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The existence of “slowt’ and “fast” manifolds, and of invariant manifolds 
approaching the manifold of orbits of the degenerate system, is discussed for 
singularly perturbed systems of linear retarded functional differential equations 
(FDE). It is shown that these manifolds exist only in very degenerate situations 
and, consequently, the geometry of the flow of singularly perturbed ordinary 
differential equations does not generalize to FDEs. 

1. INTRODUCTION 

Consider singularly perturbed intial value problems for linear retarded 
functional differential equations (FDE) of the form 

i(t) = &x(t) + B, I’(t) + A (x,) + B(y,) 

iuJyt) = C,x(t) + D, v(t) + C(-q) + NY,> 
(1,) 

where t, ,u E R ’ , x(t) E Rm, 4’(t) E R” (n > l), the delays lie in the interval 
[-r, 0] for some fixed 0 < r ,< co, xl9 J’~ are functions defined on [-r, 0] by 
x,(B) = x(t + 19), J?,(O) = ~r(t + 19), and A, B, C, D are linear operators defined 
on an appropriate function space. More precisely, 

and similarly for B, C, D, where a, b, c, d admit exponential bounds ]a(.)]. 
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l4.h Id-)I, I4-)l<&P’, A,, B,, C,, D, are real matrices with D, having 
no eigenvalue with zero real part, and the concentrated delays ok satisfy 0 < 
w,<o,< -. . < cob for some nonnegative integer h. 

When (1,) is an ODE, i.e., A = B = C = D = 0, the phase space can be 
decomposed as a direct sum of two invariant manifolds R”‘+” = C, @ r,, 
where .Zu is the linear span of the generalized eigenspaces of the coefficient 
matrix which are associated with eigenvalues staying bounded as P + 0’ and 
Q is the linear span of the generalized eigenspaces associated with eigen- 
values which are unbounded as ,u + 0 +. It is customary to call Z;, the %low” 
manifold and r, the “fast” manifold of the system as p + 0’. The manifolds 
C, approach the manifold C, of orbits of the degenerate system (I,) as 
p-0’. 

The present paper investigates the existence of %low” and “fast” 
manifolds and the existence of invariant manifolds Z,, which approach C, as 
p-+0+. It will be seen that these manifolds do not. in general, exist for 
FDEs. Using a change of variables introduced by Chang [2], one may take 
without loss of generality B, = C, = 0, provided A,. D,, A. B: C, D are 
allowed to depend continuously on ,u. Then, necessary and sufficient 
conditions for the existence of invariant manifolds A”,, approaching C, as 
iu+o+, can be given. These conditions are established using ideas 
introduced, for the particular case where m = n = 1, in [j]. In particular, 
when all the eigenvalues of D, have negative real parts, for such manifolds to 
exist the perturbed equation in system (1,) must be an ODE. Thus the 
geometry of the phase space for singularly perturbed ODES does not 
generalize to FDEs. 

However, in the particular cases for which there exist invariant linear 
manifolds approaching the manifold of orbits of the degenerate system, if the 
coefficient functions appearing in the system are sufficiently smooth those 
manifolds are %ow,” with the solutions with initial data on them “slowly” 
approaching solutions of the degenerate system in a sense to be made precise 
in the text. 

In the first part of the paper systems with bounded delays are considered. 
and the case where concentrated delays are not present in the system is 
discussed separately from the case when they may occur. This is done 
because it is easier to conduct the discussion on Hilbert spaces defined in 
terms of square-integrable functions, and, when concentrated delays are 
present, the manifold of orbits of the degenerate system is not closed in such 
a space. Systems involving concentrated delays are discussed in phase spaces 
of continuous functions. 

The last two sections are dedicated to systems with unbounded delays. 
The necessary and sufficient condition for existence of the invariant 
manifolds Z, approaching zIo, as ,c ---$ Of, mentioned above for systems with 
bounded delays, is also sufficient in the case of unbounded delays, but it is 
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no longer necessary. Actually, when this condition does not hold infinitely 
many families of manifolds Z;, , depending continuously on P for ,u > 0 small, 
may exist in the phase spaces considered. 

2. PARTIAL DECOUPLING 

By a linear change of coordinates, system (1,) can be transformed into a 
system where the coupling is done only through delayed values of the 
variables. This fact can be stated in the following form. 

LEMMA 1. There e-xist ,u,, > 0, and matrices R = R(u), S = S(p) 
depending continuousql on ,u for 0 < ,a ,< ,uu,, satisfying R(0) = D; ‘C, and 
S(0) = -B,S;‘, such that the change of variables 

x [ 1 I = 4 -T, -PS v 
I, + pRS I[ 1 W 

where R, S are solutions as ,u + Of of the system 

D,R-pRA,fpRB,R-C,=O 

,u[A,-BORIS-S[D,+,uRB”]-BO=O 

transforms the system (1,) into a system of the form 

C(t) = (A,, - B,R@)) v(t) + ..a 

/d(t) = (DO + pR@) B,) w(t) + .a. 

(3) 

CL) 

where the dots stand for the contribution of the delajjed values of v and w. 

Prooj The given change of coordinates was introduced by Chang in [2] 
for decoupling linear ordinary differential equations. We are interested in 
changes of variables, depending continuously on p. Such a transformation of 
variables exists provided there exist solutions of (4,) depending continuously 
on p in a neighborhood of the origin. The solutions of (4,) are the zeros of 
the function 

H(R, s, P) = [D,R - C,-,u(RAO-RB,Rj]T 
-SD, -B, -p(SRB, -A,S + B,RS) 1 * 

Clearly H(R(O), S(O), 0) = 0 for R(0) = D;‘C,, S(0) = -B,DO’. An 
application of the Implicit Function Theorem will then finish the proof. 

This shows that, without loss of generality, we may assume B, = C, = 0 in 
(l.), provided we allow A,, , D, , A, B, C, D to depend continuously on p > 0 
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in some neighborhood of the origin. To avoid overburdening the notation we 
omit the dependence of these elements on ,U and use the same symbols as 
before. It follows directly from Lemma 1 that the new matrix D, = D,(U) 
equals the original D, at ,B = 0 and therefore has no eigenvalues with zero 
real part, and has the same number of eigenvalues with positive or negative 
real parts as D, at ,u = 0 does. 

3. SLOW AND FAST MANIFOLDS IN SYSTEMS WITH BOUNDED DELAYS 

We consider systems of the form (1,) with bounded delays (Y < +ao), 
and take for phase space either* 

X= L2((-r, 0); R”‘) x L’((-r, 0); R”) x R” x R” 

Y= C([-r, 01; Rm) x C([-r, O]; R”). 

The solutions of (1,) define a C,-semigroup T,(t), t > 0, on the phase 
space? in the usual way (see [3,4, S]), whose infinitesimal generators are 
denoted by J$. The spectrum of J$, denoted by u(s$), consists only of 
eigenvalues (see 13, 7, 121). The function of complex variable A, is defined 
as in [ 101 and is equal to the characteristic function of system (I,) with the 
bottom blocks multiplied by y. 

DEFINITION 2. A one-parameter family {Ill,},,u,MO, of submanifolds of 
the phase space is said to be fast under (1,) as ,u + O+ if each M, is 
invariant under (1,) and is the span of linear manifolds lying in generalized 
eigenspaces of &, which correspond to eigenvalues satisfying /A, 1 --t +co as 
,U --, Of. The family (M,} is said to be slow under (I,) as ,D --t 0’ if each of 
the M, contains no nonzero elements of such generalized eigenspaces and is 
invariant under (1.). 

