1}^{T}$. Suppose the Young diagram D_{λ} lies in the strip of height h. Then we may consider only the case $\left(\lambda^{(t)}\right)_{1}^{T} \leqslant h$ and $\mu_{1}^{T} \leqslant h$. Each time the number of variants to add the boxes from a row is bounded by m^{h}. Since $\left(\lambda^{(t)}\right)_{1}^{T} \leqslant h$, the second multiplier in Eq. (2) is bounded by $\left(m^{h}\right)^{h}=m^{h^{2}}$. The number of diagrams in the strip of height h is bounded by m^{h}. Thus the number of terms in Eq. (2) is bounded by m^{h}. Together with the inductive assumption this yields the lemma.

Lemma 10. There exist $C_{5}>0, r_{5} \in \mathbb{N}$ such that

$$
\text { length }\left(\left(\frac{V_{n|G|}}{V_{n|G|} \cap \operatorname{Id}(L)}\right) \downarrow\left(S_{n}\right)^{|G|}\right) \leqslant C_{5} n^{r_{5}}
$$

for all $n \in \mathbb{N}$. Moreover, if $\left(\lambda^{(i)}\right)_{1}^{T}>\operatorname{dim} L$ for some $1 \leqslant i \leqslant|G|$, then $M\left(\lambda^{(1)}\right) \sharp \cdots \sharp M\left(\lambda^{(|G|)}\right)$ does not appear in the decomposition.

Proof. Fix a $|G|$-tuple of partitions $\left(\lambda^{(1)}, \ldots, \lambda^{(|G|)}\right)$, $\lambda^{(i)} \vdash n$. Then the multiplicity of $M\left(\lambda^{(1)}\right) \sharp \cdots$ $\sharp M\left(\lambda^{(|G|)}\right)$ in $\left(\frac{V_{n|G|}}{V_{n|G|} \mid d(L)}\right) \downarrow\left(S_{n}\right)^{|G|}$ equals

$$
\begin{align*}
& \left(\chi\left(\lambda^{(1)}\right) \sharp \cdots \sharp \chi\left(\lambda^{(|G|)}\right), \chi_{n|G|}(L) \downarrow\left(S_{n}\right)^{|G|}\right) \\
& \quad=\sum_{\lambda \vdash n|G|}\left(\chi\left(\lambda^{(1)}\right) \sharp \cdots \sharp \chi\left(\lambda^{(|G|)}\right), \chi(\lambda) \downarrow\left(S_{n}\right)^{|G|}\right) m(L, \lambda) . \tag{3}
\end{align*}
$$

By [22, Lemma 3.4] (or Lemma 14 for $G=\langle e\rangle$), $m(L, \lambda)=0$ for all $\lambda \vdash n|G|$ with $\lambda_{1}^{T}>\operatorname{dim} L$. Thus Lemma 9 implies that for all $M\left(\lambda^{(1)}\right) \sharp \cdots \sharp M\left(\lambda^{(|G|)}\right)$ that appear in $\left(\frac{V_{n|G|}}{V_{n|G| I C(L)}}\right) \downarrow\left(S_{n}\right)^{|G|}$, the Young diagrams $D_{\lambda^{(i)}}$ lie in the strip of height $(\operatorname{dim} L)$. Thus the number of different $\left(\lambda^{(1)}, \ldots, \lambda^{(|G|)}\right)$ that appear in the decomposition of $\left(\frac{V_{n|G|}}{V_{n|G| I \mid(L)}}\right) \downarrow\left(S_{n}\right)^{|G|}$ is bounded by $n^{(\operatorname{dim} L)|G|}$. Together with Eqs. (1), (3), and Lemma 9, this yields the lemma.

Lemma 11. Let $h, k \in \mathbb{N}$. There exist $C_{6}>0, r_{6} \in \mathbb{N}$ such that for the inner tensor product $M(\lambda) \otimes M(\mu)$ of any $F S_{n}$-modules $M(\lambda)$ and $M(\mu), \lambda, \mu \vdash n, \lambda_{1}^{T} \leqslant h, \mu_{1}^{T} \leqslant k$, we have

$$
\text { length }_{S_{n}}(M(\lambda) \otimes M(\mu)) \leqslant C_{6} r^{r_{6}}
$$

and $(\chi(\lambda) \chi(\mu), \chi(\nu))=0$ for any $\nu \vdash n$ with $\nu_{1}^{T}>h k$.
Proof. Let T_{μ} be any Young tableau of the shape μ. Denote by $I R_{T_{\mu}}$ the one-dimensional trivial representation of the Young subgroup (i.e. the row stabilizer) $R_{T_{\mu}}$. Then

$$
F S_{n} a_{T_{\mu}} \cong I R_{T_{\mu}} \uparrow S_{n}
$$

(see [24, Section 4.3]). By [25, Theorem 38.5],

$$
M(\lambda) \otimes\left(I R_{T_{\mu}} \uparrow S_{n}\right) \cong\left(\left(M(\lambda) \downarrow R_{T_{\mu}}\right) \otimes I R_{T_{\mu}}\right) \uparrow S_{n}
$$

Thus

$$
\begin{aligned}
M(\lambda) \otimes M(\mu) & \cong M(\lambda) \otimes F S_{n} e_{T_{\mu}}^{*}=M(\lambda) \otimes F S_{n} b_{T_{\mu}} a_{T_{\mu}} \subseteq M(\lambda) \otimes F S_{n} a_{T_{\mu}} \\
& \cong M(\lambda) \otimes\left(I R_{T_{\mu}} \uparrow S_{n}\right) \cong\left(\left(M(\lambda) \downarrow R_{T_{\mu}}\right) \otimes I R_{T_{\mu}}\right) \uparrow S_{n} \cong\left(M(\lambda) \downarrow R_{T_{\mu}}\right) \uparrow S_{n}
\end{aligned}
$$

Note that length $\left(M(\lambda) \downarrow R_{T_{\mu}}\right.$) is polynomially bounded by Lemma 9 and $M(\lambda) \downarrow R_{T_{\mu}}$ is a sum of $M\left(\varkappa^{(1)}\right) \sharp \cdots \sharp M\left(\varkappa^{(s)}\right), s=\mu_{1}^{T} \leqslant k, \varkappa^{(i)} \vdash \mu_{i},\left(\varkappa^{(i)}\right)_{1}^{T} \leqslant h$. Thus $\left(M(\lambda) \downarrow R_{T_{\mu}}\right) \uparrow S_{n}$ is a sum of $M\left(\varkappa^{(1)}\right) \widehat{\otimes}$ $\cdots \widehat{\otimes} M\left(\varkappa^{(s)}\right)$. Applying Lemma 9 again, we obtain the lemma.

Lemma 12. There exist $C_{7}>0, r_{7} \in \mathbb{N}$ satisfying the following properties. If $\left(\lambda^{(1)}, \ldots, \lambda^{(|G|)}\right)$ is a $|G|$-tuple of partitions $\lambda^{(i)} \vdash n$ where $\left(\lambda^{(i)}\right)_{1}^{T} \leqslant \operatorname{dim} L$ for all $1 \leqslant i \leqslant|G|$, then

$$
\text { length }_{S_{n}}\left(M\left(\lambda^{(1)}\right) \otimes \cdots \otimes M\left(\lambda^{(|G|)}\right)\right) \leqslant C_{7} n^{r_{7}}
$$

Proof. Note that

$$
M\left(\lambda^{(1)}\right) \otimes \cdots \otimes M\left(\lambda^{(t)}\right)=\left(M\left(\lambda^{(1)}\right) \otimes \cdots \otimes M\left(\lambda^{(t-1)}\right)\right) \otimes M\left(\lambda^{(t)}\right) .
$$

Using induction on t and applying Lemma 11 with $h=(\operatorname{dim} L)^{t-1}$ and $k=\operatorname{dim} L$, we obtain the lemma.

Proof of Theorem 3. The theorem is an immediate consequence of Lemmas 8, 10, and 12.

4. Upper bound

Fix a composition chain of G-invariant ideals

$$
L=L_{0} \supsetneqq L_{1} \supsetneqq L_{2} \supsetneqq \cdots \supsetneqq N \supsetneqq \cdots \supsetneqq L_{\theta-1} \supsetneqq L_{\theta}=\{0\} .
$$

Let ht $a:=\max _{a \in L_{k}} k$ for $a \in L$.
Remark. If $d=d(L)=0$, then $L=\operatorname{Ann}\left(L_{i-1} / L_{i}\right)$ for all $1 \leqslant i \leqslant \theta$ and $\left[a_{1}, a_{2}, \ldots, a_{n}\right]=0$ for all $a_{i} \in L$ and $n \geqslant \theta+1$. Thus $c_{n}^{G}(L)=0$ for all $n \geqslant \theta+1$. Therefore we assume $d>0$.

Let $Y:=\left\{y_{11}, y_{12}, \ldots, y_{1 j_{1}} ; y_{21}, y_{22}, \ldots, y_{2 j_{2}}, \ldots ; y_{m 1}, y_{m 2}, \ldots, y_{m j_{m}}\right\}, Y_{1}, \ldots, Y_{q}$, and $\left\{z_{1}, \ldots, z_{m}\right\}$ be subsets of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ such that $Y_{i} \subseteq Y,\left|Y_{i}\right|=d+1, Y_{i} \cap Y_{j}=\varnothing$ for $i \neq j, Y \cap\left\{z_{1}, \ldots, z_{m}\right\}=\varnothing$, $j_{i} \geqslant 0$. Denote

$$
\begin{aligned}
f_{m, q}:= & \operatorname{Alt}_{1} \ldots \operatorname{Alt}_{q}\left[\left[z_{1}^{g_{1}}, y_{11}^{g_{11}}, y_{12}^{g_{12}}, \ldots, y_{1 j_{1}}^{g_{1 j_{1}}}\right],\left[z_{2}^{g_{2}}, y_{21}^{g_{21}}, y_{22}^{g_{22}}, \ldots, y_{2 j_{2}}^{g_{2 j_{2}}}\right], \ldots,\right. \\
& {\left.\left[z_{m}^{g_{m}}, y_{m 1}^{g_{m 1}}, y_{m 2}^{g_{m 2}}, \ldots, y_{m j_{m}}^{g_{m j}}\right]\right] }
\end{aligned}
$$

where Alt_{i} is the operator of alternation on the variables of $Y_{i}, g_{i}, g_{i j} \in G$.
Let $\varphi: L(X \mid G) \rightarrow L$ be a G-homomorphism induced by some substitution $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \rightarrow L$. We say that φ is proper for $f_{m, q}$ if $\varphi\left(z_{1}\right) \in N \cup B \cup S, \varphi\left(z_{i}\right) \in N$ for $2 \leqslant i \leqslant m$, and $\varphi\left(y_{i k}\right) \in B \cup S$ for $1 \leqslant i \leqslant m, 1 \leqslant k \leqslant j_{i}$.

Lemma 13. Let φ be a proper homomorphism for $f_{m, q}$. Then $\varphi\left(f_{m, q}\right)$ can be rewritten as a sum of $\psi\left(f_{m+1, q^{\prime}}\right)$
 for different terms.)

Proof. Let $\alpha_{i}:=$ ht $\varphi\left(z_{i}\right)$. We will use induction on $\sum_{i=1}^{m} \alpha_{i}$. (The sum will grow.) Note that $\alpha_{i} \leqslant \theta \leqslant$ $\operatorname{dim} L$. Denote $I_{i}:=L_{\alpha_{i}}, J_{i}:=L_{\alpha_{i+1}}$.

First, consider the case when $I_{1}, \ldots, I_{m}, J_{1}, \ldots, J_{m}$ do not satisfy conditions (1)-(2). In this case we can choose G-invariant B-submodules $T_{i}, I_{i}=T_{i} \oplus J_{i}$, such that

$$
\begin{equation*}
[[T_{1}, \underbrace{L, \ldots, L}_{q_{1}}],[T_{2}, \underbrace{L, \ldots, L}_{q_{2}}], \ldots,[T_{m}, \underbrace{L, \ldots, L}_{q_{m}}]]=0 \tag{4}
\end{equation*}
$$

for all $q_{i} \geqslant 0$. Rewrite $\varphi\left(z_{i}\right)=a_{i}^{\prime}+a_{i}^{\prime \prime}, a_{i}^{\prime} \in T_{i}, a_{i}^{\prime \prime} \in J_{i}$. Note that hta $a_{i}^{\prime \prime}>\operatorname{ht} \varphi\left(z_{i}\right)$. Since $f_{m, q}$ is multilinear, we can rewrite $\varphi\left(f_{m, q}\right)$ as a sum of similar terms $\tilde{\varphi}\left(f_{m, q}\right)$ where $\tilde{\varphi}\left(z_{i}\right)$ equals either a_{i}^{\prime} or $a_{i}^{\prime \prime}$. By Eq. (4), the term where all $\tilde{\varphi}\left(z_{i}\right)=a_{i}^{\prime} \in T_{i}$, equals 0 . For the other terms $\tilde{\varphi}\left(f_{m, q}\right)$ we have $\sum_{i=1}^{m}$ ht $\tilde{\varphi}\left(z_{i}\right)>\sum_{i=1}^{m}$ ht $\varphi\left(z_{i}\right)$.

