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Extra-renal production of calcitriol in chronic renal failure
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Extra-renal production of calcitriol in chronic renal failure. Renal
1-aipha-hydroxylase activity is tightly regulated in normal humans and
intact animals. No significant changes in serum l,25(OH)2D levels
occur in response to vitamin D challenge. However, conflicting reports
have appeared in the literature with regard to stimulation of I ,25(OH)2D
production after 25(OH)D administration in uremia. To provide further
insight into this issue, 25(OH)D at a dose of 100 g every other day for
two weeks followed by 50 sg every other day for the next two weeks
was given orally to seven uremic mongrel dogs. After two weeks of
25(OH)D therapy, l,25(OH)2D levels increased from 16.4 0.9 to 28.0

1.9 pg/mI (P < 0.001) in parallel with a fourfold increase in 25(OH)D
concentrations from a basal of 50.1 6.5 to 203.2 18.1 ng/ml. No
significant changes in serum i-PTH, ICa or P were observed. Linear
regression analysis of the relationship between serum concentrations of
l,25(OH)2D versus 25(OH)D, for each dog during this period, showed
highly significant correlation coefficients. To evaluate the possibility
that extra-renal sites contribute to the described enhanced I ,25(OH)2D
net synthesis after 25(OH)D treatment, similar studies were performed
in four anephric patients undergoing hemodialysis. Basal serum 1,25
(OH)2D levels were 5.5 2.4 pg/mI and increased to 19.6 5.0 pg/mi
after 25(OH)D administration. A significant correlation was also found
for the relationship between serum levels of I ,25(OH)2D and 25(OH)D
in anephrics (r 0,72, P < 0.001). The same therapy in four normal
volunteers showed no significant changes in serum 1,25(OH)2D concen-
trations. Our results suggest that the effects of 25(OH)D administration
on 1 ,25(OH)2D levels are not exclusively a consequence of enhanced
substrate availability to the renal 1-alpha-hydroxylase enzyme. Supra-
physiological levels of 25(OH)D can augment circulating I ,25(OH)2D
concentrations in the absence of renal mass.

Cholecalciferol and ergocalciferol must undergo two hydroxy-
lations, at C 25 and at C 1, to yield the biologically active
metabolite 1 ,25(OH)2D [1]. Because l-alpha-hydroxylation is
the rate limiting step in l,25(OH)2D production, it is generally
assumed that regulation of this enzyme is the principal means
by which changes in serum 1 ,25(OH)2D are mediated [2—4].

This enzyme is under complex regulation by several agents,
the most important being parathyroid hormone [5—11], calcium
[12—16], phosphorus [17, 18] and 1,25(OH)2D status of the cells
or animal itself [3, 5, 6, 8]. Even though 1 ,25(OH)2D synthesis
is strictly dependent upon an adequate level of vitamin D [19—
21], circulating 1 ,25(OH)2D concentrations are not greatly af-
fected by increased vitamin D intake. In normal adults, no
significant changes in l,25(OH)2D levels have been reported
either with seasonal increments of its precursor [22] or with a
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15-fold increase in 25(OH)D in patients with vitamin D intoxi-
cation [23]. A same pattern of a tight regulation of 1 ,25(OH)2D
levels after vitamin D challenge has been also reported for
chicks and rats [24]. However, an increase in serum 1 ,25(OH)2D
concentrations after 25(OH)D administration was found in
hypoparathyroidism [25] and in normal children [26, 27]. There
are also conflicting reports regarding the effects of 25(OH)D
therapy on serum 1 ,25(OH)2D concentrations in uremia [28—33].

Our experiments were conducted to provide further insight
into the mechanisms affecting 1,25(OH)2D levels in chronic
renal failure.

Methods

Four normal volunteers, four anephric patients (bilateral
surgical nephrectomies) undergoing hemodialysis, three normal
dogs and seven dogs made uremic by 5/6 nephrectomy [34] were
studied.

