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We propose a new model of a gravastar admitting conformal motion. While retaining the framework of 
the Mazur–Mottola model, the gravastar is assumed to be internally charged, with an exterior defined 
by a Reissner–Nordström instead of a Schwarzschild line element. The solutions, obtained by exploiting 
an assumed conformal Killing vector, involve (i) the interior region, (ii) the shell, and (iii) the exterior 
region of the sphere. Of these three cases the first one is of primary interest since the total gravitational 
mass here turns out to be an electromagnetic mass under some specific conditions. This suggests that the 
interior de Sitter vacuum of a charged gravastar is essentially an electromagnetic mass model that must 
generate gravitational mass which provides a stable configuration by balancing the repulsive pressure 
arising from charge with its attractive gravity to avert a singularity. Therefore the present model, like the 
Mazur–Mottola model, results in the construction of a compact astrophysical object, as an alternative to 
a black hole. We have also analyzed various other aspects such as the stress energy tensor in the thin 
shell and the entropy of the system.

© 2011 Elsevier B.V. Open access under CC BY license.
1. Introduction

By extending the concept of Bose–Einstein condensate to grav-
itational systems, Mazur and Mottola [1,2] have proposed a new 
solution for the endpoint of a gravitational collapse in the form of 
cold, dark, compact objects known as gravastars, the gravitational 
vacuum star. These contain an isotropic de Sitter vacuum in the in-
terior, while the exterior is defined by a Schwarzschild geometry, 
separated by a thin shell of stiff matter of arbitrary total mass M . 
This model implies that the space of a gravastar has three different 
regions with different equations of state (EOS) [3–15], as defined 
as follows:

I. Interior: 0 � r < r1, p = −ρ ,
II. Shell: r1 < r < r2, p = +ρ ,

III. Exterior: r2 < r, p = ρ = 0.

Here r2 − r1 = δ is the thickness of the shell. The presence of mat-
ter on the thin shell is required to achieve the crucial stability of
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such systems under expansion by exerting an inward force to bal-
ance the repulsion from within.

Based on this background, we propose a new model of a gravas-
tar admitting conformal motion by assuming a charged interior but 
with an exterior defined by a Reissner–Nordström line element 
instead of Schwarzschild. The basic motivation for this model is 
that, in general, compact stars tend to have a net charge on the 
surface [16–20]. This is an essential consideration in the study of 
the stability of a fluid sphere; in fact, it has been argued [16,17] 
that a spherical fluid distribution of uniform density with a net 
surface charge is more stable than a surface without charge. Ac-
cording to de Felice et al. [21], the inclusion of charge inhibits 
the growth of spacetime curvature and which therefore plays a 
key role in avoiding singularities. It has also been argued that 
gravitational collapse can be averted in the presence of a charge 
since the gravitational attraction may be counter-balanced by the 
electrical repulsion (in addition to the pressure gradient [22,23]). 
As a special case, we would like to mention that several interest-
ing charged models are available in the literature [13,24–31]. Out 
of these works some were considered directly in connection to 
the charged sphere with conformal motion/symmetry [24,29] and 
some with a direct treatment of a gravastar where the analysis was 
carried out within Israel’s thin shell formalism and the continuous 
profile approach [13].
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In searching for a natural relationship between geometry and
matter for such stars through the Einstein field equations, we take
into account the well-known inheritance symmetry. This symmetry
is contained in the set of conformal killing vectors (CKV)

Lξ gij = ψ gij. (1)

Here L is the Lie derivative operator and ψ is the conformal factor.
It is supposed that the vector ξ generates the conformal symme-
try and the metric g is conformally mapped onto itself along ξ .
Neither ξ nor ψ need to be static, even in the case of a static met-
ric [32,33]. Due to this and other properties, CKVs have provided
a deeper insight into the spacetime geometry connected to the as-
trophysical and cosmological realm [34–41].

It has been shown by Ray et al. [42] that, under the conformal
killing-vectors approach, charged fluid spheres provide electromag-
netic mass (EMM) models in which gravitational mass and other
physical parameters originate solely from the electromagnetic field.
So one of the motivations in the present investigation is to in-
clude CKVs and see to what extent conformal motion admits EMM
models along with other relevant physical features. This Letter is
organized as follows: in Section 2 the Einstein–Maxwell field equa-
tions are provided, along with the CKVs for a charged gravastar.
The solutions are obtained in Section 3 for a charged gravastar
with conformal motion in connection with (A) the interior region,
(B) the shell, and (C) the exterior region of the sphere. Sections
4, 5, and 6 deal with the stress energy tensor in the thin shell,
entropy within the shell, and unknown constants, respectively. In
Section 7 we conclude.