Fast manifolds do not always exist. A simple example illustrating this is 
the linear delay equation 

pi(t) = -a),(t) + by(t - l), with a, b > 0. 

In fact, each one of the characteristic values ,J of this equation stays, as 
P-+0+. in the same strip 2kn < Em A< 2(k + 1 )TC, for some. integer k, and 
approaches a point on the line Re )3 = ln(b/a). 

’ The ambiguity involved in (1) when concentrated delays are present. due to the fact that 
the elements of X are equivalence classes defined in terms of functions thbt differ in a set of 
measure zero, is resolved by considering weak solutions as explained in [ 111. 
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A characterization of the systems for which there exists a direct sum 
decomposition of the phase space in a fast manifold and a slow manifold has 
not been achieved for the general case of system (1,). The following 
proposition answers this question for some particular cases and summarizes 
some other facts related to the problem. 

PROPOSITION 3. (i) A sufJicient condition for the e.xistence of a decor?- 
position of the phase space in a slow and a fast manifold is D = B = 0 or 
D = C s 0. Under this condition the fast manifold has dimension n. 

If Re o(D,) < 0 and either (1) n = 1 and m = 0 or (2) n = m.= 1, then the 
condition is also necessary. 

(ii) If a(.~$) is finite, then 

and there exists a decomposition of the phase space in a slow manifold and a 
fast manifold. The fast manifold has dimension n. 

ProoJ: (i) Assume D = B _= 0 or D = C E 0. Then 

det d,(A) = det[lZ, -A, - A(e.“)] det[p3J, -D,]. 

Defining Z, to be the linear span of the generalized eigenspaces of L&G 
associated with the eigenvalues lying in (l/p) o(D,j, and z, to be a 
complementary subspace containing the span of the remaining generalized 
eigenspaces of J$, we have the phase space decomposed as X, @ Z’,, . The 
results in [3, 7, 121 guarantee that Z, is a linear manifold invariant under 
(I,), and that there exists a linear manifold 2, , also invariant under (l,), 
such that the phase space is decomposed as JY,, @ Z,. Clearly Z’, is fast, E,, 
is slow, and dim Z, = n. 

Assume Re a(D,) < 0 with n = 1 and m = 0, then 

detd,(i) =,u1 -D, - D(e*‘.). 

If there exists a fast manifold under (1,) as ,U -+ 0 ‘? then there exists 
n,Ea(,~$) such that IL,I++co asp+O’. If Reil,++co or Rek, were 
bounded, we would have 

afi E [(l/P) 44) f OWP)l as ,u-+O’ 

which contradicts Re a(D,) < 0. Consequently, Re A, + -co. Comparing the 
orders of growth of the terms in the equation det d,(il,) = 0, as p + O’, we 
get det@& -D,) = 0 and, therefore, L, E (l/p) o(D,,), which implies D = 0. 
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Assume now that Re a@,,) < 0 with m = n = 1. Then 

detdU(jL)= ~jL-Ao-A(e-~‘)l[~l-D,-D(e,~‘)B -B(e-“) C(e”“‘) 

and reasoning as above we get D = B = 0 or D = C = 0. 

(ii) It can be proved, as done by Henry in [6 ] (see also [ 12]), that 
a(~$) is finite if and only if det A, is a polynomial. It then follows that 

det A .(A) = det(A1, - A,) det@U,, - D,). 

Consequently, a(~$) = ~(4,) u (l/p) o(D,), and the desired decomposition 
of the phase space follows as in the proof of (i). 

The second statement contained in the preceding proposition establishes 
that a sufficient condition for the decomposition of the phase space in a slow 
manifold and a fast manifold is that the spectrum of the infinitesimal 
generator be finite. This is, in fact, a very degenerate situation which was 
discussed by Henry in [6] in connection with the existence of small 
solutions. Henry showed that a(&;) is finite if and only if system (1,) is 
equivalent to an ODE, in the sense that there exists a constant matrix K, 
such that any solution z, = (-u,, JJ,) of (1,) satisfies i,(t) = K,z,(t), for t > 
r(m + n - 1). In this case, it is possible to obtain more detailed information 
on the manifolds S;, appearing in the decomposition of the phase space in a 
slow manifold and a fast manifold. In particular, the t;, can be decomposed 
as Z:, = P, 0 Q, : where P, is the span of the generalized eigenspaces of A$ 
associated with eigenvalues 1, E ~(4,). If $ E Q,, then 7’,(t)$ = o(e”) as 
t + fco, for all 1’ < Re o(~$), and the solution of (1,) with initial condition 
4 at t = 0 vanishes for t > r(m + n - 1) - r, where r is the exponential type 
of det A,, i.e., r = hm,,, -cc; (l/k) log Idet~,(J)l. 

EXAMPLE 4. Let us consider the system 

,LQ(t)= [“dy ;:=]Y(t)+[;: ;]y(r-l) 
where JJ= (u, v) E R*, p E R’, D,E R, Dll, Dz2 #O, and D,, # D2?, with 
the initial condition 

(% fJ0) = (43 Y) E Y (61 

and Y = C([-l,O]; R’). 
The solution of the initial value problem (5, j(6) can be easily computed 

In fact, we have 

pi(t) = D,,u(t) + Dlzu(t) + u(t - 1) 

iuz’@> = &z”(f) 
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and therefore the solution of the initial value problem is such that 

vu(t) = 1 vl(t)y eD22"u&O), 
t<O 
t>o 

and 

upit> = 

Clearly, the spectrum of the infinitesimal generator dU of the semigroups 
defined by the solutions of (5,) is 

The correspondent eigenspaces are 

) p, 

Consequently, there exists a maximal fast manifold 

r, = I(#, iy) E Y: d(B) = eDlle’ua + eD22e/u 

w(S) = e D22e/P/3T a, /I E R 1. 
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For complementary manifold we may take 

On the other hand, the manifold of the orbits of the degenerate system is 

co= j($#)f y: )(o)=+wi-l)~ Y/(0)=0(. 

11 

Clearly, the following facts are true. 

(i) C, 0 I-, = Y. 

(ii) r, is the linear span of the generalized eigenspaces associated 
with the unbounded (as P -+ 0’ ) eigenvalues of .tiU. Consequently rU is fast 
and C, is slow. 

(iii) The solutions of (5,) with initial data in C, vanish for t > 1. 

[iv) Any solution lye satisfies, for t 2 I, the ODE 

4. INVARIANT MANIFOLDS APPROACHING THE MANIFOLD OF 
ORBITS OF THE DEGENERATE SYSTEM. 

SYSTEMS WITH BOUNDED DISTRIBUTED DELAYS 

It is easier to apply the methods of this section in Hilbert spaces. Accor- 
dingly, we take for phase space 

X= L’((-r, 0);R”) X L’((-r, 0); R”) X Rm X R”, 

with r < +co, and consider systems in the form (1,) with 

and similarly for B, C, D, where the functions a, b, c, d satisfy the 
hypotheses given in the Introduction. 

The set of orbits of the degenerate system (1,) is 

zo = {($, v, a, PI E x: D,,P + ‘W> + D(v) = 01. 