Baseline values were obtained without modification in dietary
calcium intake in humans. In dogs, a diet providing 1.6 g Ca and
1.5 g P daily was used to prevent hypercalcemia. Baseline
values were obtained three weeks after the dogs were fed the
above described diet.

Dose and schedule for 25(OH)D administration

Two hundred sg per day of 25(OH)D were given orally for
two weeks to normal and anephric humans. Normal and uremic
dogs received 100 tg 25(OH)D every other day for two weeks.
In uremic dogs, the dose was reduced to 50 g every other day
for an additional two week period. All the groups were studied
for an additional two weeks after cessation of therapy. Fasting
morning blood samples were drawn before 25(OH)D intake,
once a week in humans, twice a week in normal dogs and three
times a week in uremic dogs. The serum also was analyzed for
total and ionized calcium, phosphorus, magnesium, potassium,
sodium, creatinine, BUN, PTH, 25(OH)D and 1,25(OH)2D.

Chemical determinations

Exogenous creatinine clearances were measured in our ure-
mic dogs at the beginning of the study using a previously
described technique [34] with the dogs fasting, unanesthetized
and standing in slings. Total serum calcium was measured by
atomic absorption spectrometry (Model 503 Perkin Elmer Corp,
Instrument Div, Norwalk, Connecticut, USA). Serum ionized
calcium was measured by an ion specific flow through electrode
(Model SS2O, Orion Research, Inc. Cambridge, Massachusetts,
USA). Serum phosphorus was measured by autoanalyzer II.
(Technicon Instruments, Tarrytown, New York, USA). A
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highly sensitive aminoterminal PTH radioimmunoassay was
used to measure PTH levels in dogs [351. In humans, PTH was
measured using a mid region-carboxy terminal radioimmunoas-
say previously described [36]. 25(OH)D was measured with a
radioreceptor assay using sheep serum as the binding protein
after purification of the sample using a C18 Sep Pak column
[37]. 1 ,25(OH)2D was measured using the method developed by
Reinhardt [38]. In the extraction procedure, the amount of 96:4
hexane:isopropanol was doubled to assure complete elution of
25(OH)D.

Validation of) ,25(OH)2D measurements

Thymus cytosolic receptor cross-reactivity for 25(OH)D is
0.1% that of 1 ,25(OH)2D [38] but normal circulating levels of
25(OH)D are one thousand times higher than 1 ,25(OH)2D [40,
41]. In our experiments, oral 25(OH)D administration would
lead to abnormally high serum 25(OH)D levels. To check the
potential interference of supraphysiological concentrations of
25(OH)D on 1 ,25(OH)2D measurements, we added 25(OH)D to
a 2 ml pool of serum to get final concentrations of 50, 150 and
300 ng/ml (recovery for 25[OH]D was 89.4 3.4%). No significant
changes in 1 ,25(OH)2D measurements using Reinhardt's method
were observed. 1 ,25(OH)2D concentrations (mean SEM) were
41.0 0.6; 42.1 2.6; 40.6 2.2 and 38.5 4.0 for serum;
serum + 50 nglml 25(OH)D; serum + 150 ng/ml 25(OH)D and
serum + 300 ng/ml 25(OH)D, respectively. Clearly, no detect-
able 25(OH)D is present in the I ,25(OH)2D fraction. l9nor-10
oxo-25(OH)D is a metabolite that can be produced from
25(OH)D even in the absence of cells [39, 42, 43]. It co-elutes
with 1 ,25(OH)2D using HPLC with hexane:isopropanol (89:11)
as the solvent system and binds the 1 ,25(OH)2D receptor [39,
42, 43]. A good separation of 1,25(OH)2D from l9nor-l0 oxo-
25(OH)D can be achieved by HPLC using a Zorbax Si! column
and methylene chloride:isopropanol (19:1) as the solvent sys-
tem [39]. To identify elution volumes, a standard solution
containing l9nor-l0 oxo-25(OH)D and tritiated 1,25(OH)2D in
100 .d methylene chloride:isopropanol (19:1) was chromato-
graphed using the HPLC system described above, with the
absorbance detector at a wavelength of 313 nm and a flow rate
of 1 mI/mm. (Fig. 1) We analyzed the contribution of l9nor-lO-
oxo-25(OH)D on our 1 ,25(OH)2D measurements in nine dog
samples drawn at the end of the second week receiving 25
(OH)D. 1,25(OH)2D was measured using the thymus radio-
receptor assay on the l,25(OH)2D fraction eluted from the
Silica Sep Pak before (36.7 1.9 pg/ml, N = 9) and after (33.7