Thus without lost of generality we may assume that $I_{1}, \ldots, I_{m}, J_{1}, \ldots, J_{m}$ satisfy conditions (1)(2). In this case, $\operatorname{dim}\left(\operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)\right) \geqslant \operatorname{dim}(L)-d$. In virtue of Lemma 5 ,

$$
\operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)=B \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)
$$

$$
\oplus S \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right) \oplus N
$$

Choose a basis in B that includes a basis of $B \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)$ and a basis in S that includes the basis of $S \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)$. Since $f_{m, q}$ is multilinear, we may assume that only basis elements are substituted for $y_{k \ell}$. Note that $f_{m, q}$ is alternating in Y_{i}. Hence, if $\varphi\left(f_{m, q}\right) \neq 0$, then for every $1 \leqslant i \leqslant q$ there exists $y_{j k} \in Y_{i}$ such that either

$$
\varphi\left(y_{j k}\right) \in B \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)
$$

or

$$
\varphi\left(y_{j k}\right) \in S \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)
$$

Consider the case when $\varphi\left(y_{k j}\right) \in B \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)$ for some $y_{k j}$. By the corollary from Lemma 3, we can choose G-invariant B-submodules T_{k} such that $I_{k}=T_{k} \oplus J_{k}$. We may assume that $\varphi\left(z_{k}\right) \in T_{k}$ since elements of J_{k} have greater heights. Therefore $\left[\varphi\left(z_{k}^{g_{k}}\right), a\right] \in T_{k} \cap J_{k}$ for all $a \in$ $B \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)$. Hence $\left[\varphi\left(z_{k}^{g_{k}}\right), a\right]=0$. Moreover, $B \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)$ is a G-invariant ideal of B and $[B, S]=0$. Thus, applying Jacobi's identity several times, we obtain

$$
\varphi\left(\left[z_{k}^{g_{k}}, y_{k 1}^{g_{k 1}}, \ldots, y_{k j_{k}}^{g_{k j_{k}}}\right]\right)=0
$$

Expanding the alternations, we get $\varphi\left(f_{m, q}\right)=0$.
Consider the case when $\varphi\left(y_{k \ell}\right) \in S \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)$ for some $y_{k \ell} \in Y_{q}$. Expand the alternation Alt_{q} in $f_{m, q}$ and rewrite $f_{m, q}$ as a sum of

$$
\begin{aligned}
\tilde{f}_{m, q-1}:= & \operatorname{Alt}_{1} \ldots \operatorname{Alt}_{q-1}\left[\left[z_{1}^{g_{1}}, y_{11}^{g_{11}}, y_{12}^{g_{12}}, \ldots, y_{1 j_{1}}^{g_{1 j_{1}}}\right],\left[z_{2}^{g_{2}}, y_{21}^{g_{21}}, y_{22}^{g_{22}}, \ldots, y_{2 j_{2}}^{g_{2 j_{2}}}\right], \ldots,\right. \\
& {\left.\left[z_{m}^{g_{m}}, y_{m 1}^{g_{m 1}}, y_{m 2}^{g_{m 2}}, \ldots, y_{m j_{m}}^{g_{m j_{m}}}\right]\right] . }
\end{aligned}
$$

The operator Alt_{q} may change indices, however we keep the notation $y_{k \ell}$ for the variable with the property $\varphi\left(y_{k \ell}\right) \in S \cap \operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{m} / J_{m}\right)$. Now the alternation does not affect $y_{k \ell}$. Note that

$$
\begin{aligned}
& {\left[z_{k}^{g_{k}}, y_{k 1}^{g_{k 1}}, \ldots, y_{k \ell}^{g_{k \ell}}, \ldots, y_{k j_{k}}^{g_{k j_{k}}}\right]=\left[z_{k}^{g_{k}}, y_{k \ell}^{g_{k \ell}}, y_{k 1}^{g_{k 1}}, \ldots, y_{k j_{k}}^{g_{k j_{k}}}\right]} \\
& \quad+\sum_{\beta=1}^{\ell-1}\left[z_{k}^{g_{k}}, y_{k 1}^{g_{k 1}}, \ldots, y_{k, \beta-1}^{g_{k, \beta-1}},\left[y_{k \beta}^{g_{k \beta}}, y_{k \ell}^{g_{k \ell}}\right], y_{k, \beta+1}^{g_{k, \beta+1}}, \ldots, y_{k, \ell-1}^{g_{k, \ell-1}}, y_{k, \ell+1}^{g_{k, \ell+1}}, \ldots, y_{k j_{k}}^{g_{k j_{k}}}\right]
\end{aligned}
$$

In the first term we replace $\left[z_{k}^{g_{k}}, y_{k \ell}^{g_{k \ell}}\right]$ with z_{k}^{\prime} and define $\varphi^{\prime}\left(z_{k}^{\prime}\right):=\varphi\left(\left[z_{k}^{g_{k}}, y_{k \ell}^{g_{k \ell}}\right]\right), \varphi^{\prime}(x):=\varphi(x)$ for other variables x. Then ht $\varphi^{\prime}\left(z_{k}^{\prime}\right)>$ ht $\varphi\left(z_{k}\right)$ and we can use the inductive assumption. If $y_{k \beta} \in Y_{j}$ for some j, then we expand the alternation Alt_{j} in this term in $\tilde{f}_{m, q-1}$. If $\varphi\left(y_{k \beta}\right) \in B$, then the term is
zero. If $\varphi\left(y_{k \beta}\right) \in S$, then $\varphi\left(\left[y_{k \beta}^{g_{k \beta}}, y_{k \ell}^{g_{k \ell}}\right]\right) \in N$. We replace $\left[y_{k \beta}^{g_{k \beta}}, y_{k \ell}^{g_{k \ell}}\right]$ with an additional variable z_{m+1}^{\prime} and define $\psi\left(z_{m+1}^{\prime}\right):=\varphi\left(\left[y_{k \beta}^{g_{k \beta}}, y_{k \ell}^{g_{k \ell}}\right]\right), \psi(x):=\varphi(x)$ for other variables x. Applying Jacobi's identity several times, we obtain the polynomial of the desired form. In each inductive step we reduce q no more than by 1 and the maximal number of inductive steps equals $(\operatorname{dim} L) m$. This finishes the proof.

Since N is a nilpotent ideal, $N^{p}=0$ for some $p \in \mathbb{N}$.
Lemma 14. If $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right) \vdash n$ and $\lambda_{d+1} \geqslant p((\operatorname{dim} L) p+3)$ or $\lambda_{\operatorname{dim} L+1}>0$, then $m(L, G, \lambda)=0$.
Proof. It is sufficient to prove that $e_{T_{\lambda}}^{*} f \in \mathrm{Id}^{G}(L)$ for every $f \in V_{n}^{G}$ and a Young tableau $T_{\lambda}, \lambda \vdash n$, with $\lambda_{d+1} \geqslant p((\operatorname{dim} L) p+3)$ or $\lambda_{\operatorname{dim} L+1}>0$.

Fix some basis of L that is a union of bases of B, S, and N. Since polynomials are multilinear, it is sufficient to substitute only basis elements. Note that $e_{T_{\lambda}}^{*}=b_{T_{\lambda}} a_{T_{\lambda}}$ and $b_{T_{\lambda}}$ alternates the variables of each column of T_{λ}. Hence if we make a substitution and $e_{T_{\lambda}}^{*} f$ does not vanish, then this implies that different basis elements are substituted for the variables of each column. But if $\lambda_{\operatorname{dim} L+1}>0$, then the length of the first column is greater than $\operatorname{dim} L$. Therefore, $e_{T_{\lambda}}^{*} f \in \operatorname{Id}^{G}(L)$.

Consider the case $\lambda_{d+1} \geqslant p((\operatorname{dim} L) p+3)$. Let φ be a substitution of basis elements for the variables x_{1}, \ldots, x_{n}. Then $e_{T_{2}}^{*} f$ can be rewritten as a sum of polynomials $f_{m, q}$ where $1 \leqslant m \leqslant p$, $q \geqslant p((\operatorname{dim} L) p+2)$, and $z_{i}, 2 \leqslant i \leqslant m$, are replaced with elements of N. (For different terms $f_{m, q}$, numbers m and q, variables $z_{i}, y_{i j}$, and sets Y_{i} can be different.) Indeed, we expand symmetrization on all variables and alternation on the variables replaced with elements from N. If we have no variables replaced with elements from N, then we take $m=1$, rewrite the polynomial f as a sum of long commutators, in each long commutator expand the alternation on the set that includes one of the variables in the inner commutator, and denote that variable by z_{1}. Suppose we have variables replaced with elements from N. We denote them by z_{k}. Then, using Jacobi's identity, we can put one of such variables inside a long commutator and group all the variables, replaced with elements from $B \cup S$, around z_{k} such that each z_{k} is inside the corresponding long commutator.

Applying Lemma 13 many times, we increase m. The ideal N is nilpotent and $\varphi\left(f_{p+1, q}\right)=0$ for every q and a proper homomorphism φ. Reducing q no more than by $p((\operatorname{dim} L) p+2)$, we obtain $\varphi\left(e_{T_{\lambda}}^{*} f\right)=0$.

Now we can prove

Theorem 4. If $d>0$, then there exist constants $C_{2}>0, r_{2} \in \mathbb{R}$ such that $c_{n}^{G}(L) \leqslant C_{2} n^{r_{2}} d^{n}$ for all $n \in \mathbb{N}$. In the case $d=0$, the algebra L is nilpotent.

Proof. Lemma 14 and [1, Lemmas 6.2.4, 6.2.5] imply

$$
\sum_{m(L, G, \lambda) \neq 0} \operatorname{dim} M(\lambda) \leqslant C_{8} n^{r_{8}} d^{n}
$$

for some constants $C_{8}, r_{8}>0$. Together with Theorem 3 this implies the upper bound.

5. Alternating polynomials

In this section we prove auxiliary propositions needed to obtain the lower bound.
Lemma 15. Let $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}, \beta_{1}, \ldots, \beta_{q} \in F, 1 \leqslant k \leqslant q, \alpha_{i} \neq 0$ for $1 \leqslant i<k, \alpha_{k}=0$, and $\beta_{k} \neq 0$. Then there exists such $\gamma \in F$ that $\alpha_{i}+\gamma \beta_{i} \neq 0$ for all $1 \leqslant i \leqslant k$.

Proof. It is sufficient to choose $\gamma \notin\left\{-\frac{\alpha_{1}}{\beta_{1}}, \ldots,-\frac{\alpha_{k-1}}{\beta_{k-1}}, 0\right\}$. It is possible to do since F is infinite.
Let $F\langle X \mid G\rangle$ be the free associative algebra over F with free formal generators $x_{j}^{g}, j \in \mathbb{N}, g \in G$. Define $\left(x_{j}^{g}\right)^{h}=x_{j}^{h g}$ for $h \in G$. Then $F\langle X \mid G\rangle$ becomes the free associative G-algebra with free generators $x_{j}=x_{j}^{1}, j \in \mathbb{N}, 1 \in G$. Denote by $P_{n}^{G}, n \in \mathbb{N}$, the subspace of associative multilinear G-polynomials in variables x_{1}, \ldots, x_{n}. In other words,

$$
P_{n}^{G}=\left\{\sum_{\sigma \in S_{n}, g_{1}, \ldots, g_{n} \in G} \alpha_{\sigma, g_{1}, \ldots, g_{n}}{\left.\underset{\sigma(1)}{g_{1}} x_{\sigma(2)}^{g_{2}} \ldots x_{\sigma(n)}^{g_{n}} \mid \alpha_{\sigma, g_{1}, \ldots, g_{n} \in F}\right\} . ~ . ~ . ~}\right.
$$

Lemma 16. Let $L_{0}=B_{0} \oplus R_{0}$ be a reductive Lie algebra with G-action, B_{0} be a maximal semisimple G subalgebra, and R_{0} be the center of L_{0} with a basis $r_{1}, r_{2}, \ldots, r_{t}$. Let M be a faithful finite dimensional irreducible L_{0}-module with G-action. Denote the corresponding representation $L_{0} \rightarrow \mathfrak{g l}(M)$ by φ. Then there exists such alternating in $x_{1}, x_{2}, \ldots, x_{t}$ polynomial $f \in P_{t}^{G}$ that $f\left(\varphi\left(r_{1}\right), \ldots, \varphi\left(r_{t}\right)\right)$ is a nondegenerate operator on M.