It is a closed linear submanifold of X with codimension n. 
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It is known that, for ,U > 0, the solutions of (1,) define a C,-semigroup 
T,(t), t> 0, on X by 

where (x, V) denotes the solution of (I@) with initial condition (4, w, a, /3) at 
t = 0. It is possible to associate with the degenerate system a neutral system 
(obtained from (1,) by differentiation of the second equation) also defining a 
C,-semigroup To(t), t > 0, on X by (8). The infinitesimal generators of the 
T, are denoted by A$. 

THEOREM 5. A necessarqp and suJkient condition for the existence of a 
farnib of closed linear manifolds Z, which are invariant under (1,) and 
satisfi C, --t Z0 as p+ Of is: 

(C) The ranges of the matrices c(B) and d(B) are included in the linear 
span of the generalized eigenspaces associated with the eigenvalues of D, 
which have positive real parts, a.e. in 6’ E (-r, 0). 

Proo$ Denote the inner product in X by 

where the dots denote the euclidean inner product. 
With C, we can associate the functions G, = D;‘c, H,, = D;‘d, so that 

the rows of (G,, H,, 0, I,), where 0 denotes the H x m null matrix, are 
normal to E,, i.e., 

z. = 
i 
(4, v3 a, Pj E x: p + j” 

-r 
c,(e) 4(e) de + J.’ H,(e) v(e) de = 01 . 

. -r 

For the Z, to be closed linear manifolds, invariant under (1,) and 
satisfying C, + Co as p + O+, there must exist matrix-valued functions 
G,, HL1’ whose entries belong to L’((-r, 0); R) and with dimensions n X m 
and II x n. respectively, and an n x m matrix 6,) so that the rows of 
(G, H, 6,1,) are normal to 2,) i.e., 

z,= i(04aJjEX:Ba+p+j0 G(e)~(e)dB+~~,H(ejw(e)dB=0~. 
-r I 

*To avoid overburdening the notation, the dependence on ~1 is dropped when there is no 
danger of confusion. 



INVARIANT MANIFOLDS 319 

Then, the solutions of (1,) through initial data (9, II/, CI, ,L?) E C, at t = 0 
satisfy for t > 0 

dx(t) t- -v(t) + j” G(B) X(t + 6) do + 1” H(8) y(t + 6) de = 0, (9) 
-r . -) 

It is possible to associate with (9) another equation (obtained through 
differentiation) which together with the first equation of (1,) defines the 
system 

i(t) = ‘4,x(t) + A(q) + qv,) 

j(t) = -&4,x(t) + A@,) + B(y,)] (10) 

- j” G(B) i(t + 0) d0 - to H(0) f(t + 0) d6’. 
r I 

For Z, to be invariant under (l,), the solutions of (l,U) with initial data in 
C, f? LZ(.z$) must agree with the solutions of (10) having the same initial 
data (note that the solutions of (1,) with initial data in P(&) are absolutely 
continuous). The solutions of the neutral equation (10) define a C,- 
semigroup Sc,H,a(t). t > 0 on X, in a similar way as the semigroup To was 
defined (see [ 1 ] and [ 117). Its infinitesimal generator. denoted by .2?~,H,S. is 
explicitly given by 

and must agree with L&g on ZPu, i.e., 

for ($, y, rf, p) E Lo n C, = 5?(A?~,u.s) n Z, , or 

for all ($, w, (w, ,@ E Lo r\ C, . But this implies that G and H are 
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absolutely continuous, with the entries of G’, H’ belonging to L2. Using 
integration by parts, one gets 

=-S (Aoa+j;ra#+j;,b~) -G(O)a-H(O)P 

+ G(Y) $(-r) + H(Y) i//(-r) + j" G'$ + j" H'y. (11) --r -r 

Since (4, v/, a, /3) E C,, we get from (9) 

/3=-&x-j’ GqLj” Hw. 
-r -r 

Substituting /I, as given in this equation, into (1 l), we obtain the relations 

G’+ [$+H(O)) G=&z+; 

H’+ c++H(O)j H=Sb+; 

(12) 
6A, - ‘+ + H(0)) 6 + G(0) = 0 

G(-r) = H(-r) = 0. 

Denoting A, = Do + pH,(O), the first two equations in (12) can be solved, 
with initial conditions G(-r) = H(-r) = 0, giving 

,e ,.(a\ 

j ds 

(13) 

Since A, = Do +pH(O), system (12) has a solution if and only if the 
following equations can be solved for A, 6 with p small: 

J 
0 

A-D,= e,is!u(u c%(s) + d(s)) ds 
-r (14) 

pdAo-A6=-~o Pip (u da(s) + c(s)) ds. 
’ -i- (15) 
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For the X;, to approach Z, as ,u - O’, we must have 6, + 0, G, + G,, 
H,-+H, as p-+0 ‘. The last two relations imply ,uH,(O) = o( 1) as p --t 0’ 
and so n,=D,+o(l) as p-to+. Without loss of generality? we may 
assume D, is in Jordan canonical form 

where the J: (J]:) are Jordan blocks corresponding to eigenvalues with 
positive (negative) real parts. For Eq. (14 j to have a solution rl, = D, + o( 1) 
as p-+0’, it is necessary that the lower blocks of the function d, in a 
partition corresponding to the above partition of D, , vanish. For Eq. (15) to 
have such a solution with 6, + 0 as ,u --f 0 LV it is trecessary that the lower 
block of c vanish. Consequently, Condition (C) must be satisfied. This 
proves the necessity of Condition (C) in the statement. 

Assume now that Condition (C) holds. We partition A, 6, 6, c, and a’ 
according to the partition of II,, as 

Take A,, = 0. 6, = 0. Then 

and therefore Eq. (14) would be equivalent to the system 

! 
.O 

A,,-D,t = 
-re’ 

‘~@‘(,u&bl(s) + d,,(s)) ds (16) 
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and Eq. (15) would be equivalent to 

p~,A,-A,,a,=-j” e”11”‘u(u6,a(s) + c,(s)) ds. (19) 
-r 

Let us now consider the function F, defined for k x k matrices A4 having 
all eigenvalues with positive real parts, k x m matrices 0, and p > 0 by 

0 

I 

M-D,+ - iLr e”rs’r(pab,(s) + d,,(s)) ds 

wf, 0, P) = 

1 

(20) 

paA, -Mu + lo eMs’u(uuu(s) + c,(s)) ds 
--r 

and for ,U = 0 by 

F(M, o, 0) = 

The function F is continuous on its domain, and we have the Frechet 
derivative aF(M, o, p)/a(M, a) satisfying for ,U > 0 

I 
.O 

L -j-r e,“S’u F @abl(s) + d,,(s)) ds, -1’ e”““pAb,(s) ds 
-r 

= -Lo + jr, Plfi $ @JU(S) + c,(s)) ds, 

pullA, -MA + [’ e.‘f’“‘uyhz(s) ds 
. -r I 

and for ,U = 0 

We also have 

The Implicit Function Theorem can then be applied to get unique functions 
M*(p), o*(,u), defined for p >, 0 small and depending continuously on p, such 
that 

F(M*Cu), o*@),iu) = 0. M*(O) = D;, o”(0) = 0. 
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This proves that the system consisting of Eqs. (16) and (19) has a unique 
solution (A ;“r (u), fJr(ff)) for ,u small, which depends continuously on ,u and 
satisfies 

A fl(u) = D,’ + o(l), Gf(p) = o(l) as ,i+O+. 