3.2 pg/mI, N = 9) the previously described HPLC purification
to separate l9nor-lO oxo-25(OH)D. Paired t-test analysis of the
differences indicated that there was no significant contribution
of l9nor-10 oxo-25(OH)D to 1 ,25(OH)2D concentrations mea-
sured with Reinhardt's method. Thus, HPLC purification of
1 ,25(OH)2D fraction to separate l9nor- 10 oxo-25(OH)D was
avoided in the rest of the samples. In anephric humans, the
identity of measured 1 ,25(OH)2D was checked as follows; the
usual extraction procedure was used on 2 ml serum samples.
The 1 ,25(OH)2D fraction collected from the Silica Sep Pak was
dried under nitrogen, redissolved in 11% isopropanol in hexane
and subjected to three subsequent HPLC purifications: a) 11%
isopropanol in hexane with a Zorbax Si! column; b) 5% isopro-
panol in methylene chloride with a Zorbax Sil column; c) 20%
water in methanol with a C18 column. In each system, the
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Fig. 1. Elution volumes for cis and trans isomers of l9nor-iO oxo-
25(OHD (continuous line) and 3H 1,25(OH,)2D (dottedline) using
HPLC.

elution volume for 1 ,25(OH)2D was determined with tritiated
1 ,25(OH)2D. The 1 ,25(OH)2D fraction was collected, dried
under nitrogen and redissoived in the appropriate HPLC sol-
vent before injection into the subsequent HPLC purification
step. After the third purification, samples were dissolved in 100
pi ethanol and subjected to the radioreceptor assay described
previously. The same purifications were also performed in 2 ml
of our pool of normal serum containing 30 pg/mI 1 ,25(OH)2D.
The average recovery after the third HPLC purification was
56.2% 1.8. Although structural identification of the metabo-
lite produced by anephric patients using mass spectrometry was
not performed, (the amount of blood necessary to perform this
procedure will likely jeopardize the patient's life), no significant
difference (paired t-test analysis) between the 1 ,25(OH)2D con-
centration before (20.7 2.7 pg/mI, N 9) and after (22.4 2.7
pg/mi, N = 9) HPLC purification was observed, suggesting that
our radioreceptor is measuring authentic serum 1 ,25(OH)2D.
Basal 1 ,25(OH)2D levels in anephric patients were confirmed by
Dr. DeLuca's laboratory.

Results

Effect of 25(OH)D administration in normal dogs
Figure 2 depicts the effects of 25(OH)D administration on

serum 25(OH)D and 1,25(OH)2D levels in normal dogs. By the
end of the second week of treatment, serum levels of 25(OH)D
increased from a basal value of 33.4 1.5 to 137.8 8.6 ng/ml
(P < 0.001) and remained three times higher than basal values
even three weeks after cessation of therapy. On the other hand,
1 ,25(OH)2D levels remained unchanged during the entire length
of the study. No significant changes in the serum levels of
phosphorus (basal: 3.0 0.07; 1st week: 3.1 0.10; 2nd week:
3.3 0.14; 3rd week: 3.6 0.32; 4th week: 3.0 0.25 mg/dl),
total calcium (basal: 10.0 0.07; 1st week: 9.6 0.09; 2nd
week: 10.1 0.06; 4th week: 9.9 0.14 mg/dl) or ionized
calcium (basal: 5.19 0.02; 1st week: 4.93 0.04; 2nd week:
5.08 0.04; 3rd week: 5.16 0.08; 4th week: 5.03 0.06 mg/dl)
or i-PTH (basal: 43.8 2.7; 1st week: 57.7 11.9; 2nd week:

Column: Zorbax-Sil
Solvent: isopropanol :methylene chloride (5:95)
Flow rate: 1 mI/mm
Chart speed: 0.5 cm/mm
Wavelength: 313 nm
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Fig. 2. Serum 25(OH)D () and 1,25(OH)2D (fl) levels before (con-
trol), and after the 1st and 2nd week of 25(OH)D administration to
normal dogs. After the second week, 25(OH)D was discontinued.
(Mean SUM). < 0.01; ***P < 0.001.
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Fig. 4. Serum 25(OH)D () and 1,25(OH)2D (D) levels before (con-
trol) after the 2nd and 4th week of 25(OH)D administration to uremic
dogs (N = 7). After the fourth week, 25(OH)D was discontinued. (Mean

SEM). **p < 0.01, '' P < 0.001,
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Fig. 3. Serum 25(OH)D () and 1,25(OH)2D (0) levels before (con-
trol), and after the 1st and 2nd week of 25(OH)D administration to
normal humans. L!tfter the second week, 25(OH)D was discontinued,
(Mean SEM). **p < 0.01, < 0.001.

45.7 4.6; 3rd week: 65.5 12.8; 4th week: 56.5 7.0 pg/mi)
were found. Thus, in agreement with previous reports on chicks
and rats, enhanced substrate concentrations were unable to
increase serum 1 ,25(OH)2D concentrations in normal dogs.

Effect of 25(QH)D administration in normal humans

Figure 3 depicts the response to 25(OH)D administration in
normal volunteers,

There were significant increases in 25(OH)D concentrations
from 29.0 1.7 to 102,3 7.8 and 152 8.2 ng/ml, aIter one
and two weeks respectively of 25(OH)D treatment.

No significant changes in 1 ,25(OH)2D levels were observed.
No significant changes in i-PTH (basal: 3.1 0.23; 1st week:

2.8 0.25; 2nd week: 2.5 0.25; 3rd week: 2.8 0.25; 4th
week: 2.8 0.25 Eq/ml), ionized calcium (basal: 4.71 0.06;
1st week; 4.94 0.11; 2nd week: 4.86 0.06; 3rd week: 4.76
0.03; 4th week: 4.86 0.06 mg/dl) or phosphorus (basal: 3.2
0.19; 1st week: 3.6 0.27; 2nd week: 3.5 0.26; 3rd week: 3.4

0.10; 4th week: 3.4 0.12 mg/dl) were observed after
25(OH)D administration in normal humans. These results pro-
vide further support to the concept that serum levels of 1,25
(OH)2D are tightly regulated in normal adults [22, 231.

Effects of 25(OH)D administration in ureinic dogs

Figure 4 depicts the effect of 25(OH)D therapy on 25(OH)D
and 1,25(OH)2D levels in uremic dogs (GFR = 15.6 1.4
mi/mm).

Two weeks after treatment with 25(OH)D, serum 25(OH)D
concentrations increased to four times that of basal values. In
contrast to our results in normal humans and in normal dogs,
serum l,25(OH)2D levels significantly increased from 16.4 0.9
to 28.0 1.9 pg/ml (P < 0.001). Both vitamin D metabolites
remained significantly higher than control values even two
weeks after 25(OH)D therapy was stopped.

Figures 5 and 6 show the temporal relationship between
serum leyels of 25(OH)D and 1,25(OH)2D and the major mod-
ulators of 1-alpha-hydroxylase activity (PTH, ionized calcium
and phosphorus). During the loading dose period (100 g
25(OH)D every other day for two weeks), there was a parallel
elevation in serum 1 ,25(OH)2D levels with the increasing 25
(OH)D Concentrations. In fact, linear regression analysis of the
relationship between 25(OH)D and 1 ,25(OH)2D for each dog
revealed highly significant correlation coefficients (r1 = 0.95, P
<0.001; r2 = 0.80, P <0.01; r3 = 0.83, P <0.01; r4 0.84, P
<0.01; r5 0.83, P <0.01; r6 = 0.84, P <0.01; r7 0.87, P <
0.01). No significant changes in i-PTH, ionized calcium or
phosphorus were observed during this period suggesting that
25(OH)D, per se, increased 1 ,25(OH)2D levels in uremic dogs.