Proof. By Lemma 6, $M=M_{1} \oplus \cdots \oplus M_{q}$ where M_{j} are L_{0}-submodules and r_{i} acts on each M_{j} as a scalar operator. Note that it is sufficient to prove that for each j there exists such alternating in $x_{1}, x_{2}, \ldots, x_{t}$ polynomial $f_{j} \in P_{t}^{G}$ that $f_{j}\left(\varphi\left(r_{1}\right), \ldots, \varphi\left(r_{t}\right)\right)$ multiplies each element of M_{j} by a nonzero scalar. Indeed, in this case Lemma 15 implies the existence of such $f=\gamma_{1} f_{1}+\cdots+\gamma_{q} f_{q}, \gamma_{i} \in F$, that $f\left(\varphi\left(r_{1}\right), \ldots, \varphi\left(r_{t}\right)\right)$ acts on each M_{i} as a nonzero scalar.

Denote by $p_{i} \in \operatorname{End}_{F}(M)$ the projection on M_{i} along $\bigoplus_{k \neq i} M_{k}$. Fix $1 \leqslant j \leqslant q$. By Lemma 6, proposition (3), we can choose such $g_{i} \in G$ that $M_{i}^{g_{i}}=M_{j}, 1 \leqslant i \leqslant q$. Then $p_{i}^{g_{i}}=p_{j}$. Consider $\tilde{f}_{j}:=$ $\sum_{\sigma \in S_{q}}(\operatorname{sign} \sigma) x_{\sigma(1)}^{g_{1}} x_{\sigma(2)}^{g_{2}} \ldots x_{\sigma(q)}^{g_{q}}$. Note that either $p_{\sigma(1)}^{g_{1}} p_{\sigma(2)}^{g_{2}} \ldots p_{\sigma(q)}^{g_{q}}=0$ or $p_{\sigma(1)}^{g_{1}} p_{\sigma(2)}^{g_{2}} \ldots p_{\sigma(q)}^{g_{q}}=p_{k}$ for some $1 \leqslant k \leqslant s$. Now we prove that $p_{\sigma(1)}^{g_{1}} p_{\sigma(2)}^{g_{2}} \ldots p_{\sigma(q)}^{g_{q}}=p_{j}$ if and only if $\sigma(i)=i$ for all $1 \leqslant i \leqslant q$. Indeed, $p_{\sigma(i)}^{g_{i}}=p_{j}$ if and only if $M_{\sigma(i)}^{g_{i}}=M_{j}$. Hence $\sigma(i)=i$. This implies that $\tilde{f}_{j}\left(p_{1}, \ldots, p_{q}\right)$ acts as an identical map on M_{j}.

We can choose i_{t+1}, \ldots, i_{q} such that $\varphi\left(r_{1}\right), \varphi\left(r_{2}\right), \ldots, \varphi\left(r_{t}\right), p_{i_{t+1}}, \ldots, p_{i_{q}}$ form a basis in $\left\langle p_{1}, \ldots, p_{q}\right\rangle_{F}$. Then $\tilde{f}_{j}\left(\varphi\left(r_{1}\right), \varphi\left(r_{2}\right), \ldots, \varphi\left(r_{t}\right), p_{i_{t+1}}, \ldots, p_{i_{q}}\right)$ acts as a nonzero scalar on M_{j}. If $t=q$, then we define $f_{j}=\tilde{f}_{j}$. Suppose $t<q$. Since the projections commute, we can rewrite

$$
\tilde{f}_{j}\left(\varphi\left(r_{1}\right), \varphi\left(r_{2}\right), \ldots, \varphi\left(r_{t}\right), p_{i_{t+1}}, \ldots, p_{i_{q}}\right)=\sum_{i=1}^{q} \hat{f}_{i}\left(\varphi\left(r_{1}\right), \varphi\left(r_{2}\right), \ldots, \varphi\left(r_{t}\right)\right) p_{i}
$$

where $\hat{f}_{i} \in P_{t}^{G}$ are alternating in $x_{1}, x_{2}, \ldots, x_{t}$. Hence $\hat{f}_{j}\left(\varphi\left(r_{1}\right), \varphi\left(r_{2}\right), \ldots, \varphi\left(r_{t}\right)\right)$ acts on M_{j} as a nonzero scalar operator. We define $f_{j}:=\hat{f}_{j}$.

Let L_{0} be a Lie algebra with G-action, M be L_{0}-module with G-action, $\varphi: L_{0} \rightarrow \mathfrak{g l}(M)$ be the corresponding representation. A polynomial $f\left(x_{1}, \ldots, x_{n}\right) \in F\langle X \mid G\rangle$ is a G-identity of φ if $f\left(\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{n}\right)\right)=0$ for all $a_{i} \in L_{0}$. The set $\operatorname{Id}^{G}(\varphi)$ of all G-identities of φ is a two-sided ideal in $F\langle X \mid G\rangle$ invariant under G-action.

Lemma 17 is an analog of [3, Lemma 1].
Lemma 17. Let L_{0} be a Lie algebra with G-action, M be a faithful finite dimensional irreducible L_{0}-module with G-action, and $\varphi: L_{0} \rightarrow \mathfrak{g l}(M)$ be the corresponding representation. Then for some $n \in \mathbb{N}$ there exists a polynomial $f \in P_{n}^{G} \backslash \operatorname{Id}^{G}(\varphi)$ alternating in $\left\{x_{1}, \ldots, x_{\ell}\right\}$ and in $\left\{y_{1}, \ldots, y_{\ell}\right\} \subseteq\left\{x_{\ell+1}, \ldots, x_{n}\right\}$ where $\ell=$ $\operatorname{dim} L_{0}$.

Proof. Since M is irreducible, by the density theorem, $\operatorname{End}_{F}(M) \cong M_{q}(F)$ is generated by operators from G and $\varphi\left(L_{0}\right)$. Here $q:=\operatorname{dim} M$. Consider Regev's polynomial

$$
\begin{aligned}
& \hat{f}\left(x_{1}, \ldots, x_{q} ; y_{1}, \ldots, y_{q}\right):=\sum_{\substack{\sigma \in S_{q}, \tau \in S_{q}}}(\operatorname{sign}(\sigma \tau)) x_{\sigma(1)} y_{\tau(1)} x_{\sigma(2)} x_{\sigma(3)} x_{\sigma(4)} y_{\tau(2)} y_{\tau(3)} y_{\tau(4)} \ldots \\
& \quad x_{\sigma\left(q^{2}-2 q+2\right)} \ldots x_{\sigma\left(q^{2}\right)} y_{\tau\left(q^{2}-2 q+2\right)} \ldots y_{\tau\left(q^{2}\right)} .
\end{aligned}
$$

This is a central polynomial [1, Theorem 5.7.4] for $M_{k}(F)$, i.e. \hat{f} is not a polynomial identity for $M_{q}(F)$ and its values belong to the center of $M_{q}(F)$.

Let a_{1}, \ldots, a_{ℓ} be a basis of L_{0}. Denote by ρ the representation $G \rightarrow \operatorname{GL}(M)$. Note that if we have the product of elements of $\varphi\left(L_{0}\right)$ and $\rho(G)$, we can always move the elements from $\rho(G)$ to the right, using $\rho(g) a=a^{g} \rho(g)$ for $g \in G$ and $a \in \varphi\left(L_{0}\right)$. Then $\varphi\left(a_{1}\right), \ldots, \varphi\left(a_{\ell}\right),\left(\varphi\left(a_{i_{11}}\right) \ldots \varphi\left(a_{i_{1, m_{1}}}\right)\right) \rho\left(g_{1}\right), \ldots$, $\left(\varphi\left(a_{i_{r, 1}}\right) \ldots \varphi\left(a_{i_{r, m_{r}}}\right)\right) \rho\left(g_{r}\right)$, is a basis of $\operatorname{End}_{F}(M)$ for appropriate $i_{j k} \in\{1,2, \ldots, \ell\}, g_{j} \in G$, since $\operatorname{End}_{F}(M)$ is generated by operators from G and $\varphi\left(L_{0}\right)$. We replace $x_{\ell+j}$ with $z_{j 1} z_{j 2} \ldots z_{j, m_{j}} \rho\left(g_{j}\right)$ and $y_{\ell+j}$ with $z_{j 1}^{\prime} z_{j 2}^{\prime} \ldots z_{j, m_{j}}^{\prime} \rho\left(g_{j}\right)$ in \hat{f} and denote the expression obtained by \tilde{f}. Using $\rho(g) a=a^{g} \rho(g)$ again, we can move all $\rho(g), g \in G$, in \tilde{f}_{q} to the right and rewrite \tilde{f} as $\sum_{g \in G} f_{g} \rho(g)$ where each $f_{g} \in P_{2 \ell+2 \sum_{j=1}^{r} m_{j}}^{G}$ is an alternating in x_{1}, \ldots, x_{ℓ} and in y_{1}, \ldots, y_{ℓ} polynomial. Note that \tilde{f} becomes a nonzero scalar operator on M under the substitution $x_{i}=y_{i}=\varphi\left(a_{i}\right)$ for $1 \leqslant i \leqslant \ell$ and $z_{j k}=z_{j k}^{\prime}=\varphi\left(a_{i j k}\right)$ for $1 \leqslant j \leqslant r, 1 \leqslant k \leqslant m_{j}$. Thus $f_{g} \notin \operatorname{Id}^{G}(\varphi)$ for some $g \in G$ and we can take $f=f_{g}$.

Let $k \ell \leqslant n$ where $k, \ell, n \in \mathbb{N}$ are some numbers. Denote by $Q_{\ell, k, n}^{G} \subseteq P_{n}^{G}$ the subspace spanned by all polynomials that are alternating in k disjoint subsets of variables $\left\{x_{1}^{i}, \ldots, x_{\ell}^{i}\right\} \subseteq\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, $1 \leqslant i \leqslant k$.

Theorem 5 is an analog of [3, Theorem 1].

Theorem 5. Let $L_{0}=B_{0} \oplus R_{0}$ be a reductive Lie algebra with G-action over an algebraically closed field F of characteristic $0, B_{0}$ be a maximal semisimple G-subalgebra, R_{0} be the center of L_{0}, and $\operatorname{dim} L_{0}=\ell$. Let M be a faithful finite dimensional irreducible L_{0}-module with G-action. Denote the corresponding representation $L_{0} \rightarrow \mathfrak{g l}(M)$ by φ. Then there exists $T \in \mathbb{Z}_{+}$such that for any $k \in \mathbb{N}$ there exists $f \in Q_{\ell, 2 k, 2 k \ell+T}^{G} \backslash \operatorname{Id}^{G}(\varphi)$.

Proof. Let $f_{1}=f_{1}\left(x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}, z_{1}, \ldots, z_{T}\right)$ be the polynomial from Lemma 17 alternating in x_{1}, \ldots, x_{ℓ} and in y_{1}, \ldots, y_{ℓ}. Since $f_{1} \in Q_{\ell, 2,2 \ell+T}^{G} \backslash \operatorname{Id}^{G}(\varphi)$, we may assume that $k>1$. Note that

$$
\begin{aligned}
& f_{1}^{(1)}\left(u_{1}, v_{1}, x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}, z_{1}, \ldots, z_{T}\right) \\
& \quad:=\sum_{i=1}^{\ell} f_{1}\left(x_{1}, \ldots,\left[u_{1},\left[v_{1}, x_{i}\right]\right], \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}, z_{1}, \ldots, z_{T}\right)
\end{aligned}
$$

is alternating in x_{1}, \ldots, x_{ℓ} and in y_{1}, \ldots, y_{ℓ} and

$$
\begin{aligned}
& f_{1}^{(1)}\left(\bar{u}_{1}, \bar{v}_{1}, \bar{x}_{1}, \ldots, \bar{x}_{\ell}, \bar{y}_{1}, \ldots, \bar{y}_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right) \\
& \quad=\operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} \bar{u}_{1} \operatorname{ad}_{\varphi\left(L_{0}\right)} \bar{v}_{1}\right) f_{1}\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{\ell}, \bar{y}_{1}, \ldots, \bar{y}_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right)
\end{aligned}
$$

for any substitution of elements from $\varphi\left(L_{0}\right)$ since we may assume $\bar{x}_{1}, \ldots, \bar{x}_{\ell}$ to be different basis elements. Here $(\operatorname{ad} a) b=[a, b]$.