2. The Einstein–Maxwell field equations

The Einstein field equations for the case of a charged perfect
fluid source are

Gi
j = Ri

j − 1

2
gi

j R = −κ
[
T i

j
(m) + T i

j
(em)

]
, (2)

where the energy–momentum tensor components for the matter
source and electromagnetic field, respectively, are given by

T i
j
(m) = (ρ + p)uiu j + pgi

j, (3)

T i
j
(em) = − 1

4π

[
F jk F ik − 1

4
gi

j Fkl F kl
]
. (4)

Here ρ , p and ui are the matter–energy density, the fluid pressure,
and the velocity four-vector of a fluid element (with uiui = 1), re-
spectively. The corresponding Maxwell electromagnetic field equa-
tions are

[
(−g)1/2 F ij]

, j = 4π J i(−g)1/2, (5)

F [i j,k] = 0, (6)

where the electromagnetic field tensor Fij is related to the elec-
tromagnetic potentials through the relation Fij = Ai, j − A j,i and
is equivalent to Eq. (6). In the above equations, J i is the current
four-vector satisfying J i = σui , where σ is the charge density and
κ = 8π , using relativistic units G = c = 1. Here and in what fol-
lows a comma denotes the partial derivative with respect to the
coordinates.

Next, given the static spherically symmetric spacetime

ds2 = −eν(r) dt2 + eλ(r) dr2 + r2(dθ2 + sin2 θ dφ2), (7)

the Einstein–Maxwell field equations may be written as
e−λ

[
λ′

r
− 1

r2

]
+ 1

r2
= 8πρ + E2, (8)

e−λ

[
1

r2
+ ν ′

r

]
− 1

r2
= 8π p − E2, (9)

1

2
e−λ

[
1

2

(
ν ′)2 + ν ′′ − 1

2
λ′ν ′ + 1

r

(
ν ′ − λ′)] = 8π p + E2, (10)

and[
r2 E

]′ = 4πr2σ eλ/2. (11)

Eq. (11) may be expressed for the electric field E in the following
equivalent form:

E(r) = 1

r2

r∫
0

4πr2σ eλ/2 dr = q(r)

r2
, (12)

where q(r) is the total charge of the sphere.

3. The charged gravastar with conformal motion

Eq. (1) implies the following:

Lξ gik = ξi;k + ξk;i = ψ gik (13)

with ξi = gikξ
k . Here 1 and 4 stand for the spatial and temporal

coordinates r and t , respectively.
Eqs. (13) yield the following expressions [42]:

ξ1ν ′ = ψ,

ξ4 = C1,

ξ1 = ψr

2
,

ξ1λ′ + 2ξ1
,1 = ψ,

which imply

eν = C2
2r2, (14)

eλ =
[

C3

ψ

]2

, (15)

ξ i = C1δ
i
4 +

[
ψr

2

]
δi

1, (16)

where C1, C2, and C3 are integration constants.
Given solutions (14) and (15), Eqs. (8), (9), and (10) take the

following form [42]:

1

r2

[
1 − ψ2

C2
3

]
− 2ψψ ′

rC2
3

= 8πρ + E2, (17)

1

r2

[
1 − 3ψ2

C2
3

]
= −8π p + E2, (18)

[
ψ2

C2
3r2

]
+ 2ψψ ′

rC2
3

= 8π p + E2. (19)

From the above equations, one may easily obtain values for E ,
ρ and p [42]:

E2 = 1

2

[
1

r2

(
1 − 2ψ2

C2
3

)
+ 2ψψ ′

rC2
3

]
, (20)

8πρ = 1

2r2
− 3ψψ ′

rC2
3

, (21)

8π p = ψψ ′

rC2
3

− 1

2r2

[
1 − 4ψ2

C2
3

]
. (22)
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3.1. Interior region of the charged gravastar

Observe next that Eqs. (21) and (22) provide an essential rela-
tionship between the metric potentials and the physical parame-
ters ρ and p:

2ψ

r2C2
3

(
ψ − rψ ′) = 8πr(ρ + p). (23)

So given the ansatz ρ + p = 0, it follows from Eq. (23) that the
value of ψ turns out to be either ψ = 0 or ψ = ψ0r, where ψ0
is a dimensionless integration constant. This leads to the following
exact analytical forms for all of the parameters:

8πρ = 1

2r2
− 3ψ̃2

0 = −8π p, (24)

E2 = 1

2r2
, (25)

eν = e−λ = ψ̃2
0 r2, (26)

σ = ψ̃0

4π
√

2r
. (27)

Here ψ̃0 = ψ0/C3 is a constant, which has the inverse dimension
of r. The reason is that under the condition ρ + p = 0, ψ̃0 = C2, so
that C2C3 = ψ0.