During the following two weeks of receiving 50 jg of 25
(OH)D, 1 ,25(OH)2D levels significantly decreased to 21.6 0.8
pg/mi (still significantly higher than basal) even though 25
(OH)D concentrations remained constant. There was a slight
but significant (5.31 0.04 to 5.57 0.6 mg/dl) increase in
ionized calcium in this period which may explain the decrease
in 1 ,25(OH)2D concentrations without modifications in the
levels of substrate.

Effects of 25(OH)D therapy on anephric patients undergoing
hemodialysis

Figure 7 summarizes our results in humans. As described
before, normal volunteers had a 400% increase in 25(OH)D
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Time, weeks

Fig. 5. Temporal relationship between serum levels of 1,25(OH)2D and
25(OH)D during 25(OH)D administration (0-4 weeks) and after cessa-
tion of therapy (control) in ure,nic dogs. (Mean SEM).

Time, weeks

Fig. 6. Temporal relationship between serum levels of i-PTH (pg/mi),
P and ICa during 25(OH)D administration (0—4 weeks) and after
cessation of therapy (control) in uremic dogs. (Mean SEM).

Fig. 7. Percent increase from basal values of serum 25(OH)D () and
I,25(OH)2D () during oral 25(OH)D3 administration. A Four normal
adults (N = 4)and B four anephric patients. 25(OH)D was administered
during the first two weeks. *p < 0.05, < 0.01, < 0.001.

crease in 1,25(OH)2D levels (basal: 5.5 1.2; 1st week: 13.1
4.6; 2nd week: 19.6 4.9; 3rd week: 21.2 6.3; 4th week: 18.7

5.4 pg/mI). No significant changes in serum concentrations of
total calcium (basal: 9.3 0.3; 2nd week: 9.1 0.08; 4th week:
9.5 0.43 mg/dl) or ICa (basal: 4.81 17; 2nd week: 4.65
0.15; 4th week: 4.85 0.20 mgldl) or P (basal: 6.8 0.52; 2nd
week: 6.3 0.33; 4th week: 7.2 0.50 mg/dl) or i-PTH (basal:
318.8 62.3; 2nd week: 288 56.0; 4th week: 248.5 65.1
mEq/ml) were observed.

Figure 8 shows a significant correlation between serum levels
of 25(OH)D and 1,25(OH)2D in anephric humans (P < 0.001).

33

I

371

A

600 Normal adults

400

200

B

I!

1000

800
a)0
a)

600
at

400

200

100 pg everyother day 50 jig every other day Control

25(OH)D

1st week 2nd week 3rd week 4th week

E

I0
IL)
c'J

40
. .

30

20

100 jig every other day 50 jig every other day Control

25(OH)D

50 100 150 200 250

25(OH)D, ng/ml

Fig. 8. Linear regression analysis of the relationship between serum
levels of 1,25(OH)2D vs. 25(OH)D in anephric patients. y = 2.76 +
0.09x; N = 18; r = 0.72; P < 0.001.

levels (basal = 29.0 1.7; 1st week = 102.3 7.8; 2nd week
152.2 8.2; 3rd week: 125.9 22.2; 4th week: 90.6 6.7 ng/ml)
without modifications in I ,25(OH)2D concentrations. On the
other hand, in our anephric patients, the increase in 25(OH)D
levels after therapy (basal: 23.2 1.8; 1st week: = 112.4
16.0; 2nd week: 203.9 23.4; 3rd week: 186.1 23.3; 4th week:
176.4 26.0 nglml) was accompanied by a concomitant in-
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Discussion

In agreement with previously published results for normal
adults [22, 23] and other animal species (chicks and rats) [24],
we observed no significant changes in serum 1 ,25(OH)2D levels
in normal adults and in normal dogs after 25(OH)D administra-
tion, even with a three- to fourfold increase in circulating
25(OH)D concentrations. Serum PTH, ICa and P levels re-
mained unchanged, thus these modulators of l-alpha-hydroxy-
lase activity likely were not involved in the control of serum
calcitriol levels after substrate challenge.