It follows, as a consequence, that system (16)-(19) has a unique solution 
(A kICu), H.P~> with 

and 

A@) = Do + o(l), d(u) = o(l) as p-0’. (23) 

This proves that, under Condition (C), the system (14~( 15) has at least 
one solution (A@), 6(u)) satisfying (22) and (23). Consequently, system (12) 
also has at least one solution (G,, H,, 6,) for ,U > 0 small, which depends 
continuously on ,u and satisfies 6, --t G,, H,, + Ho, 6, -+ 0 as ,U --) 0 * ~ 
Therefore, there exist closed linear manifolds Z:, , invariant under (l,), such 
that C,-+Z, asp-to’. This finishes the proof of the statement. 

Remark 6. If the matrix Do has eigenvalues with positive real parts, then 
there are solutions of (1,) which do not converge to solutions of the 
degenerate equation as ,B + 0’. On the other hand, as shown in [ 111, if all 
the eigenvalues of D, have negative real parts, then all solutions of (1,) 
converge to solutions of the degenerate system, as ,H + 0’. In the latter case, 
it follows from the preceding theorem that closed linear manifolds C,, 
approaching Co as p + Of, exist if and only if the second equation in (1,) is 
an ODE, i.e., system (1,) is equivalent to 

-f(t) = A,x(t) + A(q) + B(y,) 

/Q(t) = Do y(t). 
(24) 

We conclude that the geometry of the phase space, associated with 
singularly perturbed linear ODES, is not preserved when we pass to retarded 
FDEs, unless the perturbed equation can itself be written as an ODE. This is 
an interesting fact, since it provides perhaps the first example of a geometric 
result valid for ODES which does not hold in the analogous situation for 
retarded FDEs. 

In case the manifolds ZU with the properties described above exist, it is of 
interest to inquire how they approach C, as ,u + Of. The following res,ults 
address this question. 
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LEMMA 7. If Condition (C) holds, then, for ,U > 0 small and arbitrao 
#, w E L ‘, a E R”, the solutions of (1,) with initial data on the manifold Z:, , 
established in Theorem 5, and satis$Gng x(O) = a, x(13) = #(e), and 
y(e) = y(e) for --I < e < 0 converge uniform& on compact subsets of [0, co) 
as ,u + 0 + to the solution of (I,,) which satisfies the same conditions. 

ProoJ: Let (.“c,) y,) denote the solution of (1,) satisfying the initial 
conditions given in the statement, and denote Zfl = x, - x0, ~7~ = y, - y,. 
Then, using the notation in the proof of Theorem 5, we know that ZU and V; 
must satisfy 

k,(t)=A,.r,(t)+j’ a(e).fQ(t+e)de+j~~b(e)-~U(t+e)de 
-r 

~w~r+~,.~w~t)-jo G,(e)x,(t+e)de-j” H,(8)y,(t+e)de 
-r -r 

- atiu~ojt) - j” [G,(B) - c,(e)] syo(t + 8) de 

-f [HN(B)-HO(e)]yo(t + e)de 
r 

TJO) = 0, f@(e) = 0, jge) = 0 for --Y < e < 0. 

Extending a, 6, G, , H,, to be zero outside the interval [-r, 0] we can write 
the above equation as 

$(t) - Aof&) = 1’ a(e - t) q(e) de + 1’ b(e - t) jge) de 
-0 -0 

v;(t) = -s,igt) - 1.’ G,(e - t) X,(B) de - ~‘H,(B - t) yU(e) de 
-0 0 

- s,x,(t) - j’ [G,(e) - G,(e)] X,(t + e) de 
0 

et - 1 [H,(e) - H,(e)] 4yo(t + e) de. 0 

Consequently, 

X,(f) = j: e4tf-s) 1 J b(e-s).~u(e) + b(e-s)yU(e)] deds. 

Fix a compact interval [0, T], T > 0, take t E [0, T], and let o > 0 be the 
maximum absolute value of the real parts of the eigenvalues of A,. By 
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changing the order of integration above and using upper bounds for the 
terms involved, we get, for some K, > 0, 

Recaling from the proof of Theorem 5 that 6, + 0, G, --f Go, H, + Ho as 
p+0+. we also get for some K, > 0 

+ 41) Ixo(f)l + i’ I vo(@l do + j; Id@1 df’j 
-0 

uniformly in t E [0, T] as p + Of. 
Consider now a function f defined by 

Then, for t E [0, T] we have 

f(t) < max f(0) do, o( 1) K, teurf f(6) de + K, fff(@ d0 + o(l)/ 
0 -0 

uniformly in t E [0, T] as p --t 0 +. Consequently, there exists K > 0 such 
that, for all t E [0, T] and ,U > 0 in some fixed neighborhood of zero, we have 

f(t) < 41) + K j’f(@ dt’ 
-0 

uniformly in t E [0, T] as p + Of. An application of Gronwall inequality 
gives f(t) = o( 1) uniformly in t E [0, T] as ,U -+ O’, and therefore also 

Ix,W = o(l), I &#>I = 41) 

uniformly in t E [0, T] as p 4 0 +. 
Let H’((-r, 0); R) denote the Sobolev space of real functions defined on 

the interval (-r, 0), which are square-integrable and have square-integrable 
first generalized derivative. 

LEMMA 8. If Condition (C) holds, the entries of the matrix-valued 
functions c, d are in H’((-r, 0); R) and c’, d’ are continuous at zero, and 
6,, G,, H, are as in the proofs of Theorems 5 and 6, then, for p > 0 
sufJicient& small, the map y -+ (6,, G, , H,) is continuously d@erentiabie and 
the right derivatives of G,, H, at p = 0 vanish. 

505 ;54;3-3 
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ProoJ: Consider the function F defined in the proof of Theorem 5 by 
expressions (20~(21). For ,D > 0 small and M a k X k matrix with (M, u,~) 
in the domain of F (44 is nonsingular), we have 

r 

g(M,o.P)= 

Using integration by parts in the terms containing the factor l/p*, we get 

$+f,w)= 
.O 

,,A, - eltfs/o 
J 

‘Mm 
-a(s) - m(s) 

-r iu 

1 
-e 
P 

-Mr/urdll(-r) - bjy eMs’Usdl,(s) ds - iin eMs“‘d, ,(s) ds 
r i- 

+ 
1 1 -0 

--e -iwrlJ’rcl(-r) + Lj” e”s’us~,(s) ds + -I e”fS’pc,(s) ds 
P P -r ,u -r 

Consequently, 

aF 
,‘;y+ F CM, 0, PU> = 

-M-‘d,,(O) 

1 aA, + M-+,(O) ’ 

On the other hand, the right derivative of F(M, 0, a) at zero is 

1 .O 
-- 

lu -re J ““‘“@do, ““‘“@do, + d,,(s)) ds + d,,(s)) ds 

= lim 
p-o+ 1 O 

1 aA, + $,f:, e~vsiu(uoa(s) + c,(s)) a’s aA, + - 
i P --I 

e~vsiu(uoa(s) + c,(s)) ds 

1 1 

-M-‘dJ0) -M-‘dJ0) 
= uA, + M-%,(O) = uA, + M-%,(O) 1 1 ’ ’ 

It follows that the map p -+ F(M, 0,~) is continuously differentiable for 
p > 0, has bounded right derivative at zero, and the limit of its derivative as 
p-0 ’ is equal to the right derivative at zero. Consequently, there exists a 
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continuously differentiable extension of F defined for y in a neighborhood of 
zero. An Implicit Function Theorem argument gives that the functions 
M*(B), U*(U) established in the proof of Theorem 4 are continuously 
differentiable for y > 0 small and have continuous right derivatives at ,U = 0. 