Let

$$
\begin{aligned}
& f_{1}^{(j)}\left(u_{1}, \ldots, u_{j}, v_{1}, \ldots, v_{j}, x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}, z_{1}, \ldots, z_{T}\right) \\
& \quad:=\sum_{i=1}^{\ell} f_{1}^{(j-1)}\left(u_{1}, \ldots, u_{j-1}, v_{1}, \ldots, v_{j-1}, x_{1}, \ldots,\left[u_{j},\left[v_{j}, x_{i}\right]\right], \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}, z_{1}, \ldots, z_{T}\right),
\end{aligned}
$$

$2 \leqslant j \leqslant s, s=\operatorname{dim} B$. Note that if we substitute an element from $\varphi\left(R_{0}\right)$ for u_{i} or v_{i}, then $f_{1}^{(j)}$ vanish since R_{0} is the center of L_{0}. Again,

$$
\begin{align*}
& f_{1}^{(j)}\left(\bar{u}_{1}, \ldots, \bar{u}_{j}, \bar{v}_{1}, \ldots, \bar{v}_{j}, \bar{x}_{1}, \ldots, \bar{x}_{\ell}, \bar{y}_{1}, \ldots, \bar{y}_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right) \\
& =\operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} \bar{u}_{1} \operatorname{ad}_{\varphi\left(L_{0}\right)} \bar{v}_{1}\right) \operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} \bar{u}_{2} \operatorname{ad}_{\varphi\left(L_{0}\right)} \bar{v}_{2}\right) \ldots \operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} \bar{u}_{j} \operatorname{ad}_{\varphi\left(L_{0}\right)} \bar{v}_{j}\right) \\
& \quad \cdot f_{1}\left(\bar{x}_{1}, \bar{x}_{2}, \ldots, \bar{x}_{\ell}, \bar{y}_{1}, \ldots, \bar{y}_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right) \tag{5}
\end{align*}
$$

Let h be the polynomial from Lemma 16 . We define

$$
\begin{aligned}
& f_{2}\left(u_{1}, \ldots, u_{\ell}, v_{1}, \ldots, v_{\ell}, x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}, z_{1}, \ldots, z_{T}\right) \\
& := \\
& \quad \sum_{\sigma, \tau \in S_{\ell}} \operatorname{sign}(\sigma \tau) f_{1}^{(s)}\left(u_{\sigma(1)}, \ldots, u_{\sigma(s)}, v_{\tau(1)}, \ldots, v_{\tau(s)}, x_{1}, \ldots, x_{\ell}, y_{1}, \ldots, y_{\ell}, z_{1}, \ldots, z_{T}\right) \\
& \quad \cdot h\left(u_{\sigma(s+1)}, \ldots, u_{\sigma(\ell)}\right) h\left(v_{\tau(s+1)}, \ldots, v_{\tau(\ell)}\right)
\end{aligned}
$$

Then $f_{2} \in Q_{\ell, 4,4 \ell+T}^{G}$. Suppose $a_{1}, \ldots, a_{s} \in \varphi\left(B_{0}\right)$ and $a_{s+1}, \ldots, a_{\ell} \in \varphi\left(R_{0}\right)$ form a basis of $\varphi\left(L_{0}\right)$. Consider a substitution $x_{i}=y_{i}=u_{i}=v_{i}=a_{i}, 1 \leqslant i \leqslant \ell$. Suppose that the values $z_{j}=\bar{z}_{j}, 1 \leqslant j \leqslant T$, are chosen in such a way that $f_{1}\left(a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right) \neq 0$. We claim that f_{2} does not vanish either. Indeed,

$$
\begin{aligned}
& f_{2}\left(a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right) \\
&= \sum_{\sigma, \tau \in S_{\ell}} \operatorname{sign}(\sigma \tau) f_{1}^{(s)}\left(a_{\sigma(1)}, \ldots, a_{\sigma(s)}, a_{\tau(1)}, \ldots, a_{\tau(s)}, a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right) \\
& \cdot h\left(a_{\sigma(s+1)}, \ldots, a_{\sigma(\ell)}\right) h\left(a_{\tau(s+1)}, \ldots, a_{\tau(\ell)}\right) \\
&=\left(\sum_{\sigma, \tau \in S_{s}} \operatorname{sign}(\sigma \tau) f_{1}^{(s)}\left(a_{\sigma(1)}, \ldots, a_{\sigma(s)}, a_{\tau(1)}, \ldots, a_{\tau(s)}, a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right)\right) \\
& \cdot\left(\sum_{\pi, \omega \in S\{s+1, \ldots, \ell\}} \operatorname{sign}(\pi \omega) h\left(a_{\pi(s+1)}, \ldots, a_{\pi(\ell)}\right) h\left(a_{\omega(s+1)}, \ldots, a_{\omega(\ell)}\right)\right)
\end{aligned}
$$

since $a_{j}, s<j \leqslant \ell$, belong to the center of $\varphi\left(L_{0}\right)$ and $f_{j}^{(s)}$ vanishes if we substitute such a_{i} for u_{i} or v_{i}. Here $S\{s+1, \ldots, \ell\}$ is the symmetric group on $\{s+1, \ldots, \ell\}$. Note that h is alternating. Using Eq. (5), we obtain

$$
\begin{aligned}
& f_{2}\left(a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right) \\
& =\left(\sum_{\sigma, \tau \in S_{s}} \operatorname{sign}(\sigma \tau) \operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\sigma(1)} \operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\tau(1)}\right) \ldots \operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\sigma(s)} \operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\tau(s)}\right)\right) \\
& \quad \cdot f_{1}\left(a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right)((\ell-s)!)^{2}\left(h\left(a_{s+1}, \ldots, a_{\ell}\right)\right)^{2}
\end{aligned}
$$

Note that

$$
\begin{aligned}
& \sum_{\sigma, \tau \in S_{s}} \operatorname{sign}(\sigma \tau) \operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\sigma(1)} \operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\tau(1)}\right) \ldots \operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\sigma(s)} \operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\tau(s)}\right) \\
& =\sum_{\sigma, \tau \in S_{s}} \operatorname{sign}(\sigma \tau) \operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} a_{1} \operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\tau \sigma^{-1}(1)}\right) \ldots \operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} a_{s} \operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\tau \sigma^{-1}(s)}\right) \\
& \stackrel{\left(\tau^{\prime}=\tau \sigma^{-1}\right)}{=} \sum_{\sigma, \tau^{\prime} \in S_{s}} \operatorname{sign}\left(\tau^{\prime}\right) \operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} a_{1} \operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\tau^{\prime}(1)}\right) \ldots \operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} a_{s} \operatorname{ad}_{\varphi\left(L_{0}\right)} a_{\tau^{\prime}(s)}\right) \\
& =s!\operatorname{det}\left(\operatorname{tr}\left(\operatorname{ad}_{\varphi\left(L_{0}\right)} a_{i} \operatorname{ad}_{\varphi\left(L_{0}\right)} a_{j}\right)\right)_{i, j=1}^{s}=s!\operatorname{det}\left(\operatorname{tr}\left(\operatorname{ad}_{\varphi\left(B_{0}\right)} a_{i} \operatorname{ad}_{\varphi\left(B_{0}\right)} a_{j}\right)\right)_{i, j=1}^{s} \neq 0
\end{aligned}
$$

since the Killing form $\operatorname{tr}(\operatorname{ad} x \operatorname{ad} y)$ of the semisimple Lie algebra $\varphi\left(B_{0}\right)$ is nondegenerate. Thus

$$
f_{2}\left(a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, a_{1}, \ldots, a_{\ell}, \bar{z}_{1}, \ldots, \bar{z}_{T}\right) \neq 0
$$

Note that if f_{1} is alternating in some of z_{1}, \ldots, z_{T}, the polynomial f_{2} is alternating in those variables too. Thus if we apply the same procedure to f_{2} instead of f_{1}, we obtain $f_{3} \in Q_{\ell, 6,6 \ell+T}^{G}$. Analogously, we define f_{4} using f_{3}, f_{5} using f_{4}, etc. Eventually, we obtain $f=f_{k} \in Q_{\ell, 2 k, 2 k \ell+T}^{G} \backslash \mathrm{Id}^{G}(\varphi)$.

6. Lower bound

By the definition of $d=d(L)$, there exist G-invariant ideals $I_{1}, I_{2}, \ldots, I_{r}, J_{1}, J_{2}, \ldots, J_{r}, r \in \mathbb{Z}_{+}$, of the algebra L, satisfying conditions (1)-(2), $J_{k} \subseteq I_{k}$, such that

$$
d=\operatorname{dim} \frac{L}{\operatorname{Ann}\left(I_{1} / J_{1}\right) \cap \cdots \cap \operatorname{Ann}\left(I_{r} / J_{r}\right)}
$$

We consider the case $d>0$.
Without loss of generality we may assume that

$$
\bigcap_{k=1}^{r} \operatorname{Ann}\left(I_{k} / J_{k}\right) \neq \bigcap_{\substack{k=1, k \neq \ell}}^{r} \operatorname{Ann}\left(I_{k} / J_{k}\right)
$$

for all $1 \leqslant \ell \leqslant r$. In particular, L has nonzero action on each I_{k} / J_{k}.
Our aim is to present a partition $\lambda \vdash n$ with $m(L, G, \lambda) \neq 0$ such that $\operatorname{dim} M(\lambda)$ has the desired asymptotic behavior. We will glue alternating polynomials constructed in Theorem 5 for faithful irreducible modules over reductive algebras. In order to do this, we have to choose the reductive algebras.

Lemma 18. There exist G-invariant ideals B_{1}, \ldots, B_{r} in B and G-invariant subspaces $\tilde{R}_{1}, \ldots, \tilde{R}_{r} \subseteq S$ (some of \tilde{R}_{i} and B_{j} may be zero) such that
(1) $B_{1}+\cdots+B_{r}=B_{1} \oplus \cdots \oplus B_{r}$;
(2) $\tilde{R}_{1}+\cdots+\tilde{R}_{r}=\tilde{R}_{1} \oplus \cdots \oplus \tilde{R}_{r}$;
(3) $\sum_{k=1}^{r} \operatorname{dim}\left(B_{k} \oplus \tilde{R}_{k}\right)=d$;
(4) I_{k} / J_{k} is a faithful $\left(B_{k} \oplus \tilde{R}_{k} \oplus N\right) / N$-module;
(5) I_{k} / J_{k} is an irreducible $\left(\sum_{i=1}^{r}\left(B_{i} \oplus \tilde{R}_{i}\right) \oplus N\right) / N$-module with G-action;
(6) $B_{i} I_{k} / J_{k}=\tilde{R}_{i} I_{k} / J_{k}=0$ for $i>k$.

Proof. Consider $N_{\ell}:=\bigcap_{k=1}^{\ell} \operatorname{Ann}\left(I_{k} / J_{k}\right), 1 \leqslant \ell \leqslant r, N_{0}=L$. Note that N_{ℓ} are G-invariant. Since B is semisimple, we can choose such G-invariant ideals B_{ℓ} that $N_{\ell-1} \cap B=B_{\ell} \oplus\left(N_{\ell} \cap B\right)$. Also we can choose such G-invariant subspaces \tilde{R}_{ℓ} that $N_{\ell-1} \cap S=\tilde{R}_{\ell} \oplus\left(N_{\ell} \cap S\right.$). Hence properties (1), (2), (6) hold.

By Lemma 5, $N_{k}=\left(N_{k} \cap B\right) \oplus\left(N_{k} \cap S\right) \oplus N$. Thus property (4) holds. Furthermore,

$$
N_{\ell-1}=B_{\ell} \oplus\left(N_{\ell} \cap B\right) \oplus \tilde{R}_{\ell} \oplus\left(N_{\ell} \cap S\right) \oplus N=\left(B_{\ell} \oplus \tilde{R}_{\ell}\right) \oplus N_{\ell}
$$

(direct sum of subspaces). Hence $L=\left(\bigoplus_{i=1}^{r}\left(B_{i} \oplus \tilde{R}_{i}\right)\right) \oplus N_{r}$, and properties (3) and (5) hold too.