An increase in circulating 1 ,25(OH)2D concentrations after
vitamin D challenge has been described in cows [44], in normal
children [26, 27], in hypoparathyroidism [25] and also in some
cases of chronic renal failure [28, 321. We evaluated the
regulation of serum 1 ,25(OH)2D levels in dogs with chronic
renal failure.

In contrast to what was observed in normal conditions, the
low basal levels of l,25(OH)2D in our uremic dogs were
increased significantly after two weeks of 25(OH)D administra-
tion. As previously described in normal animals, no changes in
serum i-PTH, ionized calcium and phosphorus levels were
observed, suggesting that 25(OH)D, per se, is responsible for
the increase in I ,25(OH)2D levels in uremia. This is in agree-
ment with similar studies performed in patients with low
glomerular filtration rates, which showed that serum concentra-
tions of l,25(OH)2D were responsive to changes in the circu-
lating levels of 25(OH)D [28, 32].

These effects of 25(OH)D were attributed to an increase in
substrate availability to renal l-alpha-hydroxylase already stim-
ulated by high PTH levels [5—11]. We found a significant
correlation for the relationship between circulating levels of
25(OH)D and 1 ,25(OH)2D for each dog which seems to support
this hypothesis. However, during recent years, several studies
have suggested that the kidney may not be unique in metabo-
lizing 25(OH)D to 1 ,25(OH)2D. Placenta [45—49], cultured bone
cells [50, 51], macrophages from sarcoid tissue [52—54], LPS
stimulated macrophages from normal humans [54] and also
cultured normal keratinocytes [55, 56] were reported to produce
a metabolite with the chromatographic properties of the hor-
monally active form of vitamin D. Whether such cells and
tissues can contribute to circulating 1,25(OH)2D levels in vivo is
unclear. Hypercalcemia caused by abnormally high circulating
levels of 1 ,25(OH)7D has been demonstrated in several patho-
logical states [57—62] as well as in patients with sarcoidosis even
when severe renal failure was also present [63, 64]. The
suggestion that this overproduction was extra-renal came from
the report of a patient with sarcoidosis who developed renal
failure and had a bilateral nephrectomy in preparation for
kidney transplantation [651.

In vivo, extra-renal production of 1 ,25(OH)2D was reported
in anephric pigs after 25(OH)D challenge [66].

An early report from Lambert et al [671 showed detectable
levels for 1,25(OH)2D in anephric humans. The higher 1,25
(OH)2D concentrations were measured in three of these pa-
tients receiving vitamin D.

We tested the contribution of extra-renal sources in the
response to 25(OH)D challenge by administering 25(OH)D to
four anephric patients undergoing hemodialysis who had detect-
able (5.5 1.2pg/ml) basal concentrations of 1 ,25(OH)2D. They

responded to 25(OH)D administration by a two- to threefold
increase in serum 1 ,25(OH)2D concentrations. A significant
correlation between circulating levels of 25(OH)D and 1,25
(OH)2D was found in the absence of renal mass, suggesting that
substrate availability to the remnant renal enzyme is not the
only mechanism involved in the observed response to substrate
challenge in chronic uremia.

Our results seem to support the existence of extra-renal sites
with the capacity to hydroxylate the 1-alpha position. The low
basal levels of circulating 1 ,25(OH)2D found in our anephric
patients reveal the poor contribution of extra-renal sources
under physiological 25(OH)D concentrations. However, these
sources were able to increase serum 1 ,25(OH)2D levels to the
lower limit of the normal range when substrate was raised to
supraphysiological concentrations.