This implies that the functions A,*, and SF, established in the proof of 
Theorem 4, are continuously differentiable for y > 0 small. Taking into 
account the definition of the functions A, S in terms of LI Fr, 6: that was 
given in the proof of Theorem 5, and the definition of G, H by (13), it 
follows that the map ,u -+ (6,) G, , H,) is continuously differentiable for ,u > 0 
small. 

Now, taking into account (13) and (22), we get 

I..@ r 

jxre -l+r)iP@S1a(s) + c,(s)) ds 

= lim 
p-10+ 

!’ 0 

=o 

and similarly for H,. 

THEOREM 9. If the hypotheses in Lemma 8 hold, then, for ,a > 0 
sujj%iently small, the jlow of (1,) on the manifolds C,, estabfished in 
Theorem 5, is “slow” in the sense that solutions of (1,) with initial data in 
C, converge uniformly on compact sets to solutions of the degenerate 
equation (1,) with initial data in E,, as ,a --f O+, and their time derivatives 
remain bounded as ,U + O+. More precisely, if (4, IJI, a, p) E C, with &, li/, a 
fixed, then 

/?=/I,=-S,a- j” W-j” G,Y -r -7 

and the solution of (1,) with initial condition (qlr, w, a, j?) converges uniformiy 
on compact sets to the solution of (1,) with initial condition (x0, yo, x(O)) = 
(4, w, a), with P,+&, @,l&+O as rll-‘O+, and I-$#; $, w, a,P,)!, 
/ .Y@(t; 9, V, a, p,)[ bounded on compact intervals as y --+ 0’. 
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ProoJ: After the two preceding lemmas, it only remains to prove the 
boundedness, as ,U + O+, of the time derivatives of the solutions *v,(t) = 
x,(t; 8, v, a, P,), J’,@> = yr(c q4 ly, a, P,J for t E [O, Tl, with T > 0 
arbitrarily fixed. 

Since the orbit of (x,, JJ,) lies on C,, using the notation in the proof of 
Theorem 5 we get from (1,) 

i,(t) = AoxJt) + j” a(B) X& + 0) de + j” b(B) yu(t + e) de 
-r -r 

Jje(t)=Doy,(tj+[o c(e)~,(r+e)de+j” d(e)y,(t+e)de 
I--r -i- 

= --D,+,(t) + lo [c(e) -DOG,(e)] x,(t + 8) de 
- -r 

+ j” [d(e) - D,qe)] JJ,(t + e) de. 
-r 

From Lemma 7, it follows that xp(t), y,(t) are bounded for t E [0, T] and 
,u > 0 in some neighborhood of zero. Consequently, there exists a K > 0 such 
that, for ,u > 0 in some neighborhood of zero, we have 

The first inequality gives the desired boundedness for iU(t), t E [0, T], as 
,U + Of. The differentiability of the function p E+ (6,) G, , H,), established in 
Lemma 8, and the second inequality above give the boundedness of j,(t), 
tE [0, T], as p-+0+. 

Remark 10. (i) The proofs of Theorem 9 and Lemma 8 still work if, 
instead of assuming c, d E H’ and c’, d’ continuous at zero, we only assume 
these conditions for the blocks c,, d,, in the block representations of c, d 
relative to canonical coordinates for Do, as introduced in the proof of 
Theorem 5. 

(ii) In the case that all the eigenvalues of D, have negative real parts, 
it was established in Theorem 5 that a necessary and sufficient condition for 
the existence of invariant manifolds Z,, approaching Z, as ,u + O+, is 
C = D = 0. In this case Proposition 3(i) can be applied to get the existence 
of an invariant manifold I-, which is fast under (1,) as ,U + O’, such that 
X= Z, @ r, and dim r, = n. The argument in the proof of that proposition 
implies that the manifolds E,, are uniquely determined for ,U in a 
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neighborhood of zero. This takes care of the indeterminacy in the 
construction of C, in the proof of Theorem 5. 

(iii) Under the assumptions in Lemma 8, the manifold Z, acts as kind 
of a “center manifold” for (l,), as p + 0 +, in the sense that the solutions of 
( lo) on C, determine the behavior of the solutions of (1.) in the limit ,u -+ O+ . 

5. INVARIANT MANIFOLDS APPROACHING THE MANIFOLD OF 
ORBITS OF THE DEGENERATE SYSTEM. 

SYSTEMS WITH CONCENTRATED DELAYS 

In order to describe the geometry of the phase space in analogy with the 
situation for ODES, the set of orbits of the degenerate system, Z,, must be a 
closed linear submanifold of the phase space. If there are no concentrated 
delays present, this will be the case when we take for phase space 

X= L’((-r, 0); Rm) x L’((-r, 0); R”) >i Rm x R”, 

as done before. However, when (1,) involves concentrated delays, the set of 
orbits of the degenerate system is no longer a closed linear submanifold of X. 
To discuss the geometry in analogy with the case of ODES, it is therefore 
necessary to use a different phase space. We choose to consider, in this case, 
a Banach space of continuous functions. More precisely, we then take for 
phase space 

Y= C([-r, 01; R”) x C([-r, O];R”) 

with the supremum norm and P < $-co. Clearly, systems without concen- 
trated delays can also be considered in the phase space Y and, therefore, the 
remarks in this section also apply to them. 

We consider systems of the form (1,) with 

A@) = j-O 44@1$(@ . -r 

and similarly for B, C, D, where the integrals are taken in the Riemann- 
Stieltjes sense and a, b, c, d are functions of bounded variation on [-); 01, 
vanishing at -F-, and with variations over the intervals [s, 0] converging to 
zero as s 4 O-.” 

The set of orbits of the degenerate system is, in this case, 

co = I(94 w> E y: &fw) + C($> + WV> = 01. 

It is a closed linear submanifold of Y with codimension n. 

’ The present setting allows for the occurrence of infinitely many concentrated delays. 
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It is known (see [3]) that, for p > 0, the solutions of (1,) define a C,- 
semigroup T,(t), t > 0, on Y by 

where (A@, w), J@, v/)) denotes the solution of (1,) with initial condition 
(4, IV) at t = 0, and, f or P = 0, the solutions of the neutral system obtained 
from (1,) by replacing the second equation by the one obtained from it 
through differentiation also define a C,-semigroup on Y given in terms of the 
solutions as in the case of y > 0. The infinitesimal generators of the T,, 
denoted by A$, are given by 

G?(JQ = {@, v) E Y: 4, v/ are continuous differentiable and 

$m =44(O) + A(#) + B(v), N(O) = Do 440) + C(6) + D(Y)1 

and 

THEOREM 11." A necessary and suflcient condition for the existence of 
a farnib of closed linear manifolds Z, which are invariant under (1,) and 
approach 2, as y -+ 0 + is: 

(C) The ranges of the matrices c(0) and d(B) are included in the linear 
span of the generalized eigenspaces associated with the eigenvalues of D, 
which have positive real parts, a.e. in B E (-r, 0). 