Let A be the associative subalgebra in $\operatorname{End}_{F}(L)$ generated by operators from ad L and G. Then $J(A)^{p}=0$ for some $p \in \mathbb{N}$. Denote by A_{2} a subalgebra of $\operatorname{End}_{F}(L)$ generated by ad L only. Let $a_{\ell 1}, \ldots, a_{\ell, k_{\ell}}$ be a basis of \tilde{R}_{ℓ}.

Lemma 19. There exist decompositions ad $a_{i j}=c_{i j}+d_{i j}, 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant k_{i}$, such that $c_{i j} \in A$ acts as a diagonalizable operator on $L, d_{i j} \in J(A)$, elements $c_{i j}$ commute with each other, and $c_{i j}$ and $d_{i j}$ are polynomials in ad $a_{i j}$. Moreover, $R_{\ell}:=\left\langle c_{\ell 1}, \ldots, c_{\ell, k_{\ell}}\right\rangle_{F}$ are G-invariant subspaces in A.

Proof. Consider the solvable G-invariant Lie algebra $($ ad $R)+J(A)$. In virtue of the Lie theorem, there exists a basis in L in which all the operators from $(\operatorname{ad} R)+J(A)$ have upper triangular matrices. Denote the corresponding embedding $A \hookrightarrow M_{m}(F)$ by ψ. Here $m:=\operatorname{dim} L$.

Let A_{1} be the associative algebra generated by ad $a_{i j}, 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant k_{i}$. This algebra is G-invariant since for every fixed i the elements $a_{i j}, 1 \leqslant j \leqslant k_{i}$, form a basis of the G-invariant subspace \tilde{R}_{i}. By the G-invariant Wedderburn-Malcev theorem [14, Theorem 1, Remark 1], $A_{1}=$ $\tilde{A}_{1} \oplus J\left(A_{1}\right)$ (direct sum of subspaces) where \tilde{A}_{1} is a G-invariant semisimple subalgebra of A_{1}. Since $\psi(\operatorname{ad} R) \subseteq \mathfrak{t}_{m}(F)$, we have $\psi\left(A_{1}\right) \subseteq U T_{m}(F)$. Here $U T_{m}(F)$ is the associative algebra of upper triangular matrices $m \times m$. There is a decomposition

$$
U T_{m}(F)=F e_{11} \oplus F e_{22} \oplus \cdots \oplus F e_{m m} \oplus \tilde{N}
$$

where

$$
\tilde{N}:=\left\langle e_{i j} \mid 1 \leqslant i<j \leqslant m\right\rangle_{F}
$$

is a nilpotent ideal. Thus there is no subalgebras in A_{1} isomorphic to $M_{2}(F)$ and $\tilde{A}_{1}=F e_{1} \oplus \cdots \oplus F e_{t}$ for some idempotents $e_{i} \in A_{1}$. Denote for every $a_{i j}$ its component in $J\left(A_{1}\right)$ by $d_{i j}$ and its component in $F e_{1} \oplus \cdots \oplus F e_{t}$ by $c_{i j}$. Note that e_{i} are commuting diagonalizable operators. Thus they have a common basis of eigenvectors in L and $c_{i j}$ are commuting diagonalizable operators too. Moreover

$$
\operatorname{ad} a_{i j}^{g}=c_{i j}^{g}+d_{i j}^{g} \in\left\langle\operatorname{ad} a_{i \ell} \mid 1 \leqslant \ell \leqslant k_{i}\right\rangle_{F} \subseteq\left\langle c_{i \ell} \mid 1 \leqslant \ell \leqslant k_{i}\right\rangle_{F} \oplus\left\langle d_{i \ell} \mid 1 \leqslant \ell \leqslant k_{i}\right\rangle_{F}
$$

for all $g \in G$. Thus R_{i} is G-invariant.
We claim that the space $J\left(A_{1}\right)+J(A)$ generates a nilpotent G-invariant ideal I in A. First, $\psi\left(J\left(A_{1}\right)\right), \psi(J(A)) \subseteq U T_{m}(F)$ and consist of nilpotent elements. Thus the corresponding matrices have zero diagonal elements and $\psi\left(J\left(A_{1}\right)\right), \psi(J(A)) \subseteq \tilde{N}$. Denote $\tilde{N}_{k}:=\left\langle e_{i j} \mid i+k \leqslant j\right\rangle_{F} \subseteq \tilde{N}$. Then

$$
\tilde{N}=\tilde{N}_{1} \supsetneqq \tilde{N}_{2} \supsetneqq \cdots \supsetneqq \tilde{N}_{m-1} \supsetneqq \tilde{N}_{m}=\{0\}
$$

Let ht $\tilde{N} a:=k$ if $\psi(a) \in \tilde{N}_{k}, \psi(a) \notin \tilde{N}_{k+1}$.
Recall that $(J(A))^{p}=0$. We claim that $I^{m+p}=0$. Let $\rho: G \rightarrow G L(L)$ be the G-action on L. Using the property

$$
\begin{equation*}
\rho(g) a=a^{g} \rho(g) \tag{6}
\end{equation*}
$$

where $a \in A_{2}, g \in G$, we obtain that the space I^{m+p} is a span of $h_{1} j_{1} h_{2} j_{2} \ldots j_{m+p} h_{m+p+1} \rho(g)$ where $j_{k} \in J\left(A_{1}\right) \cup J(A), h_{k} \in A_{2} \cup\{1\}, g \in G$. If at least p elements j_{k} belong to $J(A)$, then the product equals 0 . Thus we may assume that at least m elements j_{k} belong to $J\left(A_{1}\right)$.

Let $j_{i} \in J\left(A_{1}\right), h_{i} \in A_{2} \cup\{1\}$. We prove by induction on ℓ that $j_{1} h_{1} j_{2} h_{2} \ldots h_{\ell-1} j_{\ell}$ can be expressed as a sum of $\tilde{j}_{1} \tilde{j}_{2} \ldots \tilde{j}_{\alpha} j_{1}^{\prime} j_{2}^{\prime} \ldots j_{\beta}^{\prime} a$ where $\tilde{j}_{i} \in J\left(A_{1}\right), j_{i}^{\prime} \in J(A), a \in A_{2} \cup\{1\}$, and $\alpha+\sum_{i=1}^{\beta}$ ht $\tilde{N}_{N} j_{i}^{\prime} \geqslant \ell$. Indeed, suppose that $j_{1} h_{1} j_{2} h_{2} \ldots h_{\ell-2} j_{\ell-1}$ can be expressed as a sum of $\tilde{j}_{1} \tilde{j}_{2} \ldots \tilde{j}_{\gamma} j_{1}^{\prime} j_{2}^{\prime} \ldots j_{x}^{\prime} a$ where $\tilde{j}_{i} \in J\left(A_{1}\right), j_{i}^{\prime} \in J(A), a \in A_{2} \cup\{1\}$, and $\gamma+\sum_{i=1}^{\kappa} h \mathrm{f}_{\tilde{N}} j_{i}^{\prime} \geqslant \ell-1$. Then $j_{1} h_{1} j_{2} h_{2} \ldots j_{\ell-1} h_{\ell-1} j_{\ell}$ is a sum of

$$
\tilde{j}_{1} \tilde{j}_{2} \ldots \tilde{j}_{\gamma} j_{1}^{\prime} j_{2}^{\prime} \ldots j_{\chi}^{\prime} a h_{\ell-1} j_{\ell}=\tilde{j}_{1} \tilde{j}_{2} \ldots \tilde{j}_{\gamma} j_{1}^{\prime} j_{2}^{\prime} \ldots j_{\chi}^{\prime}\left[a h_{\ell-1}, j_{\ell}\right]+\tilde{j}_{1} \tilde{j}_{2} \ldots \tilde{j}_{\gamma} j_{1}^{\prime} j_{2}^{\prime} \ldots j_{\chi}^{\prime} j_{\ell}\left(a h_{\ell-1}\right)
$$

Note that, in virtue of the Jacobi identity and Lemma $7,\left[a h_{\ell-1}, j_{\ell}\right] \in J(A)$. Thus it is sufficient to consider only the second term. However

$$
\begin{aligned}
\tilde{j}_{1} \tilde{j}_{2} \ldots \tilde{j}_{\gamma} j_{1}^{\prime} j_{2}^{\prime} \ldots j_{\varkappa}^{\prime} j_{\ell}\left(a h_{\ell-1}\right)= & \tilde{j}_{1} \tilde{j}_{2} \ldots \tilde{j}_{\gamma} j_{\ell} j_{1}^{\prime} j_{2}^{\prime} \ldots j_{\varkappa}^{\prime}\left(a h_{\ell-1}\right) \\
& +\sum_{i=1}^{\varkappa} \tilde{j}_{1} \tilde{j}_{2} \ldots \tilde{j}_{\gamma} j_{1}^{\prime} j_{2}^{\prime} \ldots j_{i-1}^{\prime}\left[j_{i}^{\prime}, j_{\ell}\right] j_{i+1}^{\prime} \ldots j_{\varkappa}^{\prime}\left(a h_{\ell-1}\right) .
\end{aligned}
$$

Since $\left[j_{i}^{\prime}, j_{\ell}\right] \in J(A)$ and $\mathrm{ht}_{\tilde{N}}\left[j_{i}^{\prime}, j_{\ell}\right] \geqslant 1+\mathrm{ht}_{\tilde{N}} j_{i}^{\prime}$, all the terms have the desired form. Therefore,

$$
j_{1} h_{1} j_{2} h_{2} \ldots j_{m-1} h_{m-1} j_{m} \in \psi^{-1}\left(\tilde{N}_{m}\right)=\{0\}
$$

$I^{m+p}=0$, and

$$
J(A) \subseteq J\left(A_{1}\right)+J(A) \subseteq I \subseteq J(A)
$$

In particular, $d_{i j} \in J\left(A_{1}\right) \subseteq J(A)$.
Denote

$$
\begin{gathered}
\tilde{B}:=\left(\bigoplus_{i=1}^{r} \operatorname{ad} B_{i}\right) \oplus\left\langle c_{i j} \mid 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant k_{i}\right\rangle_{F}, \\
\tilde{B}_{0}:=(\operatorname{ad} B) \oplus\left\langle c_{i j} \mid 1 \leqslant i \leqslant r, 1 \leqslant j \leqslant k_{i}\right\rangle_{F} \subseteq A .
\end{gathered}
$$

Lemma 20. The space L is a completely reducible \tilde{B}_{0}-module with G-action. Moreover, L is a completely reducible $\left(\operatorname{ad} B_{k}\right) \oplus R_{k}$-module with G-action for any $1 \leqslant k \leqslant r$.

Proof. By Lemma 3, it is sufficient to show that L is a completely reducible \tilde{B}_{0}-module and a completely reducible $\left(\operatorname{ad} B_{k}\right) \oplus R_{k}$-module disregarding the G-action. The elements $c_{i j}$ are diagonalizable on L and commute. Therefore, an eigenspace of any $c_{i j}$ is invariant under the action of other $c_{k \ell}$. Using induction, we split $L=\bigoplus_{i=1}^{\alpha} W_{i}$ where W_{i} are intersections of eigenspaces of $c_{k \ell}$ and elements $c_{k \ell}$ act as scalar operators on W_{i}. In virtue of Lemmas 4, 19, and the Jacobi identity, $\left[c_{i j}, \operatorname{ad} B\right]=0$. Thus W_{i} are B-submodules and L is a completely reducible \tilde{B}_{0}-module and $\left(\operatorname{ad} B_{k}\right) \oplus R_{k}$-module since B and B_{k} are semisimple.

Lemma 21. There exist complementary subspaces $I_{k}=\tilde{T}_{k} \oplus J_{k}$ such that
(1) \tilde{T}_{k} is a B-submodule and an irreducible \tilde{B}-submodule with G-action;
(2) \tilde{T}_{k} is a completely reducible faithful $\left(\operatorname{ad} B_{k}\right) \oplus R_{k}$-module with G-action;
(3) $\sum_{k=1}^{r} \operatorname{dim}\left(\left(\operatorname{ad} B_{k}\right) \oplus R_{k}\right)=d$;
(4) $B_{i} \tilde{T}_{k}=R_{i} \tilde{T}_{k}=0$ for $i>k$.

Proof. By Lemma 20, L is a completely reducible \tilde{B}_{0}-module with G-action. Therefore, for every J_{k} we can choose a complementary G-invariant \tilde{B}_{0}-submodules \tilde{T}_{k} in I_{k}. Then \tilde{T}_{k} are both B - and \tilde{B} submodules.