The apparent capacity of anephric humans to produce 1,25
(OH)2D under conditions of high precursor levels we describe
in this paper, may be of value in explaining why severe
hypercalcemia developed in an anephric child treated with large
doses of vitamin D [68].

The requirement of supraphysiological amounts of substrate
for the extra-renal enzyme may be an adequate explanation for
the lack of increase in I ,25(OH)2D concentrations after 25
(OH)D therapy in two anephric patients reported by Zerwekh
et al [301.

Little is known about the mechanisms operating to tightly
control 1 ,25(OH)2D levels under normal circumstances that are
not present in chronic uremia. If the km reported for renal
1-alpha-hydroxylase in vitro [69, 70] are valid in vivo, serum
25(OH)D concentrations attained after vitamin D or 25(OH)D
administration are within the range for an expected first order
reaction, thus, it has been postulated that in normal humans
increased 1 ,25(OH)2D production by augmented substrate con-
centrations may be compensated by: a) an increase in serum
ionized calcium, or phosphorus, or a decrease in PTH which
will inhibit l-alpha-hydroxylase. This is not a valid explanation
according to our findings; b) feedback inhibition of 1-alpha-
hydroxylase by physiological concentrations of 1 ,25(OH)2D; c)
enhanced 1 ,25(OH)2D catabolism to maintain calcitriol levels
constant.

Feedback inhibition by physiological levels of calcitriol may
be an adequate explanation for our results. Such a mechanism
was described for human keratynocytes in vitro [56] and in our
anephric patients, 25(OH)D administration didn't enhance 1,25
(OH)2D levels above normal range.

With regards to 1 ,25(OH)2D catabolism, it has been described
for normal humans that increased production is paralleled by
enhanced catabolism to more polar metabolites mainly in the
kidney to maintain mineral homeostasis [71].

The important role of the kidney in vitamin D metabolism is
indicated by the lower turnover rates for 25(OH)D described in
anephric humans [72]. This may explain the higher circulating
levels of 25(OH)D at the second week of 25(OH)D administra-
tion and the slower decay after cessation of therapy in our
anephric patients compared to normal humans after identical
oral doses of this metabolite. Therefore, it may be postulated
that in renal failure or in anephric patients decreased renal
catabolism of 1 ,25(OH)2D, due to a reduction or absence of
renal mass, will not compensate for the enhanced production of
1 ,25(OH)2D after substrate challenge and will lead to the
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observed increase in circulating 1 ,25(OH)2D levels. However,
recent studies performed in our laboratory [73] clearly indicate
that in dogs with experimental chronic renal failure, the meta-
bolic clearance rate of l,25(OH)2D remains unchanged. On the
other hand, production rate of 1 ,25(OH)2D3 is greatly increased
after 25(OH)D administration.

In summary, our results confirm the existance of tight regu-
lation of circulating 1 ,25(OH)2D levels in normal humans. We
report that this stringent control of calcitriol concentrations is
also present in normal dogs. We have demonstrated that it is
possible to augment 1 ,25(OH)2D levels in uremic dogs by oral
25(OH)D administration thus providing a good experimental
model to further characterize the mechanisms involved in this
diverse control of serum calcitriol.

We also demonstrate that enhanced substrate availability to
renal 1-alpha-hydroxylase is not the only mechanism involved
in the response to 25(OH)D therapy in chronic uremia in
humans. There are extra-renal sources with the capacity to
hydroxylate the 1-alpha position of cholecalciferol with poor
contribution to circulating 1 ,25(OH)2D levels under physiolog-
ical 25(OH)D concentrations but with the potential to normalize
serum calcitriol under conveniently elevated substrate levels.

The location and regulation of the extra-renal source/s for
calcitriol in normal and uremic individuals at physiological and
supraphysiological 25(OH)D concentrations need to be deter-
mined.
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