ProojI This result can be proved in a way similar to Theorem 5, working 
with the dual space of Y. 

Theorem 7 is valid in the present context. Theorem 9 also holds, provided 
the functions c, d are assumed to be somewhat smoother (e.g., twice 
continuously differentiable) than in the hypothesis of that theorem. 

EXAMPLE 12. Let us consider again the system of Example 4. Taking 
into account the facts established there, it is possible to conclude the 
following: 

(i) r, does not converge in Y as ,u -+ O+. 
(ii) C, converges if and only if D,, > 0 and then 

z,+‘&, as p+O+. 

’ This theorem has the same wording as Theorem 5. However, the two statements refer to 
completely different objects. In particular, the differences between the functions c, d in the two 
settings should be noticed. 
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(iii) If D,, > 0 or D,? > 0, then the solutions of the perturbed system 
do not converge to solutions of the degenerate problem for all initial data. 
Consequently, when we have convergence of solutions for all initial data, the 
manifolds C, , r, do not converge as p --f O+ . 

(iv) In Theorem 11, a condition (Condition (C)) was given for the 
existence of invariant linear manifolds C,, approaching Z, as p -+ O+. 
Applied to the present example, the condition amounts to D,, > 0, in 
agreement with the conclusion in (ii). Furthermore, the proof of that theorem 
would give 

with 

where U is the Heaviside function which equals 1 for s > 0 and vanishes 
elsewhere, and A, satisfies 

The solution of this equation is 

and therefore, for -1 < 0 < 0, we have 

0, I- 

e-D,,(6+lUu 

ffJ@ = 
D,, 

0, 0 1 

and, consequently, 

,Xw= j($, I&E y: ~(0)=-tjU!e-D"'~+1J',p(6)d6,C(O)=0il 

in agreement with the definition of C, in Example 4 and with property (ii). 
If X = L’((-1, 0); R’) X R* is taken for phase space in the preceding 

example, then the above properties can be discussed for representatives of the 
(equivalence classes) elements of X. All the properties hold in this setting, 
except for (i) and (iv). The discussion in (iv) has no meaning in this context, 
since EC, is not a closed linear submanifold of X, and property (i) should be 
replaced by 
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(i)’ r, converges if and only if D,, , D,, > 0, and then 

r;l -+ {(O, 0, a, P) E x: ~1, P E R 1, as p--+0+. 

This fact is related to the difference between the convergence properties in 
spaces of continuous functions and spaces of square-integrable functions. 

6. SYSTEMS WITH UNBOUNDED DELAYS 

In the case the system does not involve concentrated delays, we may take 
for phase space 

Xyo =L’((-co, 0); R”) x L’((-03, 0); R”) x Rm x R” 

where the L2 spaces are defined relative to a measure V, with Radon- 
Nikodym derivative relative to Lebesgue measure equal to eYo‘. The space X, 
is a Hilbert space with inner product 

Systems with bounded delays can also be considered in this phase space and 
the discussion in this section also applies to them. 

THEOREM 13. Condition (C), given in Theorem 5, is suflcient for the 
existence of a continuous one-parameter family of closed linear manifolds 
.Z,, invariant under (l,), and such that Z;, + Co as p + Of. 

ProoJ We proceed as in the proof of Theorem 5, and therefore omit the 
details. In exactly the same way, with 

Hwyey’ =O! 
1’ 

we get 

G’+ ++H(O)+y, 
c 1 

G=a+; 

H=b+$ (25) 

Sa,-+H(O)S+G(O)=O 
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or, denoting -4, = D, + PH,(O) + PYO, 

Consequently, the C, with the desired properties exist if and only if the 
G,, H,, 6, satisfying (26) are such that G,, H, E L’((--cx), 0); v) for ,u > 0 
smali, and Ga-+Go, Hu+Ho, 6,+0 as,u+O’, where 

G,(~)=D,‘c(~)~‘~~ and H,(0) = D;‘d(B) e- @. 

Assume Condition (C) holds. We partition the matrix Do as in the proof 
of Theorem 5, and partition the other matrices in a compatible way. Then, 
functions G,, H,, satisfying (26), belong to L2((-co, 0); v) if and only if the 
upper blocks in the partitions of the matrices 

and (27) 

vanish. Now, we can proceed as in the proof of Theorem 5 to construct a 
family of linear manifolds C, with the required properties. 

In the present case, contrary to what happens when the system contains 
bounded delays and the phase space is defined through L’ spaces on 
bounded intervals, Condition (C) is no longer necessary for the existence of 
the manifolds C, with the desired properties. However,if Condition (C) is 
not satisfied, infinitely many one-parameter families of manifolds L,? 
depending continuously on ,u for iu small, may exist. Rather than stating a 
general result, we consider the particular case of Eq. (1,) with m = 0, i.e., 

and take for phase space X, = L2((-co, 0): R”, v) x R”. 

PROPOSITION 14. If condition 

(C-j The range of d(6) is included in the linear span of the 
generalized eigenspaces associated with the eigenvalues of Do which hat:e 
negative real parts, a.e. in B E (-co, 0) 
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is satisjied, then there exist infinitely many continuous one-parameter 
families of closed linear manifolds Z‘, , invariant under (28,) and such that 
Z,+X, aspuO+. 

ProoJ Assume Condition (C-) holds. Similarly to what was done in the 
proof of Theorem 13, with 

we get 

H’ + + + H(0) + Y,) H= ; 

or, denoting A, = Do + ,aH,(O) + ,uy,, 

H,(e) = e-.4Fejfl 
L 
H,(o) - il: e,4Mr’*d(s) e-y@ ds . 

I 
(30) 

Consequently, the Z, with the desired properties exist if and only if H,,, 
satisfying (30), belongs to L*((-co, 0); R”, V) for ,D > 0 small and H, + Ho 
as y + O’, where 

H,(B) = D;‘d(@ e-@. 

We partition Do as in the proof of Theorem 4 and partition the other 
matrices in a compatible way. For H,, given by (30), to belong to 
L’((-co, 0); R”, v), the upper blocks of the partition of the matrix 

[ 
H,(O) -$lI, enps”d(s) eeYoS ds] 

must vanish. If the partitions of np and H(0) are denoted by 

with A 21 = H”(O) = H’*(O) = 0, then the upper blocks of matrix (31) vanish 
and, because of (29): we have 

H;‘(8) = H;‘(8) = 0 

H:‘(8) = e- @g/L1 + Y,,)(jeHF(o)e 
[ 
H:‘(O) _ L 

i 

0 

P e 
e(Do/P+Hf’(0))sd2,(S) ds 

I 

H;(e) = ,-(D~/u+ Yo)eeHy(0)e HP(o) _ ?- 
J 
-’ e’“&‘ tff;'(o)).T d 

P e 
n(s) ds]. 
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No matter what Hi’(O), H:(O) are, for ,u > 0 small, Wii, HE’ E 
L’((-co, 0); v). If H:(O), H?(O) are chosen so that 

H,(O) -+ D, ‘d(O), as j.f-+O-‘, 

we have 

H:‘(0)-, (II;)-’ dzl(6) e-)@ 

H:(e) -+ (DC)-’ dz2(B) e-y@ 

and, consequently, H, + H, as ,u + 0’. Clearly, there are infinitely many 
choices for Hsl(O), H:(O) such that H,(O)-, (D;)-’ d(0) as p + O+. Each 
one of these corresponds to one family of linear manifolds C, with the 
desired properties. 