Note that $\left(\operatorname{ad} a_{i j}\right) w=c_{i j} w$ for all $w \in I_{k} / J_{k}$ since I_{k} / J_{k} is an irreducible A-module and $J(A) I_{k} / J_{k}=0$. Hence, by Lemma 18, I_{k} / J_{k} is a faithful $\left(\right.$ ad $\left.B_{k}\right) \oplus R_{k}$-module, $R_{i} I_{k} / J_{k}=0$ for $i>k$ and the elements $c_{i j}$ are linearly independent. Moreover, by property (5) of Lemma $18, I_{k} / J_{k}$ is an irreducible $\left(\sum_{i=1}^{r}\left(B_{i} \oplus \tilde{R}_{i}\right) \oplus N\right) / N$-module with G-action. However $\left(\sum_{i=1}^{r}\left(B_{i} \oplus \tilde{R}_{i}\right) \oplus N\right) / N$ acts on I_{k} / J_{k} by the same operators as \tilde{B}. Thus $\tilde{T}_{k} \cong I_{k} / J_{k}$ is an irreducible \tilde{B}-module with G-action. Property (1) is proved. By Lemma $20, L$ is a completely reducible $\left(\operatorname{ad} B_{k}\right) \oplus R_{k}$-module with G-action for any $1 \leqslant k \leqslant r$. Using the isomorphism $\tilde{T}_{k} \cong I_{k} / J_{k}$, we obtain properties (2) and (4) from the remarks above. Property (3) is a consequence of property (3) of Lemma 18.

Lemma 22. For all $1 \leqslant k \leqslant r$ we have

$$
\tilde{T}_{k}=T_{k 1} \oplus T_{k 2} \oplus \cdots \oplus T_{k m}
$$

where $T_{k j}$ are faithful irreducible $\left(\operatorname{ad} B_{k}\right) \oplus R_{k}$-submodules with G-action, $m \in \mathbb{N}, 1 \leqslant j \leqslant m$.
Proof. By Lemma 21, property (2), $\tilde{T}_{k}=T_{k 1} \oplus T_{k 2} \oplus \cdots \oplus T_{k m}$ for some irreducible (ad $\left.B_{k}\right) \oplus R_{k}$ submodules with G-action. Suppose $T_{k j}$ is not faithful for some $1 \leqslant j \leqslant m$. Hence $b T_{k j}=0$ for some $b \in\left(\operatorname{ad} B_{k}\right) \oplus R_{k}, b \neq 0$. Note that $\tilde{B}=\left(\left(\operatorname{ad} B_{k}\right) \oplus R_{k}\right) \oplus \tilde{B}_{k}$ where

$$
\tilde{B}_{k}:=\bigoplus_{i \neq k}\left(\operatorname{ad} B_{i}\right) \oplus \bigoplus_{i \neq k} R_{i}
$$

and $\left[\left(\operatorname{ad} B_{k}\right) \oplus R_{k}, \tilde{B}_{k}\right]=0$. Denote by \widehat{B}_{k} the associative subalgebra of $\operatorname{End}_{F}\left(\tilde{T}_{k}\right)$ with 1 generated by operators from \tilde{B}_{k}. Then

$$
\left[\left(\operatorname{ad} B_{k}\right) \oplus R_{k}, \widehat{B}_{k}\right]=0
$$

and $\sum_{a \in \widehat{B}_{k}} a T_{k j} \supseteq T_{k j}$ is a G-invariant \tilde{B}-submodule of \tilde{T}_{k} since

$$
\left(\sum_{a \in \widehat{B}_{k}} a T_{k j}\right)^{g}=\sum_{a \in \widehat{B}_{k}} a^{g} T_{k j}^{g}=\sum_{a \in \widehat{B}_{k}} a^{g} T_{k j}=\sum_{a^{\prime} \in \widehat{B}_{k}} a^{\prime} T_{k j}
$$

for all $g \in G$. Thus $\tilde{T}_{k}=\sum_{a \in \widehat{B}_{k}} a T_{k j}$ and

$$
b \tilde{T}_{k}=\sum_{a \in \widehat{B}_{k}} b a T_{k j}=\sum_{a \in \widehat{B}_{k}} a\left(b T_{k j}\right)=0 .
$$

We get a contradiction with faithfulness of \tilde{T}_{k}.

By condition (2) of the definition of d, there exist numbers $q_{1}, \ldots, q_{r} \in \mathbb{Z}_{+}$such that

$$
[[\tilde{T}_{1}, \underbrace{L, \ldots, L}_{q_{1}}],[\tilde{T}_{2}, \underbrace{L, \ldots, L}_{q_{2}}] \ldots,[\tilde{T}_{r}, \underbrace{L, \ldots, L}_{q_{r}}]] \neq 0 .
$$

Choose $n_{i} \in \mathbb{Z}_{+}$with the maximal $\sum_{i=1}^{r} n_{i}$ such that

$$
[[\left(\prod_{k=1}^{n_{1}} j_{1 k}\right) \tilde{T}_{1}, \underbrace{L, \ldots, L}_{q_{1}}],[\left(\prod_{k=1}^{n_{2}} j_{2 k}\right) \tilde{T}_{2}, \underbrace{L, \ldots, L}_{q_{2}}] \cdots,[\left(\prod_{k=1}^{n_{r}} j_{r k}\right) \tilde{T}_{r}, \underbrace{L, \ldots, L}_{q_{r}}]] \neq 0
$$

for some $j_{i k} \in J(A)$. Let $j_{i}:=\prod_{k=1}^{n_{i}} j_{i k}$. Then $j_{i} \in J(A) \cup\{1\}$ and

$$
[[j_{1} \tilde{T}_{1}, \underbrace{L, \ldots, L}_{q_{1}}],[j_{2} \tilde{T}_{2}, \underbrace{L, \ldots, L}_{q_{2}}], \ldots,[j_{r} \tilde{T}_{r}, \underbrace{L, \ldots, L}_{q_{r}}]] \neq 0,
$$

but

$$
\begin{equation*}
[[j_{1} \tilde{T}_{1}, \underbrace{L, \ldots, L}_{q_{1}}], \ldots,[j_{k}\left(j \tilde{T}_{k}\right), \underbrace{L, \ldots, L}_{q_{k}}], \ldots,[j_{r} \tilde{T}_{r}, \underbrace{L, \ldots, L}_{q_{r}}]]=0 \tag{7}
\end{equation*}
$$

for all $j \in J(A)$ and $1 \leqslant k \leqslant r$.
In virtue of Lemma 22 , for every k we can choose a faithful irreducible $\left(\operatorname{ad} B_{k}\right) \oplus R_{k}$-submodule with G-action $T_{k} \subseteq \tilde{T}_{k}$ such that

$$
\begin{equation*}
[[j_{1} T_{1}, \underbrace{L, \ldots, L}_{q_{1}}],[j_{2} T_{2}, \underbrace{L, \ldots, L}_{q_{2}}] \ldots,[j_{r} T_{r}, \underbrace{L, \ldots, L}_{q_{r}}]] \neq 0 . \tag{8}
\end{equation*}
$$

Lemma 23. Let $\psi: \bigoplus_{i=1}^{r}\left(B_{i} \oplus \tilde{R}_{i}\right) \rightarrow \bigoplus_{i=1}^{r}\left(\left(\operatorname{ad} B_{i}\right) \oplus R_{i}\right)$ be the linear isomorphism defined by formulas $\psi(b)=\operatorname{ad} b$ for all $b \in B_{i}$ and $\psi\left(a_{i \ell}\right)=c_{i \ell}, 1 \leqslant \ell \leqslant k_{\ell}$. Let f_{i} be multilinear associative G-polynomials, $h_{1}^{(i)}, \ldots, h_{n_{i}}^{(i)} \in \bigoplus_{i=1}^{r} B_{i} \oplus \tilde{R}_{i}, \bar{t}_{i} \in \tilde{T}_{i}, \bar{u}_{i k} \in L$, be some elements. Then

$$
\begin{aligned}
& {\left[\left[j_{1} f_{1}\left(\operatorname{ad} h_{1}^{(1)}, \ldots, \operatorname{ad} h_{n_{1}}^{(1)}\right) \bar{t}_{1}, \bar{u}_{11}, \ldots, \bar{u}_{1 q_{1}}\right], \ldots,\left[j_{r} f_{r}\left(\operatorname{ad} h_{1}^{(r)}, \ldots, \operatorname{ad} h_{n_{r}}^{(r)}\right) \bar{t}_{r}, \bar{u}_{r 1}, \ldots, \bar{u}_{r q_{r}}\right]\right]} \\
& \quad=\left[\left[j_{1} f_{1}\left(\psi\left(h_{1}^{(1)}\right), \ldots, \psi\left(h_{n_{1}}^{(1)}\right)\right) \bar{t}_{1}, \bar{u}_{11}, \ldots, \bar{u}_{1 q_{1}}\right], \ldots,\left[j_{r} f_{r}\left(\psi\left(h_{1}^{(r)}\right), \ldots, \psi\left(h_{n_{r}}^{(r)}\right)\right) \bar{t}_{r}, \bar{u}_{r 1}, \ldots, \bar{u}_{r q_{r}}\right]\right] .
\end{aligned}
$$

In other words, we can replace $\operatorname{ad} a_{i \ell}$ with $c_{i \ell}$ and the result does not change.
Proof. We rewrite ad $a_{i \ell}=c_{i \ell}+d_{i \ell}=\psi\left(a_{i}\right)+d_{i \ell}$ and use the multilinearity of f_{i}. By Eq. (7), terms with $d_{i \ell}$ vanish.

Denote by $A_{3} \subseteq \operatorname{End}_{F}(L)$ the linear span of products of operators from ad L and G such that each product contains at least one element from ad L.

Lemma 24. $J(A) \subseteq A_{3}$.
Proof. Note that A_{3} is a G-invariant two-sided ideal of A and $A_{3}+\tilde{A}_{3}=A$ where $\tilde{A}_{3} \subseteq \operatorname{End}_{F}(L)$ is the associative subalgebra generated by operators from G. Thus $A / A_{3} \cong \tilde{A}_{3} /\left(\tilde{A}_{3} \cap A_{3}\right)$ is a semisimple algebra since \tilde{A}_{3} is a homomorphic image of the semisimple group algebra $F G$. Thus $J(A) \subseteq A_{3}$.

Lemma 25. If $d \neq 0$, then there exists a number $n_{0} \in \mathbb{N}$ such that for every $n \geqslant n_{0}$ there exist disjoint subsets $X_{1}, \ldots, X_{2 k} \subseteq\left\{x_{1}, \ldots, x_{n}\right\}, k:=\left[\frac{n-n_{0}}{2 d}\right],\left|X_{1}\right|=\cdots=\left|X_{2 k}\right|=d$ and a polynomial $f \in V_{n}^{G} \backslash \operatorname{Id}^{G}(L)$ alternating in the variables of each set X_{j}.

Proof. Denote by $\varphi_{i}:\left(\operatorname{ad} B_{i}\right) \oplus R_{i} \rightarrow \mathfrak{g l}\left(T_{i}\right)$ the representation corresponding to the action of $\left(\operatorname{ad} B_{i}\right) \oplus$ R_{i} on T_{i}. In virtue of Theorem 5 , there exist constants $m_{i} \in \mathbb{Z}_{+}$such that for any k there exist multilinear polynomials $f_{i} \in Q_{d_{i}, 2 k, 2 k d_{i}+m_{i}}^{G} \backslash \operatorname{Id}^{G}\left(\varphi_{i}\right), d_{i}:=\operatorname{dim}\left(\left(\operatorname{ad} B_{i}\right) \oplus R_{i}\right)$, alternating in the variables from disjoint sets $X_{\ell}^{(i)}, 1 \leqslant \ell \leqslant 2 k,\left|X_{\ell}^{(i)}\right|=d_{i}$.

In virtue of (8),

$$
\left[\left[j_{1} \bar{t}_{1}, \bar{u}_{11}, \ldots, \bar{u}_{1, q_{1}}\right],\left[j_{2} \bar{t}_{2}, \bar{u}_{21}, \ldots, \bar{u}_{2, q_{2}}\right], \ldots,\left[j_{r} \bar{t}_{r}, \bar{u}_{r 1}, \ldots, \bar{u}_{r, q_{r}}\right]\right] \neq 0
$$

for some $\bar{u}_{i \ell} \in L$ and $\bar{t}_{i} \in T_{i}$. All $j_{i} \in J(A) \cup\{1\}$ are polynomials in elements from G and ad L. Denote by \tilde{m} the maximal degree of them.