It is clear from Eq. (24) that 1/2r2 − 3ψ̃2
0 > 0 (or ψ̃0 < 1/

√
6r)

illustrates a case of positive density and negative pressure, re-
sulting in an outward push from the interior region, which is
consistent with the physics of a gravastar. On the other hand,
1/2r2 − 3ψ̃2

0 < 0 (or ψ̃2
0 < 1/6r2) represents a collapsing case with

negative density and positive pressure, which is not the subject of
concern here. Thus for the purpose of gravastar physics, our above
solutions are assumed to obey the condition 0 < ψ̃2

0 < 1/6r2.
For ψ̃2

0 = 0, we find that both p and ρ are inversely pro-
portional to r2 but with opposite signs for their proportionality
constants. A nonzero value of ψ̃2

0 leads to a translational shift of
this form with magnitude 3ψ̃2

0 , as can be seen from Eq. (24). The
electric field E is found to be inversely proportional to r and is in-
dependent of ψ̃0. On the other hand, σ is inversely proportional
to r. Its value is zero for ψ̃0 = 0, which suggests that the above
power law behavior of p and ρ is independent of σ . Both eν and
e−λ are proportional to r2 and hence equal with equal proportion-
ality constants.

The active gravitational mass M(r), by virtue of the field equa-
tion (8), may be expressed in the following form:

M(r) = 4π

r∫
0

[
ρ + E2

8π

]
r2 dr = 1

2
r
(
1 − ψ̃2

0 r2). (28)

Here, as evident from Eq. (24), the pressure and density fail to be
regular at the origin, but the effective gravitational mass is always
positive and regular since ψ̃0 < 1/

√
6r and will vanish as r → 0. In

other words, the expression for M(r) does not lead to a singularity.
Let us now match the interior solution to the exterior Reissner–

Nordström solution at the boundary in the customary manner. To
do so, we have to keep in mind that instead of a solid sphere,
we are dealing here with a bubble-like hollow sphere of radius
r2 = r1 +δ, so that for the limit δ → 0, we have the de Sitter spher-
ical void of radius r2 → r1. (According to Ref. [1], δ does not exceed
Planck length by more than a few orders of magnitude.) For con-
venience of notation, let us denote the radius r2 by a, the radius
of the junction surface. Then following Ray et al. [42], the total
gravitational mass m(r = a), which is obtained after matching the
solution interior to r = a to the exterior Reissner–Nordström solu-
tion at the boundary, can be expressed as

m(a) = M(a) + q(a)2

2a
= 1

2
√

2

(
3 − 8ψ̃2

0 q2)q, (29)

where M(a) is the total active gravitational mass and q(a)2/2a is
the mass equivalence of the electromagnetic field.

It is interesting to observe that the mathematical expressions
and physics of the interior region resemble the EMM model of Ray
et al. [42]. The apparent reason for this is the use of the Reissner–
Nordström line element. In other words, the interior de Sitter void
(p = −ρ) in a charged gravastar is the same as in the case already
addressed by Ray et al. [42]. This implies that the interior de Sitter
void of a charged gravastar must, in analogous fashion, generate
the gravitational mass. This particular feature is a new one and
was not possible to obtain in the non-charged case of Mazur and
Mottola [1,2]. This mass provides the attractive force resulting from
the collapse of the sphere and counter-balances the repulsive force
due to electromagnetic field.

However, in this connection it is worth noting that the equa-
tion of state p = −ρ (known in the literature as a false vacuum,
degenerate vacuum, or ρ-vacuum [43–46]) represents a repulsive
pressure which in the context of an accelerating Universe may be
related to the Λ-dark energy, an agent responsible for the second
phase of the inflation [47–51]. So the charged gravastar seems to
be connected to the dark star [52–54].