Remark 15. As was pointed out before, the case of interest to have 
convergence of all the solutions of (28,) to solutions of the degenerate 
equation occurs when all the eigenvalues of Ls, have negative real parts. 
When this is the case and we are considering Eq. (28,) with bounded 
distributed delays which lie in an interval [---I’, O], r < +a, the results 
proved so far imply that: 

(i) In X, =L’((-co, 0); R”, V) X R” there exist infinitely many one- 
parameter families of closed linear manifolds xc,, invariant under (28,), 
depending continuously on p for ,U > 0 small, and approaching 6, as ,U -+ 0 L. 

(ii) In X = L ‘((-r, 0); R”) X R”, a one-parameter family of manifolds 
ZP with the above properties exists if and only if (28,) is an ODE, i.e., 
d=O. 

In the case of the general system (l,), the situation is similar. 
When considering systems which involve concentrated delays, for the 

reasons explained in Section 5 above the existence of the manifolds C, with 
the desired properties cannot be discussed in the phase space X. However, 
the results given in this section can be proved taking for phase space 

Yyo= Cy,((-00, 01; R”? x C&m 01; R”) 

where the C,(-co, 0] are Banach spaces defined by 

with the norm 
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and considering systems of the form (1,) with A, B, C, D being bounded 
linear operators defined on spaces C,(-co, 01. 

EXAMPLE 16. Let us consider the scalar system 

PJW = Do Y(f) + l’(t - 1) 

with D, < 0, in the space space C,(-co, 01. 
We consider the manifolds 

Zf = 4 E C,(-al, 0): 1 

m)+c/ome --(Wfl+c)~(e) de - ij- 1: 
* m 

Assume 4 E Z’,. Then the solution of (32,) with initial condition d at 
t=Ocan bewritten,forO<t<l, as 

y(t) = e (D~h)(f--s)$,(~ _ 1) ds 

.O 
e-(DO!w+c)e$(e) de 

- 02 

We also have 

! 
.O 

e - (DO :P + c) oyt(e) de 

'-m 

s 

-t 
= ,-wr+c)~g(t+e)de+ i" ,-(w~~+~)~~,(t+e)de 

-cc t 

and, using (33) with straightforward calculus, we get 

[f 

0 
= eU’oldt e-(Doh~+C)S$(s) ds -kj” e-(~oiU+C)S#(g _ 1) ds 

--a; d m 

1 .t 
-- e I w I 0 

-(Do/~)Sqj(s _ I)& +~,(hh‘+.)~jt ,-W+‘r+~)s~(,~~)~~~ 1 -co 
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Therefore, 

y(r) + c f0 
cc 

e--(Do~“+c~~~,,(s)d~-~j~_e-‘D”;“+c’Sv,(o- l)&=O. 

Consequently, 4 E Zz implies ~~(4) E ZE for 0 < t < 1. This, in turn, implies 
that CL is invariant under (32,), for all p > 0, c E R. 

The preceding argument establishes the existence of infinitely many 
(cardinality of R) closed linear submanifolds of Y,, which are invariant 
under (32,) and have codimension I. Choosing an arbitrary continuous 
function p i--t cW, defined for p small, and such that c, + 0, we get, as 
rU-$o+, 

I * -- 
r lu ---‘I; 

e-cDo’ptC~)e$(6- 1) do- $(-1)/D,. 

Therefore, CE --t Z,. 
Consequently, Z, --f C, as p + O+, for infinitely many continuous one- 

parameter families of closed linear manifolds X,, , invariant under (32,). 

7. AN EXAMPLE OF A SYSTEM WITH DISTRIBUTED UNBOUNDED DELAYS 

In this section we consider in detail the particular case of Eq. (1,) which 
can be written as’ 

d(B) y(t -t- 8) d0 (34,) 

where y(t) E R, d(8) = xF=, d,e @>O, with mEN3 d,>O, O<y,< 
3’2 < ... < ym, and D, = - j:,, d. For simplicity of the presentation it is 
further assumed that the function of complex variable 

has simple zeros. The general case could, however, be treated in a similar 
way. 

5 This equation was obtained by linearization of a system occurring in [9] in connection to 
the rehology of certain polymer filaments. 
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We take for phase space 

X, = I?((-co, 0); v) x R 

where v is a measure with Radon-Nikodym derivative, relative to Lebesgue 
measure, equal to $‘o’, with y0 < yr. 

LEMMA 17. There e,uists ,a0 > 0 such that the solution of (34,), with 
initial condition (4, a) E X, at t = 0, satisfies for t > 0 and 0 < y < y, 

Y,(f) = f Ckcu) 
k=O 

e)‘i’#(s) ds e-\k@)’ (36) 1 
where the C,, I, are continuous comple.x-valued functions deflned on [0, ,uo) 
and having the following properties: 

(i) n,&)=O, -p<ReA,(u)<O, O,<,U<<~~ k=l,..., m-l, for 
somefixed ,fI > 0, and the A,(O) (k = I,..., m - 1) are the zeros of @. 

(ii) 1, satisJies the asymptotic relation 

~,cu> = - + + 0(1/P), as ,u-tO+. 

(iii) For 0 < ,a < ,a,, 

ckb) = - k = l,..., m. 

(iv) 

1 ;: di 
WCkcu)) - 13 j=k,j,k#O 

7 kI (vi + Aj@))(Yi + nk@)> = i: 
j#k 

b> 
0 3 j=k=O. 

ProoJ Algebraic manipulations on the characteristic function d, of 
(34,) show that it can be extended to G - {Y,,..., r,} as an improper rational 
function having as zeros II = 0 and the roots of the equation 

(37) 
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ul, is a rational function that can be written as 

where the ci are real constants and c,_r = -D, > 0. Therefore, YU has m 
distinct first-order poles and only one zero at infinity. Consequently, the root 
locus of ‘u,(n) = - 1, when ,U > 0 changes, consists of a set of bounded 
continuous paths and exactly one unbounded path. 

Because YU = Q/p, the zeros of Q, are simple by hypothesis, and the root 
locus of Yfl((n) = -1 has a finite number of branches approaching the zeros 
of @ as p-+0+, it follows that there exists puo > 0 such that the equation 
Yw(,I) = -1 has fll distinct simple roots A,@), k = l,..., rn, for each 0 < ,U < ,+, 
all of them except one, say, ,I,@), lying in a fixed bounded region of the 
complex plane. 

The proper rational function A; has, therefore, an expansion in partial 
fractions of the form 

(3%’ 

where i, = 0. By inverse Laplace transformation, we get the fundamental 
matrix for (34,) from which the formula (36), for the general solution, is 
obtained. 

Let J$ denote the infinitesimal generator of the semigroup T, defied by 
the solutions of (34,) in a way similar to that described in Section 3 for the 
general system considered there. We denote by p(dU), o(dU), and P,(dwj 
the resolvent set, the spectrum, and the point spectrum of J$, respectively, 
and define for 6 E R 

From a result due to Naito [ 131, we have 

Gl = UJq u PcJq = c- >I”/2 * (391 

A simple computation shows that, for the system presently considered, 
c(&J f’? c0 = (O}. Since the ,I&) with real parts greater than -y0/2 belong 
to cr(~$), lie in a bounded region of the complex plane for k = l,..., m - 1, 
and converge to zeros of the function @ as ,U --) O’, we get property (i) in the 
statement. 