Recall that each T_{i} is a faithful irreducible $\left(a d B_{i}\right) \oplus R_{i}$-module with G-action. Therefore by the density theorem, $\operatorname{End}_{F}\left(T_{i}\right)$ is generated by operators from G and $\left(\operatorname{ad} B_{i}\right) \oplus R_{i}$. Note that $\operatorname{End}_{F}\left(T_{i}\right) \cong$ $M_{\mathrm{dim} T_{i}}(F)$. Thus every matrix unit $e_{j \ell}^{(i)} \in M_{\operatorname{dim} T_{i}}(F)$ can be represented as a polynomial in operators from G and $\left(\operatorname{ad} B_{i}\right) \oplus R_{i}$. Choose such polynomials for all i and all matrix units. Denote by m_{0} the maximal degree of those polynomials.

Let $n_{0}:=r\left(2 m_{0}+\tilde{m}+1\right)+\sum_{i=1}^{r}\left(m_{i}+q_{i}\right)$. Now we choose f_{i} for $k=\left[\frac{n-n_{0}}{2 d}\right]$. Since $f_{i} \notin \operatorname{Id}^{G}\left(\varphi_{i}\right)$, there exist $\bar{x}_{i 1}, \ldots, \bar{x}_{i, 2 k d_{i}+m_{i}} \in\left(\operatorname{ad} B_{i}\right) \oplus R_{i}$ such that $f_{i}\left(\bar{x}_{i 1}, \ldots, \bar{x}_{i, 2 k d_{i}+m_{i}}\right) \neq 0$. Hence

$$
e_{\ell_{i} \ell_{i}}^{(i)} f_{i}\left(\bar{x}_{i 1}, \ldots, \bar{x}_{i, 2 k d_{i}+m_{i}}\right) e_{s_{i} s_{i}}^{(i)} \neq 0
$$

for some matrix units $e_{\ell_{i} \ell_{i}}^{(i)}, e_{s_{i} s_{i}}^{(i)} \in \operatorname{End}_{F}\left(T_{i}\right), 1 \leqslant \ell_{i}, s_{i} \leqslant \operatorname{dim} T_{i}$. Thus

$$
\sum_{\ell=1}^{\operatorname{dim}_{T_{i}}} e_{\ell \ell_{i}}^{(i)} f_{i}\left(\bar{x}_{i 1}, \ldots, \bar{x}_{i, 2 k d_{i}+m_{i}}\right) e_{s_{i} \ell}^{(i)}
$$

is a nonzero scalar operator in $\operatorname{End}_{F}\left(T_{i}\right)$.
Hence

$$
\begin{aligned}
& {\left[\left[j_{1}\left(\sum_{\ell=1}^{\operatorname{dim} T_{1}} e_{\ell \ell_{1}}^{(1)} f_{1}\left(\bar{x}_{11}, \ldots, \bar{x}_{1,2 k d_{1}+m_{1}}\right) e_{s_{1} \ell}^{(1)}\right) \bar{t}_{1}, \bar{u}_{11}, \ldots, \bar{u}_{1 q_{1}}\right], \ldots,\right.} \\
& \left.\left[j_{r}\left(\sum_{\ell=1}^{\operatorname{dim} T_{r}} e_{\ell \ell_{r}}^{(r)} f_{r}\left(\bar{x}_{r 1}, \ldots, \bar{x}_{r, 2 k d_{r}+m_{r}}\right) e_{s_{r} \ell}^{(r)}\right) \bar{t}_{r}, \bar{u}_{r 1}, \ldots, \bar{u}_{r q_{r}}\right]\right] \neq 0 .
\end{aligned}
$$

Denote $X_{\ell}:=\bigcup_{i=1}^{r} X_{\ell}^{(i)}$. Let Alt be the operator of alternation in the variables from X_{ℓ}. Consider

$$
\begin{aligned}
& \tilde{f}\left(x_{11}, \ldots, x_{1,2 k d_{1}+m_{1}}, \ldots, x_{r 1}, \ldots, x_{r, 2 k d_{r}+m_{r}}\right) \\
&:=\operatorname{Alt}_{1} \operatorname{Alt}_{2} \ldots \operatorname{Alt}_{2 k}\left[\left[j_{1}\left(\sum_{\ell=1}^{\operatorname{dim} T_{1}} e_{\ell \ell_{1}}^{(1)} f_{1}\left(x_{11}, \ldots, x_{1,2 k d_{1}+m_{1}}\right) e_{s_{1} \ell}^{(1)}\right) \bar{t}_{1}, \bar{u}_{11}, \ldots, \bar{u}_{1 q_{1}}\right], \ldots,\right. \\
& {\left.\left[j_{r}\left(\sum_{\ell=1}^{\operatorname{dim} T_{r}} e_{\ell \ell_{r}}^{(r)} f_{r}\left(x_{r 1}, \ldots, x_{r, 2 k d_{r}+m_{r}}\right) e_{s_{r} \ell}^{(r)}\right) \bar{t}_{r}, \bar{u}_{r 1}, \ldots, \bar{u}_{r q_{r}}\right]\right] . }
\end{aligned}
$$

Then

$$
\begin{aligned}
& \tilde{f}\left(\bar{x}_{11}, \ldots, \bar{x}_{1,2 k d_{1}+m_{1}}, \ldots, \bar{x}_{r 1}, \ldots, \bar{x}_{r, 2 k d_{r}+m_{r}}\right) \\
&=\left(d_{1}!\right)^{2 k} \ldots\left(d_{r}!\right)^{2 k}\left[\left[j_{1}\left(\sum_{\ell=1}^{\operatorname{dim} T_{1}} e_{\ell \ell_{1}}^{(1)} f_{1}\left(\bar{x}_{11}, \ldots, \bar{x}_{1,2 k d_{1}+m_{1}}\right) e_{s_{1} \ell}^{(1)}\right) \bar{t}_{1}, \bar{u}_{11}, \ldots, \bar{u}_{1 q_{1}}\right], \ldots,\right. \\
& {\left.\left[j_{r}\left(\sum_{\ell=1}^{\operatorname{dim} T_{r}} e_{\ell \ell_{r}}^{(r)} f_{r}\left(\bar{x}_{r 1}, \ldots, \bar{x}_{r, 2 k d_{r}+m_{r}}\right) e_{s_{r} \ell}^{(r)}\right) \bar{t}_{r}, \bar{u}_{r 1}, \ldots, \bar{u}_{r q_{r}}\right]\right] \neq 0, }
\end{aligned}
$$

since f_{i} are alternating in each $X_{\ell}^{(i)}$ and, by Lemma 21, $\left(\left(\operatorname{ad} B_{i}\right) \oplus R_{i}\right) \tilde{T}_{\ell}=0$ for $i>\ell$. Now we rewrite $e_{\ell j}^{(i)}$ as polynomials in elements of $\left(\operatorname{ad} B_{i}\right) \oplus R_{i}$ and G. Using linearity of \tilde{f} in $e_{\ell j}^{(i)}$, we can replace $e_{\ell j}^{(i)}$ with the products of elements from $\left(\operatorname{ad} B_{i}\right) \oplus R_{i}$ and G, and the expression will not vanish for some choice of the products. Using Eq. (6), we can move all $\rho(\mathrm{g})$ to the right. By Lemma 23, we can replace all elements from $\left(\operatorname{ad} B_{i}\right) \oplus R_{i}$ with elements from $B_{i} \oplus \tilde{R}_{i}$ and the expression will be still nonzero. Denote by $\psi: \bigoplus_{i=1}^{r}\left(B_{i} \oplus \tilde{R}_{i}\right) \rightarrow \bigoplus_{i=1}^{r}\left(\left(\operatorname{ad} B_{i}\right) \oplus R_{i}\right)$ the corresponding linear isomorphism. Now we rewrite j_{i} as polynomials in elements ad L and G. Since \tilde{f} is linear in j_{i}, we can replace j_{i} with one of the monomials, i.e. with the product of elements from ad L and G. Using Eq. (6), we again move all $\rho(\mathrm{g})$ to the right. Then we replace the elements from $\operatorname{ad} L$ with new variables, and

$$
\begin{aligned}
\hat{f}:= & \operatorname{Alt}_{1} \operatorname{Alt}_{2} \ldots \operatorname{Alt}_{2 k}\left[\left[\left[y_{11},\left[y_{12}, \ldots\left[y_{1 \alpha_{1}},\left[z_{11},\left[z_{12}, \ldots,\left[z_{1 \beta_{1}},\right.\right.\right.\right.\right.\right.\right.\right. \\
& \left(f_{1}\left(\operatorname{ad} x_{11}, \ldots, \operatorname{ad} x_{1,2 k d_{1}+m_{1}}\right)\right)^{g_{1}}\left[w_{11},\left[w_{12}, \ldots,\left[w_{1 \gamma_{1}}, t_{1}^{h_{1}}\right] \ldots\right], u_{11}, \ldots, u_{1 q_{1}}\right], \ldots, \\
& {[} \\
& {\left[y_{r 1},\left[y_{r 2}, \ldots,\left[y_{r \alpha_{r}},\left[z_{r 1},\left[z_{r 2}, \ldots,\left[z_{r \beta_{r}},\right.\right.\right.\right.\right.\right.} \\
& \left.\left(f_{r}\left(\operatorname{ad} x_{r 1}, \ldots, \operatorname{ad} x_{r, 2 k d_{r}+m_{r}}\right)\right)^{g_{r}}\left[w_{r 1},\left[w_{r 2}, \ldots,\left[w_{r \gamma_{r}}, t_{r}^{h_{r}}\right] \ldots\right], u_{r 1}, \ldots, u_{r q_{r}}\right]\right]
\end{aligned}
$$

for some $0 \leqslant \alpha_{i} \leqslant \tilde{m}, 0 \leqslant \beta_{i}, \gamma_{i} \leqslant m_{0}, g_{i}, h_{i} \in G, \bar{y}_{i \ell}, \bar{z}_{i \ell}, \bar{w}_{i \ell} \in L$ does not vanish under the substitution $t_{i}=\bar{t}_{i}, u_{i \ell}=\bar{u}_{i \ell}, x_{i \ell}=\psi^{-1}\left(\bar{x}_{i \ell}\right), y_{i \ell}=\bar{y}_{i \ell}, z_{i \ell}=\bar{z}_{i \ell}, w_{i \ell}=\bar{w}_{i \ell}$.

Note that $\hat{f} \in V_{\tilde{n}}^{G}, \tilde{n}:=2 k d+r+\sum_{i=1}^{r}\left(m_{i}+q_{i}+\alpha_{i}+\beta_{i}+\gamma_{i}\right) \leqslant n$. If $n=\tilde{n}$, then we take $f:=\hat{f}$. Suppose $n>\tilde{n}$. Let $b \in\left(\operatorname{ad} B_{1}\right) \oplus R_{1}, b \neq 0$. Then $e_{j j}^{(1)} b e_{\ell \ell}^{(1)} \neq 0$ for some $1 \leqslant j, \ell \leqslant \operatorname{dim} T_{1}$ and $\left(\sum_{s=1}^{\operatorname{dim} T_{1}}\left(e_{s j}^{(1)} b e_{\ell s}^{(1)}\right)\right)^{n-\tilde{n}} \bar{t}_{1}=\mu \bar{t}_{1}, \mu \in F \backslash\{0\}$. Hence \hat{f} does not vanish under the substitution $t_{1}=\left(\sum_{s=1}^{\operatorname{dim} T_{1}}\left(e_{s j}^{(1)} b e_{\ell s}^{(1)}\right)\right)^{n-\tilde{n}_{1}} \bar{t}_{1} ; t_{i}=\bar{t}_{i}$ for $2 \leqslant i \leqslant r ; u_{i \ell}=\bar{u}_{i \ell}, x_{i \ell}=\psi^{-1}\left(\bar{x}_{i \ell}\right), y_{i \ell}=\bar{y}_{i \ell}, z_{i \ell}=\bar{z}_{i \ell}$, $w_{i \ell}=\bar{w}_{i \ell}$.