3.2. Shell of the charged gravastar

Using the EOS p = ρ , we get the solution

ψ2 = C2
2

2
− ψ1

r
, (30)

where ψ1 > 0 is an integration constant.
Other parameters are

8πρ = 1

2r2

(
1 − 3ψ̃1

r

)
= 8π p, (31)

E2 = 1

2r2
− 8πρ, (32)

eν = C2
1r2, (33)

e−λ = 1/2 − ψ̃1/r, (34)

σ =
√

3ψ̃1

16πr3

√
r

ψ̃1
− 2, (35)

where ψ̃1 = ψ1/C2
2 has the same dimension as r. Although the

electric field E is inversely proportional to r, it depends on the
integration constant ψ̃1, unlike the previous case. Eq. (35) suggests
that the requirement of a real-valued σ may only be achieved with
the condition ψ̃1 < r/2. Combining this with the previous condi-
tion, ψ1 > 0 (or ψ̃1 > 0), we observe that the above solutions for
the shell of the gravastar are valid within the range 0 < ψ̃1 < r/2.
It is obvious from Eq. (31) that the EOS p = ρ = 0 for the exte-
rior de Sitter region corresponds to ψ̃1 = r/3, which is within the
upper limit of the above condition ψ̃1 < r/2.

The proper thickness of the shell is obtained next:

� =
r2∫

r1

√
eλ dr

= √
2
[

R + ψ̃1 ln(R + r − ψ̃1)
]a+ε

, (36)
a
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where R = r
√

1 − 2ψ̃1/r. Thus a real value for the thickness con-

firms that the integration constant ψ̃1 must be less than r/2. This
condition also suggests a real σ .

Finally, using the symbol Ẽ for the energy, we get within the
shell

Ẽ = 4π

r2∫
r1

[
ρ + E2

8π

]
r2 dr = 1

4
[r2 − r1]. (37)

Thus Ẽ is exactly proportional to the coordinate thickness of the
shell (as opposed to the proper thickness).

3.3. Exterior region of the charged gravastar

For the exterior region (p = ρ = 0), the Reissner–Nordström
spacetime is

ds2 = − f (r)dt2 + dr2

f (r)
+ r2(dθ2 + sin2 θ dφ2), (38)

where

f (r) = 1 − 2M

r
+ Q 2

r2
. (39)

4. The stress energy tensor in the thin shell

The second fundamental forms associated with the two sides of
a thin shell (junction surface) are [16,17]

K ±
i j = −n±

ν

[
∂2 Xν

∂ξ i∂ξ j
+ Γ ν

αβ

∂ Xα

∂ξ i

∂ Xβ

∂ξ j

]∣∣∣∣
S
, (40)

where n±
ν are the unit normals to S:

n±
ν = ±

∣∣∣∣gαβ ∂ f

∂ Xα

∂ f

∂ Xβ

∣∣∣∣
− 1

2 ∂ f

∂ Xν
(41)

with nμnμ = 1. Here ξ i are the intrinsic coordinates on the shell,
f = 0 is the parametric equation of the shell S , and − and + cor-
responds to the interior and exterior regions, respectively.

Using the Lanczos equations [55–59], one can find the surface
stress energy Σ and the surface tangential pressures pθ = pφ ≡ pt :

Σ = − 1

4πa

[√
e−λ

]+
−

= − 1

4πa

[√
1 − 2M

a
+ Q 2

a2
− ψ̃0a

]
, (42)

pt = 1

8πa

[(
1 + aν ′

2

)√
e−λ

]+

−

= 1

4πa

[
1 − M/a

2
√

1 − 2M/a + Q 2/a2
− ψ̃0a

]
. (43)

The surface mass Mshell of this thin shell may be defined as

Mshell = 4πa2Σ

= −a

[√
1 − 2M

a
+ Q 2

a2
− ψ̃0a

]
. (44)

Here M can be interpreted as the total mass of the Reissner–
Nordström gravastar. It takes the following form:

M = 1 [
a2 + Q 2 + 2a2ψ̃0Mshell − M2

shell − ψ̃2
0 a4]. (45)
2a
Now let pθ = pφ = −vθ = −vφ = −v , where vθ and vφ are the
surface tensions. Then if Eqs. (42) and (43) are substituted in the
form

v = ω(a)Σ, (46)

the EOS becomes

ω(a) = (1/2ψ̃0a)(1 − M/a) − √
1 − 2M/a + Q 2/a2

(1/ψ̃0a)(1 − 2M/a + Q 2/a2) − √
1 − 2M/a + Q 2/a2

.

(47)

With the requirement of a positive density and positive pressure,
the equation of state parameter ω(a) is always positive. The posi-
tion of the thin shell (junction surface) plays a crucial role: if a is
sufficiently large, then ω(a) ≈ 1. For some value of a in Eq. (43),
we may get pt = 0, yielding a dust shell.