Property (ii) follows from the asymptotic formula 

y 
w 

(a) = ” CL 14/h 

P a 
+ o(l), as ]a/+00 

and the fact that I,&,&)} -+ co as ,U + Of. 
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Property (iii) results from the following consequence of (38): 

In order to prove property (iv), we apply (iii) and the fact that A,(D) is a 
root of (37). 

PROPOSITION 18. Let ,a0 be as in Lemma 17. For 0 < ,a < ,a,, there exists 
a direct sum decomposition of the phase space 

such that 

(i) dim Pz = 1, k = 0 ,..., m, 

(ii) (4, a) E PC - { (0,O) } + a # 0, k = 0 ,..., m, 

(iii) (4, a) E 0 0 y,(t; 4, a) = 0, t > 0, 0 < p < &, 

(iv) (#, a) E Pi * y(t; 4, a) = aeAkCUjt, t 2 0, 0 < ,a < PO, 

where yp(.; $, a) is the solution of (34,) through the initial datum (4, a) at 
t = 0 and the 1, are as in Lemma 17. 

Furthermore, the subspaces 0, 0 0 PE are all invariant under the 
semigroup T, defined by the solutions of (34,) as T,(t)@, a) = ((-IT,), (4, a), 
Y,(C $4 a>>. 

ProoJ: Let G: X,, + Rmt ’ be such that 

and 

0= ((&a)EX,: G(#,a)=O}. (40) 

The set 0 is a closed linear submanifold of X,. Let f10 be the projection 
operator projecting orthogonally X, upon 0. We have 

IM a) - 17,bk alI2 = (timfEo IM 4 - (w3 PII’ 

ZZ min (@,D)EO 
{Ikit all’ + Il(w,P>II’ - 2(M 4 (WY P))b 
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Therefore ZI,(#, a) is the unique minimum, over the set 0, of the functional 
given by 

~(@,&4 PI = ((WY P), (WY PI) - 2(@4 a>, (v, PI). 

It is easy to show that VcQ,a) and G are CL, and that G maps X,, onto Rmt ‘. 
Therefore, if ($0, aO) is a minimizer of V, over 0, the Lagrange Multiplier 
Theorem implies the existence of z* E (Rm+ ‘)* such that 

D~(,,a,@o 7 ao) + z*DG(#o 3 ao) = 0. 

Therefore, for some K,(#, a) E R (i = 0 ,..., m), we get 

n,y, a) = (# - 2 K[(#, a) e(yi-)‘o)., a -K,(@, a)) (41) 
i=l 

with the Ki(#, a) such that G(II,($, a)) = 0, i.e., 

Ko(h 4 = a0 
(42) 

Since the above minimization problem corresponds to an orthogonal 
projection in Hilbert space, it has a unique solution. Therefore the matrix 

(43) 

is nonsingular. Because G maps X, onto R”‘+‘, it follows from (41) and (42) 
that 

01= !($,a)EX,,:#(s)=f Kie’~‘-‘D’s,s<O,Ki~R~. 
/ 

(44) 
i=l 

Clearly, dim O’= m + 1. 
For J,(C) = a&~(“‘~, t 2 0, to be a solution of (34,) with initial condition 

(4, a) at t = 0 it is necessary and sufficient that, for t > 0, 

This equality is only possible for the A,@) (k= O,..., m) appearing in 
Lemma 17. We have that A,($) = 0 and the a,(~) (k = l,..., m) are the roots 
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of Eq. (37) for 0 < ,u < P,,, with ,u,, also as in Lemma 17. Consequently, the 
set of initial data (4, a) for which a.&““, t > 0, is a nontrivial (a # 0 for 
4 # 0) solution of Eq. (34,) is 

for k=O ,..., m, 0 <p <po. 
We now introduce the matrices 

1 1 
YI + q,4’ Yz + u/4’“” Ym + UP) ’ 

k = O,..., m 

(45) 

(46) 

(47) 

(48) 

Then, for k = O,..., m and 0 < ,u < p,, it follows from (44) and (45) that, for 
some row matrix W= [w,, wz,..., w,], we have (4, u) belonging to P$ if and 
only if 

or 

9(s) = WE(s), s<o 

as,@) = WR 

(6(s) = as,@) R-‘E(s), s<o 

for some a E I?. Thus 

P&) = { (4, a) E X, : #(s) = as,(p) R -lE(s), s < O}. (49) 

For the decomposition X, = 0 @I Pg @ -. ’ @ P$, to hold, it is necessary 
and suffkient that the following system have exactly one solution for each 
lxmmatrix WandaER: 

$oG=a 

~ ~j Sjcu) R -‘E(s) = WE(S). 
j=O 
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With P = [c, ,..-, &,,I, this system can be written as 

37(p) = [a, WI. 

Now, Lemma 17 implies 

343 

(50) 

The first matrix in this product is equal to 

1 I 0 
--------- 

UPI L I 0 1R I 
Therefore, U(U) is nonsingular and, consequently, system (50) has a unique 
solution 5, establishing, as a consequence, the desired decomposition of X,. 

Directly from (49) it follows that dim PC = 1 and that IZ # 0 for all 
($. a) E PE - ((0, O)\, proving (i) and (ii) in the statement. 

Now, from Eq. (36) in Lemma 17 we get that y,(t; 4. c() = 0 for t > 0 if 
and only if 

From (51), the first matrix in the preceding expression is nonsingular. 
Consequently, the second matrix must vanish, i.e., 

This proves (iii) in the statement. 
Property (iv) is a consequence of the discussion preceding the definition of 

the PE in (45). 
The invariance of the subspaces 0 and 0 @ Pz , under the semigroup I”, : 

is a direct consequence of properties (iii)-(iv) and the definition of T,. 
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COROLLARY 19. The manifold 

deJined for 0 < ,a < ,aO, is a closed linear submanifold of X,, has codimension 
1, is invariant under (34, j, and approaches the manifold Z, of orbits of the 
degenerate equation, as ,a + 0 + . 

ProoJ: Everything in the statement is a direct consequence of the 
preceding proposition, except the convergence of Z, to Z,. 

It is easy to see from (49), (46), and Lemma 17(i) that, for k = O,..., m - 1, 
Pt+Pi as,u-+O’, where 

Pi = { (4, a) E X, : 4(s) = as,(O) R -‘E(S),s < 0). 

On the other hand, for k = 0, I,..., m - 1, we have 

D,a + J.’ d(Bj[aS,(Oj R -‘E(8)] d6= a (52) 
. -m 

The A,@) (k = O,..., m - 1) are the zeros of the function d, which remain 
bounded as ,u + Of, and this function satisfies 

Therefore, the right-hand side of Eq. (52) vanishes. Noting that 

zo= ~(~:a)EX,:Doa+JO 
I 

d(B) #(8) dB = 0 15 
-m I 

we conclude that PE c Z;, for k = 0 ,..., m - 1. Since the Pf (k = 0 ,..., m - 1) 
are one-dimensional linear subspaces generated by independent elements of 
X,, and OcZ,, it follows thatC,+Z;,, as,u+O’. 
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