By Lemma 24,

$$
b \in J(A) \oplus \operatorname{ad}\left(B_{1} \oplus \tilde{R}_{1}\right) \subseteq A_{3}
$$

and using Eq. (6) we can rewrite $\left(\sum_{s=1}^{\operatorname{dim} T_{1}}\left(e_{s j}^{(1)} b e_{\ell s}^{(1)}\right)\right)^{n-\tilde{n}} \bar{t}_{1}$ as a sum of elements $\left[\bar{v}_{1},\left[\bar{v}_{2},\left[\ldots,\left[\bar{v}_{q}\right.\right.\right.\right.$, $\left.\left.\bar{t}_{1}^{g}\right] \ldots\right], q \geqslant n-\tilde{n}, \bar{v}_{i} \in L, g \in G$. Hence \hat{f} does not vanish under a substitution $t_{1}=\left[\bar{v}_{1},\left[\bar{v}_{2},\left[\ldots,\left[\bar{v}_{q}\right.\right.\right.\right.$, $\left.\bar{t}_{1}^{g}\right] \ldots$ for some $q \geqslant n-\tilde{n}, \bar{v}_{i} \in L, g \in G ; t_{i}=\bar{t}_{i}$ for $2 \leqslant i \leqslant r ; u_{i \ell}=\bar{u}_{i \ell}, x_{i \ell}=\psi^{-1}\left(\bar{x}_{i \ell}\right), y_{i \ell}=\bar{y}_{i \ell}$, $z_{i \ell}=\bar{z}_{i \ell}, w_{i \ell}=\bar{w}_{i \ell}$. Therefore,

$$
\begin{aligned}
f:= & \operatorname{Alt}_{1} \operatorname{Alt}_{2} \ldots \operatorname{Alt}_{2 k}\left[\left[\left[y_{11},\left[y_{12}, \ldots\left[y_{1 \alpha_{1}},\left[z_{11},\left[z_{12}, \ldots,\left[z_{1 \beta_{1}},\right.\right.\right.\right.\right.\right.\right.\right. \\
& \left(f_{1}\left(\operatorname{ad} x_{11}, \ldots, \operatorname{ad} x_{1,2 k d_{1}+m_{1}}\right)\right)^{g_{1}}\left[w_{11},\left[w_{12}, \ldots,\left[w_{1 \gamma_{1}},\right.\right.\right. \\
& {\left[v_{1}^{h_{1}},\left[v_{2}^{h_{1}},\left[\ldots,\left[v_{n-\tilde{n}}^{h_{1}}, t_{1}^{h_{1}}\right] \ldots\right] \ldots\right], u_{11}, \ldots, u_{1 q_{1}}\right], }
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\left[y_{21},\left[y_{22}, \ldots\left[y_{2 \alpha_{2}},\left[z_{21},\left[z_{22}, \ldots,\left[z_{2 \beta_{2}},\right.\right.\right.\right.\right.\right.\right.} \\
& \left(f_{2}\left(\operatorname{ad} x_{21}, \ldots, \operatorname{ad} x_{2,2 k d_{2}+m_{2}}\right)\right)^{g_{2}}\left[w_{21},\left[w_{22}, \ldots,\left[w_{2 \gamma_{2}}, t_{2}^{h_{2}}\right] \ldots\right], u_{21}, \ldots, u_{2 q_{2}}\right], \\
& \ldots,\left[\left[y_{r 1},\left[y_{r 2}, \ldots,\left[y_{r \alpha_{r}},\left[z_{r 1},\left[z_{r 2}, \ldots,\left[z_{r \beta_{r}},\right.\right.\right.\right.\right.\right.\right. \\
& \left.\left(f_{r}\left(\operatorname{ad} x_{r 1}, \ldots, \operatorname{ad} x_{r, 2 k d_{r}+m_{r}}\right)\right)^{g_{r}}\left[w_{r 1},\left[w_{r 2}, \ldots,\left[w_{r \gamma_{r}}, t_{r}^{h_{r}}\right] \ldots\right], u_{r 1}, \ldots, u_{r q_{r}}\right]\right]
\end{aligned}
$$

does not vanish under the substitution $v_{\ell}=\bar{v}_{\ell}, 1 \leqslant \ell \leqslant n-\tilde{n}, t_{1}=\left[\bar{v}_{n-\tilde{n}+1},\left[\bar{v}_{n-\tilde{n}+2},\left[\ldots,\left[\bar{v}_{q}, \bar{t}_{1}^{g}\right] \ldots\right]\right.\right.$; $t_{i}=\bar{t}_{i}$ for $2 \leqslant i \leqslant r ; u_{i \ell}=\bar{u}_{i \ell}, x_{i \ell}=\psi^{-1}\left(\bar{x}_{i \ell}\right), y_{i \ell}=\bar{y}_{i \ell}, z_{i \ell}=\bar{z}_{i \ell}, w_{i \ell}=\bar{w}_{i \ell}$. Note that $f \in V_{n}^{G}$ and satisfies all the conditions of the lemma.

Lemma 26. Let k, n_{0} be the numbers from Lemma 25. Then for every $n \geqslant n_{0}$ there exists a partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{s}\right) \vdash n, \lambda_{i} \geqslant 2 k-C$ for every $1 \leqslant i \leqslant d$, with $m(L, G, \lambda) \neq 0$. Here $C:=p((\operatorname{dim} L) p+$ 3) $((\operatorname{dim} L)-d)$ where $p \in \mathbb{N}$ is such number that $N^{p}=0$.

Proof. Consider the polynomial f from Lemma 25 . It is sufficient to prove that $e_{T_{\lambda}}^{*} f \notin \mathrm{Id}^{G}(L)$ for some tableau T_{λ} of the desired shape λ. It is known that $F S_{n}=\bigoplus_{\lambda, T_{\lambda}} F S_{n} e_{T_{\lambda}}^{*}$ where the summation runs over the set of all standard tableax $T_{\lambda}, \lambda \vdash n$. Thus $F S_{n} f=\sum_{\lambda, T_{\lambda}} F S_{n} e_{T_{\lambda}}^{*} f \nsubseteq \operatorname{Id}^{G}(L)$ and $e_{T_{\lambda}}^{*} f \notin \operatorname{Id}^{G}(L)$ for some $\lambda \vdash n$. We claim that λ is of the desired shape. It is sufficient to prove that $\lambda_{d} \geqslant 2 k-C$, since $\lambda_{i} \geqslant \lambda_{d}$ for every $1 \leqslant i \leqslant d$. Each row of T_{λ} includes numbers of no more than one variable from each X_{i}, since $e_{T_{\lambda}}^{*}=b_{T_{\lambda}} a_{T_{\lambda}}$ and $a_{T_{\lambda}}$ is symmetrizing the variables of each row. Thus $\sum_{i=1}^{d-1} \lambda_{i} \leqslant$ $2 k(d-1)+(n-2 k d)=n-2 k$. In virtue of Lemma $14, \sum_{i=1}^{d} \lambda_{i} \geqslant n-C$. Therefore $\lambda_{d} \geqslant 2 k-C$.

Proof of Theorem 1. The Young diagram D_{λ} from Lemma 26 contains the rectangular subdiagram D_{μ}, $\mu=(\underbrace{2 k-C, \ldots, 2 k-C}_{d})$. The branching rule for S_{n} implies that if we consider the restriction of S_{n} action on $M(\lambda)$ to S_{n-1}, then $M(\lambda)$ becomes the direct sum of all non-isomorphic $F S_{n-1}$-modules $M(\nu), \nu \vdash(n-1)$, where each D_{v} is obtained from D_{λ} by deleting one box. In particular, $\operatorname{dim} M(\nu) \leqslant$ $\operatorname{dim} M(\lambda)$. Applying the rule $(n-d(2 k-C)$) times, we obtain $\operatorname{dim} M(\mu) \leqslant \operatorname{dim} M(\lambda)$. By the hook formula,

$$
\operatorname{dim} M(\mu)=\frac{(d(2 k-C))!}{\prod_{i, j} h_{i j}}
$$

where $h_{i j}$ is the length of the hook with edge in (i, j). By Stirling formula,

$$
\begin{aligned}
c_{n}^{G}(L) & \geqslant \operatorname{dim} M(\lambda) \geqslant \operatorname{dim} M(\mu) \geqslant \frac{(d(2 k-C))!}{((2 k-C+d)!)^{d}} \\
& \sim \frac{\sqrt{2 \pi d(2 k-C)}\left(\frac{d(2 k-C)}{e}\right)^{d(2 k-C)}}{\left(\sqrt{2 \pi(2 k-C+d)}\left(\frac{2 k-C+d}{e}\right)^{2 k-C+d}\right)^{d}} \sim C_{9} k^{r_{9}} d^{2 k d}
\end{aligned}
$$

for some constants $C_{9}>0, r_{9} \in \mathbb{Q}$, as $k \rightarrow \infty$. Since $k=\left[\frac{n-n_{0}}{2 d}\right]$, this gives the lower bound. The upper bound has been proved in Theorem 4.

Acknowledgments

I am grateful to Yuri Bahturin and Mikhail Kotchetov for helpful discussions.

References

[1] A. Giambruno, M.V. Zaicev, Polynomial Identities and Asymptotic Methods, Math. Surveys Monogr., vol. 122, American Mathematical Society, Providence, RI, 2005.
[2] M.V. Zaitsev, Integrality of exponents of growth of identities of finite-dimensional Lie algebras, Izv. Math. 66 (2002) 463487.
[3] A. Giambruno, I.P. Shestakov, M.V. Zaicev, Finite-dimensional non-associative algebras and codimension growth, Adv. Appl. Math. 47 (2011) 125-139.
[4] A.S. Gordienko, Codimensions of polynomial identities of representations of Lie algebras, Proc. Amer. Math. Soc., in press.
[5] Yu.A. Bahturin, M.V. Zaicev, Identities of graded algebras, J. Algebra 205 (1998) 1-12.
[6] Yu.A. Bahturin, M.V. Zaicev, Identities of graded algebras and codimension growth, Trans. Amer. Math. Soc. 356 (10) (2004) 3939-3950.
[7] Yu.A. Bakhturin, M.V. Zaĭtsev, S.K. Sehgal, G-identities of non-associative algebras, Sb. Math. 190 (11) (1999) 1559-1570.
[8] Yu.A. Bahturin, A. Giambruno, M.V. Zaicev, G-identities on associative algebras, Proc. Amer. Math. Soc. 127 (1) (1999) 63-69.
[9] E. Aljadeff, A. Giambruno, D. La Mattina, Graded polynomial identities and exponential growth, J. Reine Angew. Math. 650 (2011) 83-100.
[10] A. Giambruno, D. La Mattina, Graded polynomial identities and codimensions: computing the exponential growth, Adv. Math. 225 (2010) 859-881.
[11] I.B. Volichenko, Varieties of Lie algebras with identity $\left[\left[X_{1}, X_{2}, X_{3}\right],\left[X_{4}, X_{5}, X_{6}\right]\right]=0$ over a field of characteristic zero, Sibirsk. Mat. Zh. 25 (3) (1984) 40-54 (in Russian).
[12] M.V. Zaicev, S.P. Mishchenko, An example of a variety of Lie algebras with a fractional exponent, J. Math. Sci. (N. Y.) 93 (6) (1999) 977-982.
[13] S.P. Mishchenko, A.B. Verevkin, M.V. Zaitsev, A sufficient condition for coincidence of lower and upper exponents of the variety of linear algebras, Moscow Univ. Math. Bull. 66 (2) (2011) 86-89.
[14] E.J. Taft, Invariant Wedderburn factors, Illinois J. Math. 1 (1957) 565-573.
[15] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, New York, 1978.
[16] M. Goto, F. Grosshans, Semisimple Lie Algebras, Marcel Dekker, New York, Basel, 1978.
[17] Yu.A. Bakhturin, Identical Relations in Lie Algebras, VNU Science Press, Utrecht, 1987.
[18] V.S. Drensky, Free Algebras and PI-Algebras: Graduate Course in Algebra, Springer-Verlag, Singapore, 2000.
[19] A. Berele, Cocharacter sequences for algebras with Hopf algebra actions, J. Algebra 185 (1996) 869-885.
[20] V.S. Drensky, Representations of the symmetric group and varieties of linear algebras, Math. USSR Sb. 43 (1) (1982) 85-101.
[21] A. Berele, Homogeneous polynomial identities, Israel J. Math. 42 (3) (1982) 258-272.
[22] A. Giambruno, A. Regev, M.V. Zaicev, Simple and semisimple Lie algebras and codimension growth, Trans. Amer. Math. Soc. 352 (4) (2000) 1935-1946.
[23] G. James, A. Kerber, The Representation Theory of the Symmetric Group, Addison-Wesley, Massachusetts, 1981.
[24] W. Fulton, J. Harris, Representation Theory: A First Course, Springer-Verlag, New York, 1991.
[25] C.W. Curtis, I. Reiner, Representation Theory of Finite Groups and Associative Algebras, Pure Appl. Math., vol. XI, John Wiley \& Sons, New York, London, Sydney, 1962.

[^0]: 4 Supported by post doctoral fellowship from Atlantic Association for Research in Mathematical Sciences (AARMS), Atlantic Algebra Centre (AAC), Memorial University of Newfoundland (MUN), and Natural Sciences and Engineering Research Council of Canada (NSERC).

 E-mail address: asgordienko@mun.ca.