5. Entropy within the shell

Following Mazur and Mottola [1,2], we now calculate the en-
tropy by letting r1 = b and r2 = b + ε:

S = 4π

b+ε∫
b

sr2
√

eλ dr. (48)

Here s is the entropy density, which may be written as

α2k2
B T (r)

4π h̄2G
= α

(
kB

h̄

)√
p

2πG
, (49)

where α2 is a dimensionless constant and T is the radially depen-
dent temperature of the system.

Thus the entropy of the fluid within the shell is

S = 4π

b+ε∫
b

r2α

(
kB

h̄

)√
1

2r2 − 3ψ̃1
2r3

16π2G2

√
1

1/2 − ψ̃1/r
dr

= αkB

h̄G

b+ε∫
b

r

√
r − 3ψ̃1

r − 2ψ̃1
dr

= αkB

h̄G

[
2r + 3ψ̃1

4
x − 9ψ̃2

1

8
ln(2x + 2r − 5ψ̃1)

]b+ε

b
(50)

where x = (r2 −5rψ̃1 +6ψ̃2
1 )1/2. If ψ̃1 → 0 and the thickness of the

shell is negligibly small compared to its position from the center
of the gravastar (i.e., if ε � b), then the entropy is given by S ≈
αkB
h̄G bε .

6. The unknown constants ψ̃0 and ψ̃1

In this section we determine the approximate values of the con-
stants ψ̃0 and ψ̃1. To this end we recall that the thin shell of a
gravastar consists of a perfect stiff fluid [1]. Earlier we denoted
the outer radius by r = a, the junction surface. So by Eq. (31),
ρ = p = pt . Furthermore, for a sufficiently large, pt = −v ≈ Σ by
Eq. (46). So we have

− 1

4πa

[√
1 − 2M

a
+ Q 2

a2
− ψ̃0a

]

≈ 1

4πa

[
1 − M/a

2
√

1 − 2M/a + Q 2/a2
− ψ̃0a

]

= 1
(

1
2

− 3ψ̃1
3

)
. (51)
8π 2a 2a
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These two equations then yield the approximate values of the un-
known constants:

ψ̃0 ≈ 3 − 5M/a + 2Q 2/a2

4a
√

1 − 2M/a + Q 2/a2
, (52)

ψ̃1 ≈ a

3

(
1 + a − 3M + 2Q 2/a2√

1 − 2M/a + Q 2/a2

)
. (53)

Since Σ > 0, Eq. (42) also implies that ψ̃0 > 1
a ×√

1 − 2M/a + Q 2/a2.

7. Conclusions

This Letter discusses a new model of a gravastar admitting con-
formal motion, within the framework of the Mazur–Mottola model.
The gravastar is assumed to be internally charged with an exte-
rior defined by a Reissner–Nordström rather than a Schwarzschild
metric. The solutions obtained cover (i) the interior region, (ii) the
shell, and (iii) the exterior region of the sphere. Of these three
cases, the first case is of particular interest because the total grav-
itational mass m(r = a) = 1

2
√

2
(3 − 8ψ̃2

0 q2)q, obtained by match-

ing the interior solution to the exterior Reissner–Nordström so-
lution at the boundary, becomes an EMM under the constraint
ψ̃0 <

√
3/(2

√
2)q. This, in turn, suggests that the interior de Sit-

ter void of a charged gravastar, having the same form as the EMM
model, must generate the gravitational mass that provides the at-
tractive force resulting from the collapse of the sphere and which
counter-balances the repulsive force due to the charge. Moreover,
the equation of state p = −ρ , known in the literature as a false
vacuum or a ρ-vacuum, suggests that the charged gravastar is con-
nected with the dark star.

An analysis of the stress energy tensor of the thin shell has
shown that given the requirement of a positive density and posi-
tive pressure, the equation of state parameter ω(a) is always posi-
tive. Moreover, as the radius of the thin shell increases, w(a) → 1.
For some value of r = a, we may have pt = 0, yielding a dust shell.

In calculating the entropy, it was found that if ψ̃1 → 0 and if,
in addition, the thickness of the shell is small compared to the
radius, then the entropy is given by S ≈ αkB

h̄G bε , where b is the
inner radius of the gravastar shell. The final calculations deter-
mined the approximate values of the constants ψ̃0 and ψ̃1 with
ψ̃0 > 1

a

√
1 − 2M/a + Q 2/a2.
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